Switzerland's Informative Inventory Report 2025 (IIR)

Submission under the UNECE Convention on Long-range Transboundary Air Pollution

Submission of March 2025 to the United Nations ECE Secretariat

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Office for the Environment FOEN

Swiss Confederation

Published and distributed by:

Federal Office for the Environment FOEN Air Pollution Control and Chemicals Division 3003 Bern, Switzerland www.bafu.admin.ch

Bern, March 2025

Switzerland's Informative Inventory Report 2025

Submission of March 2025 to the United Nations ECE Secretariat

Authors / Responsibilities

Federal Office for the Environment (FOEN) Air Pollution Control and Chemicals Division Industry and Combustion Section

Anouk Aimée Bass	Project leader, Energy
Myriam Guillevic	Uncertainties and KCA, Waste, Other
Beat Müller	Head of section
Sabine Schenker	IPPU, Agriculture

With contributions of Reto Meier and Simone Hofstetter, Air Quality Management Section as well as Harald Jenk, Simone Krähenbühl and Peter Bonsack, Traffic Section

In collaboration with Meteotest (Beat Rihm, Dominik Eggli, Fabio Fasel) and INFRAS (Felix Weber, Anna Ehrler)

Table of contents

Tab	ble of contents	5
Glo	ossary	8
Exe	ecutive Summary	12
1	Introduction	19
1.1	National inventory background	19
1.2	Institutional arrangements	19
1.3	Inventory preparation process	19
1.4	Methods and data sources	21
1.5	Key categories	25
1.6	QA/QC and verification methods	37
1.7	General uncertainty evaluation	
1.8	General assessment of completeness	42
2	Emission trends 1980-2023	44
2.1	Comments on trends	44
2.2	Overall trends of total emissions	47
2.3	Trends of main pollutants per gas and sectors	55
2.4	Trends of particulate matter per pollutant	61
2.5	Trends of other gases	66
2.6	Trends of priority heavy metals per pollutant	66
2.7	Trends of POPs	69
2.8	Compliance with the Gothenburg Protocol	72
3	Energy	74
3.1	Overview of emissions	74
3.2	Source category 1A - Fuel combustion activities	102
3.3	Source category 1B - Fugitive emissions from fuels	189
4	Industrial processes and product use	199
4.1	Overview of emissions	199
4.2	Source category 2A – Mineral products	206
4.3	Source category 2B – Chemical industry	210
4.4	Source category 2C – Metal production	216
4.5	Source category 2D3 – Other solvent use	222
4.6	Source category 2G – Other product use	234
4.7	Source categories 2H – Other industry production	237
4.8	Source categories 2I – Wood processing, 2K – Consumption of POP metals and 2L – Other production, consumption, storage, transportation bulk products	ion or handling of

5	Agriculture	.246
5.1	Overview of emissions	.246
5.2	Source category 3B – Manure management	.249
5.3	Source category 3D – Crop production and agricultural soils	.258
5.4	Source category 3F – Field burning of agricultural residuals	.266
6	Waste	.267
6.1	Overview of emissions	.267
6.2	Source category 5A – Biological treatment of waste - Solid waste disposal on land	.270
6.3	Source category 5B - Biological treatment of waste - Composting and anaerobic digestion at biogas facilities	.272
6.4	Source category 5C – Waste incineration and open burning of waste	.277
6.5	Source category 5D – Wastewater handling	.280
6.6	Source category 5E – Other waste, shredding	.284
7	Other and natural emissions	.286
7.1	Overview of emissions	.286
7.2	Source category 6 - Other emissions	.291
7.3	Source category 11B - Forest fires	.297
7.4	Category 11C – Other natural emissions	.299
8	Recalculations and improvements	.302
8.1	Explanations and justifications for recalculation	.302
8.2	Planned improvements	.315
9	Emission projections 2025–2035	.317
9.1	Comments on projections	.317
9.2	Assumptions for projections for the WM scenario	.317
9.3	Main pollutants and CO for the WM scenario	.324
9.4	Suspended particulate matter	.330
9.5	Priority heavy metals	.337
9.6	Persistent organic pollutants (POPs)	.340
10	Reporting of gridded emissions and LPS	.345
10.1	EMEP grid	.345
10.2	2 Gridding of emissions	.347
10.3	B EMEP grid results (visualizations)	.352
10.4	51	
11	Adjustments	
12	References and assignments to EMIS categories	.358
12.1	References	.358
12.2	2 Assignment of EMIS categories to NFR code	.376

Annexes		.377
Annex 1	Key category analysis (KCA)	.377
Annex 2	Other detailed methodological descriptions for individual source catego	ories .391
Annex 3	Additional information and explanations concerning the NFR tables	.402
Annex 4	National energy balance	.404
Annex 5	Additional information concerning uncertainties	.407
Annex 6	Summary information on condensables in PM	.439
Annex 7	Emission time series of main air pollutants, PM2.5 and BC for 1990–2023 pollutant and aggregated sectors	-

Glossary

AD	Activity data
Avenergy	Avenergy Suisse (Swiss Petroleum Association, formerly Erdöl- Vereinigung (EV))
BaP	Benzo(a)pyrene (CLRTAP: POP)
BbF	Benzo(b)fluoranthene (CLRTAP: POP)
BC	Black Carbon
BkF	Benzo(k)fluoranthene (CLRTAP: POP)
Carbura	Swiss organisation for the compulsory stockpiling of oil products
CCGT	Combined cycle gas turbine
CEIP	EMEP Centre on Emission Inventories and Projections
Cd	Cadmium (CLRTAP: priority heavy metal)
Cemsuisse	Association of the Swiss cement industry
CHP	Combined heat and power
CLRTAP	UNECE Convention on Long-Range Transboundary Air Pollution
СО	Carbon monoxide
CO ₂	Carbon dioxide
CRT	Common Reporting Tables (used for the reporting under the UNFCCC)
DDPS	Federal Department of Defense, Civil Protection and Sport
DETEC	Department of the Environment, Transport, Energy and Communications
DIY	Do it youself markets
EF	Emission Factor
EMIS	Swiss Emission Information System
EMEP	European Monitoring and Evaluation Programme: Co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe (under the CLRTAP)
EMPA	Swiss Federal Laboratories for Material Testing and Research
EPA	Federal Act on the Protection of the Environment
EV	Erdöl-Vereinigung (petroleum association), since 2019: Avenergy Suisse
ex	In combination with pollutant (PM2.5 ex, PM10 ex, TSP ex, BC ex or Cd ex)) exhaust fraction of this pollutant emissions
FAL	Swiss Federal Research Station for Agroecology and Agriculture (since 2013 Agroscope)
FCA	Federal Customs Administration, since 03.01.2022: Federal Office for Customs and Border Security (FOCBS)
FEDRO	Swiss Federal Roads Office

FOCA	Federal Office of Civil Aviation
FOEN	Federal Office for the Environment (former name SAEFL until 2005)
FOCBS	Federal Office for Customs and Border Security, formerly Federal Customs Administration (FCA)
FSKB	Fachverband der Schweizerischen Kies- und Betonindustrie
FSO	Federal Statistical Office (formerly SFSO)
fu	fuel used, principle for calculating activity data and the resulting emissions in the road transportation model (instead of the fuel sold principle)
Gas oil	Light fuel oil
GHG	Greenhouse Gas
GVS	Giesserei Verband der Schweiz / Swiss Foundry Association
ha	Hectare
HAFL	School of Agricultural, Forest and Food Sciences at Bern University of Applied Sciences
НСВ	Hexachlorobenzene
Hg	Mercury (CLRTAP: priority heavy metal)
НМ	Heavy Metals
IcdP	Indeno(1,2,3-cd)pyrene (CLRTAP: POP)
lir	Informative Inventory Report (CLRTAP)
INFRAS	Research and consulting company, Zurich/Berne
IPCC	Intergovernmental Panel on Climate Change
IPPU	Industrial Processes and Product Use
ICAO	International Civil Aviation Organization
I-Teq	International Toxic Equivalent (unit of toxic equivalent factors for PCB's, PCDDs, PCDFs for Human and Wildlife by WHO
IVZ	Swiss information system traffic admission (Informationssystem Verkehrszulassung IVZ) run by FEDRO, formerly MOFIS
kt	Kilo tonne (1000 tonnes)
L1, L2	Key category according to level assessment with approach 1, approach 2
LTO	Landing and Takeoff-Cycle (Aviation)
LUBW	Baden-Württemberg State Institute for Environmental Protection (Landesanstalt für Umweltschutz Baden-Württemberg), Germany
LULUCF	Land Use, Land-Use Change and Forestry
MOFIS	Swiss federal vehicle registration database run by FEDRO (since 2022: IVZ)
MSW	Municipal Solid Waste
NCV	Net Calorific Value
NFR	Nomenclature For Reporting
NH ₃	Ammonia

NID	National Inventory Document
NIS	National Inventory System
NMVOC	Non-Methane Volatile Organic Compounds
NO _x , NO ₂ , NO	Nitrogen oxides, nitrogen dioxide, nitrogen monoxide
NA, NE, IE, NO, NR	(official notation keys) Not Applicable, Not Estimated, Included Elsewhere, Not Occuring, Not Relevant
nx	In combination with pollutant (PM2.5 nx, PM10 nx, TSP nx, BC nx or Cd nx)) non-exhaust fraction of this pollutant emissions
OAPC	Ordinance on Air Pollution Control
PAH	Polycyclic aromatic hydrocarbons (CLRTAP: POP)
PCDD/PCDF	Polychlorinated Dibenzodioxins and -Furanes (CLRTAP: POP)
Pb	Lead (CLRTAP: priority heavy metal)
PCB	Polychlorinated Biphenyls
PM, PM2.5, PM10	Suspended Particulate Matter (PM) with an aerodynamic diameter of less than 2.5 μm or 10 μm, respectively.
POPs	Persistent Organic Pollutants
QA/QC	Quality Assurance/Quality Control: QA includes a system of review procedures conducted by persons not directly involved in the inventory development process. QC is a system of routine technical activities to control the quality of the inventory.
QMS	Quality Management System
SAEFL	Swiss Agency for the Environment, Forests and Landscape (since 2006: Federal Office for the Environment FOEN)
SBV	Swiss farmer's union ("Schweizer Bauernverband") or Swiss association of builders ("Schweizerischer Baumeisterverband")
SCGT	Simple cycle gas turbine
SFOE	Swiss Federal Office of Energy
SFSO	Swiss Federal Statistical Office, now: Federal Statistical Office (FSO)
SO _x , SO ₂	Sulphur oxides, sulphur dioxide
SGWA	Swiss Gas and Water Industry Association
SPA	"Schwerpunktaktion", measurement project by the Federal Office for Customs and Border Security (FOCBS) to estimate the sulphur content for diesel oil, gasoline, gas oil Euro and Eco and residual fuel oil
swissmem	Swiss Mechanical and Electrical Engineering Industries (Schweizer Maschinen-, Elektro- und Metallindustrie)
T1, T2	Key category according to trend assessment with approach 1, approach 2
TAN	Total Ammonia Nitrogen
TFEIP	Task Force on Emission Inventory and Projections
TSP	Total Suspended Particulate matter

TSS	"Tankstellensurvey", measurement project by the Federal Office for Customs and Border Security (FOCBS) to estimate the sulphur content for diesel oil and gasoline
UNFCCC	United Nations Framework Convention on Climate Change
VKTS	Swiss supervising association of textile cleaning
VOC	Volatile Organic Compounds
VSG/SGIA	Swiss Gas Industry Association
VSLF	Swiss association for coating and paint applications
VSTB	Swiss association of grass drying plants
VTG	Swiss Armed Forces – Defence ("Die Gruppe Verteidigung")
WaM	Scenario "With additional Measures"
WM	Scenario "With Measures"
ZPK	Swiss association of pulp, paper and paperboard industry

Executive Summary

Swiss CLRTAP inventory system

The Swiss inventory system has been developed and is managed by the Federal Office for the Environment (FOEN) under the auspices of the Federal Department of the Environment, Transport, Energy and Communications (DETEC).

FOEN's Air Pollution Control and Chemicals Division maintains a database called EMIS (**EM**issionsInformationssystem **S**chweiz, Swiss Emission Information System) containing all basic data needed to prepare the CLRTAP inventory. Background information on data sources, activity data, emission factors and methods used for emission estimation are documented in EMIS.

A number of data suppliers provide input data that is fed into EMIS. The inventory's most relevant data sources are the Swiss overall energy statistics, existing models for road transportation and non-road vehicles and machines, data from industry associations and agricultural statistics and models.

Typically, emissions are calculated according to standard methods and procedures as described in the revised UNECE Guidelines 2023 for Estimating and Reporting Emission Data under the Convention on Long Range Transboundary Air Pollution (ECE 2023) and in the EMEP/EEA Air Pollutant Emission Inventory Guidebook, editions 2016, 2019 and 2023 (EMEP/EEA 2016, 2019, 2023).

With a few exceptions, calculations of emissions are consistent with methodological approaches in the greenhouse gas (GHG) inventory under the UNFCCC. However, some relevant differences exist. For example, the Swiss CLRTAP Inventory system applies the "fuel used" (fu) principle for road traffic emissions for estimating compliance with the emission reduction ceilings, while for the GHG inventory, the "fuel sold" principle applies. This means that the so called "fuel tourism" and statistical differences is accounted for in the emissions of the GHG inventory, but not in the CLRTAP Inventory. Note that in the official emission reporting templates the Swiss "National total for the entire territory" (row 141 in the reporting tables) is reported as "fuel sold" in order to be comparable to other countries. But the Swiss "national total for compliance" with Gothenburg Protocol commitments (row 152 in the reporting tables) is the national total based on the "fuel used" as mentioned before. The difference between the two approaches can amount to several percent, but deviations varied considerably in the period 1990-2023 due to fluctuating fuel price differences between Switzerland and its neighbouring countries. Also, methodological approaches to determine emissions from aviation under the CLRTAP deviate from the GHG inventory: for the national total CLRTAP, so-called landing and take-off (LTO) emissions of domestic and international flights are taken into account while emissions of international and domestic cruise flights are reported under memo items only (see also chp. 3.1.6.1).

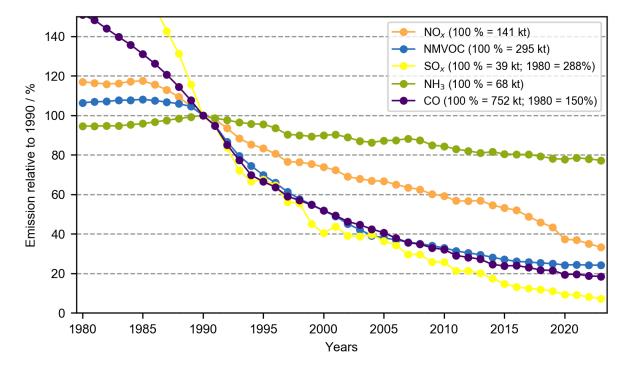
Switzerland and CLRTAP

Switzerland is a Party to the 1979 Geneva Convention on Long-range Transboundary Air Pollution (CLRTAP). The aim of the Convention is to protect the population and the environment against air pollution and to limit and gradually reduce and prevent air pollution including long-range transboundary air pollution. The seven CLRTAP Protocols including the Gothenburg Protocol, require an annual emission reporting. The 1999 Gothenburg Protocol is a multi-pollutant protocol designed to reduce acidification, eutrophication and ground-level ozone by setting national emissions ceilings for sulphur dioxide, nitrogen oxides, volatile organic compounds and ammonia, which were to be met by 2010 and maintained afterwards. A revision of the Protocol including emission reduction commitments for 2020 and beyond expressed as a percentage reduction from the 2005 emission level was adopted in 2012 and entered into force on 7 October 2019. It includes newly also PM2.5 commitments. This amended protocol entered into force for Switzerland on 22 October 2019.

Following its obligations under the CLRTAP, Switzerland annually submits its air pollution emission inventory ("CLRTAP Inventory") as well as an Informative Inventory Report (IIR) according to the revised emission reporting guidelines under the CLRTAP. The emission inventory exists since the mid 80's while the very first IIR as a report was submitted in 2008 (FOEN 2008) in accordance with the Guidelines for Reporting Emission Data under the Convention. The report on hand is now the eighteenth IIR of Switzerland.

The report has substantially improved over the years due to recurring external and internal reviews. Stage 1 and stage 2 centralized reviews took place annually, centralized stage 3 reviews in 2010 (UNECE 2010), 2016 (UNECE 2016), 2020 (UNECE 2020a), 2022 (UNECE 2022a), 2023 (UNECE 2023a) and 2024 (UNECE 2024a). For the latest submission and driven by this last centralized stage 3 review, specific improvements have been implemented. For a list of the most important improvements, see chapter 1.4.1. Additional information on specific improvements is given in the chapters of the respective sectors and source categories.

Key categories, uncertainties and completeness


In order to identify the most relevant source categories, key category analyses were conducted according to approaches 1 and 2. For both approaches, level assessments were conducted for the years 2023 and 1990 and a trend assessment for 1990-2023. The key category analysis highlights that for the year 2023, Sector 1 Energy is responsible for the majority of emissions of NO_x, SO_x, PM2.5 and PM10. Sector 2 IPPU and Sector 3 Agriculture contribute most to NMVOC emissions. The large majority of NH₃ emissions are caused by livestock production within Sector 3 Agriculture.

For the main pollutants (NO_x, NMVOC, SO_x, NH₃) as well as for PM2.5 and PM10, the uncertainty of the inventory, resulting from uncertainties from each category, is evaluated according to two methods: uncertainty propagation (approach 1) and Monte Carlo simulations (approach 2). In addition, a Tier 2 approach uncertainty estimation was conducted for agricultural NH₃ emissions in 2021. The uncertainty analysis has been carried out for level emissions for the years 1990 and 2023 and for the trend 1990-2023.

Complete emission estimates are accomplished for all known sources and air pollutants. According to current knowledge, the Swiss CLRTAP inventory is complete.

Quality assurance and quality control (QA/QC)

A QA/QC system for the GHG inventory is in place that also covers most of the preparation process of the CLRTAP Inventory. The National GHG Inventory, which is also derived from the Swiss Emission Information System (EMIS), complies with the ISO 9001:2015 standard (Swiss Safety Center 2022). It was certified by the Swiss Association for Quality and Management Systems in December 2007 and has been re-audited annually. A separate and formalized CLRTAP Inventory quality system is not foreseen. However, a centralised plausibility check for emissions was established that compares emissions of the previous and the latest submission.

ES Figure 1.1 Relative trends for the total emissions of main pollutants and CO in Switzerland.

Overall, ES Figure 1.1 shows a decreasing trend of all main air pollutants and CO between 1990 and 2023. The significant decline of NO_x, NMVOC and CO emissions is caused by effective reduction measures: abatement of exhaust emissions from road vehicles and stationary installations, taxation of solvents and voluntary agreements with industry sectors. As a result of the legal restriction of sulphur content in liquid fuels and the decrease of coal consumption, SO_x emissions decreased significantly as well. In contrast to the other main pollutants, NH₃ emissions show a smaller reduction mainly due to the decrease of animal numbers and changes in agricultural production techniques.

The drop of emissions in 2020/2021, especially visible for NO_x and CO, is due to reduced traffic volumes during the COVID-19 pandemic.

Emission trends for PM2.5 (not included in ES Figure 1.1, see Figure 2-3) reveal a significant decline between 1980 and 2023 mainly as a result of the abatement of exhaust emissions from road vehicles and also - to a minor extent - from non-road machinery and from improved residential heating equipment.

Characteristics of the sectors

 1 Energy: the energy sector encompasses stationary and mobile fuel combustion activities and fugitive emissions from handling of fuels, such as losses in the gas network or refining and storage of gasoline and coal. Compared to the other sectors, fuel combustion activities are the main emission source of all air pollutants reported in the IIR except for NH₃, NMVOC, TSP and PCB. Within sector 1 Energy, source category 1A3 Transport is the predominant source of all main pollutants except for SO_x and PM2.5, where 1A2 Manufacturing industries and construction and 1A4 Other sectors, respectively, are the most important sources. The emissions of all pollutants from the sector decreased compared to 1990. Note that regarding Pb emissions, sector 1 Energy was the dominant source in 1990 (mainly due to 1A3b Road transportation) but has become less relevant over time due to the fact that only unleaded gasoline is sold in Switzerland since 2000.

- 2 Industrial processes and product use: this sector comprises process emissions from the mineral, chemical and metal industry. Included are also other production industries such as pulp and paper industry and food and beverages industry as well as other solvent and product use, e.g. emissions from paint applications and domestic solvent use. Emissions from industrial processes and product use are the main emission source of NMVOC and an important source of particulate matter (mainly PM2.5, but also PM10 and TSP), SO_x as well as heavy metals (particularly Cd) emissions. NMVOC emissions originate mainly from source category 2D3 Other solvent use. 2A1 Cement production, 2A5a Quarrying and mining other than coal, 2G Other product use (i.e. use of fireworks) and 2H1 Pulp and paper industry are responsible for considerable amounts of PM2.5 emissions, whereas 2C1 Iron and steel production is a crucial source of heavy metal emissions, SO_x is generated mainly by 2B5 Carbide production as well as 2C3 Aluminium production (until 2006). In source category 2K Consumption of POPs and heavy metals, considerable emissions of PCB are reported. Since 1990, the emissions of all pollutants decreased more or less continuously, although in the past few years, the decrease has been less pronounced for most of the pollutants.
- 3 Agriculture: this sector encompasses emissions from livestock production and agricultural soils. Overall, sector 3 Agriculture clearly is the predominant contributor to total Swiss NH₃ emissions, also contributing to a relevant share of NMVOC, NO_x, PM10 and TSP emissions. Within the sector, the NH₃ emissions are attributed to the source categories 3B Manure management and 3D Agricultural soils. Most NH₃ emission reductions in agriculture occurred between 1990 and 2004, followed by an increase until 2007 and then showed a slight but rather constant decrease again. Emissions of NO_x reveal a decreasing trend since 1990 with slight fluctuations. NMVOC emissions mainly stem from 3B Manure management (silage feeding of cattle).
- 4 Land Use, Land-Use Change and Forestry (LULUCF): The emissions of this sector are not accounted for in the commitments of the Gothenburg Protocol. Only forest fires (under 11B) and other natural emissions (under 11C) are reported under memo items in the official emission reporting templates and are described in chapter 7 Other and natural emissions.
- 5 Waste: This sector encompasses solid waste disposal on land, biological treatment of solid waste, waste incineration and open burning of waste, wastewater handling and other waste. Overall, emissions of the main pollutants are minor when compared to the other sectors. The heat generated in waste incineration plants has to be recovered in Switzerland, and in accordance with the EMEP/EEA guidebook (EMEP/EEA 2023), emissions from the combustion of waste-to-energy activities are therefore dealt within 1A Fuel combustion. Relevant pollutants within sector 5 Waste are NMVOC, PM2.5, heavy metals (especially Pb) and POPs. NMVOC emissions are mainly caused by 5B Biological treatment of solid waste. PM2.5, heavy metals, PCDD/PCDF and PAH emissions mainly originate from source category 5C waste incineration. Emissions in sector 5 Waste have declined since 1990, with the exception of NMVOC (increase).
- 6 Other: In this sector, mainly emissions from human and pet ammonia, private application of synthetic fertiliser as well as fire damages in buildings and in motor vehicles are reported. It is an important source of Pb, PCDD/PCDF, PAH and PCB, mainly due to 6A4 fire damage. Regarding the main pollutants, emissions from sector 6 Other are minor when compared to sectors 1 to 5. Overall, emissions are fluctuating without any significant trends.


Projections for emissions until 2035

The emission projections of air pollutants in Switzerland have been fully revised for the submission 2021 and a new "With Measures" (WM) scenario was elaborated.

The projected data for the energy consumption and resulting production quantities in industrial processes are mainly in accordance with the scenarios of the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020).

For all activities depending on population size the latest perspectives for Switzerland's inhabitants are integrated (SFSO 2020p), and for the agricultural sector an independent scenario was developed (Swiss Confederation 2017, FOAG 2011, Mack and Möhring 2021).

ES Figure 1.2 shows the past emissions from 2015-2023 and the projected emissions between 2025 and 2035 for main air pollutants under the WM scenario.

ES Figure 1.2 Relative trends for the total emissions from 2015-2023 (grey area) and the projected emissions between 2025 and 2035 for main pollutants and CO in the WM scenario. 100 % corresponds to levels of the latest reporting year.

According to the projections 2025-2035, the main pollutants will develop differently. Total NO_x and CO emissions will continue to decrease significantly, while total emissions of NMVOC, SO_x and NH₃ will remain at more or less constant levels.

For suspended particulate matter emissions, the smaller fractions of suspended particulate matter (PM2.5) and BC are expected to continue to decrease, whereas the larger fractions (PM10, TSP) are expected to remain at more or less constant levels because the ratio of the amount of non-exhaust particles to exhaust particles is considerably higher for PM10 and TSP than it is for PM2.5, and will be even higher in the future as the number of vehicles and mileage will increase.

Pb emissions are projected to slightly decrease between 2025 and 2035, whereas total Cd and Hg emissions are remaining about constant.

Total emissions of all persistent organic pollutants (POP) will decrease.

Gothenburg Protocol

Under the CLRTAP, the 1999 Gothenburg Protocol requires that parties shall reduce and maintain the reduction in annual emission in accordance with national emission targets set for 2010. The following table shows the emission ceilings, the reported emissions for 2010 and the respective compliance. Accordingly, Switzerland is complient with the Gothenburg Protocol emission ceilings for all pollutants except for NO_x in 2010. All emissions 2023 are in compliance with the emission ceilings 2010.

ES Table 1.1 Emission ceilings of the Gothenburg Protocol for 2010 and beyond compared to the reported emissions for 2010 and 2023 of the latest submission (2025).

Pollutants	National emission ceilings for 2010	Emissions 2010 (Subm. 2025)	Compliance with emission ceilings 2010 in 2010	Emissions 2023 (Subm. 2025)	Compliance with emission ceilings 2010 in 2023
	kt	kt		kt	
SO _x (as SO ₂)	26	10	yes	2.8	yes
NO _x (as NO ₂)	79	83	no	47	yes
NMVOC	144	97	yes	71	yes
NH_3	63	58	yes	53	yes

The 2012 revised Gothenburg Protocol included emission reduction commitments for 2020 and beyond expressed as a percentage reduction from the 2005 emission level. On 22 October 2019, the amended protocol including the new reduction commitments for 2020, including newly PM2.5, has entered into force for Switzerland. ES Table 1.2 shows the emission reduction commitments for 2020 and the corresponding level of the emissions 2023. The emission reduction commitments 2020 are achieved for all pollutants.

ES Table 1.2 Reported emission reductions 2020 and 2023 versus level of 2005 and reduction commitments per 2020. The emission reduction commitments for 2020 are defined as reductions in percentages from 2005.

Pollutant	Emission reduction commitments 2020	Reduction achieved in 2020	Compliance with reduction commitments 2020 in 2020	Reduction achieved in 2023	Compliance with reduction commitments 2020 in 2023
	%-reduction of 2005 level	%-reduction of 2005 level		%-reduction of 2005 level	
SO _x (as SO ₂)	21%	74%	yes	80%	yes
NO _x (as NO ₂)	41%	44%	yes	50%	yes
NMVOC	30%	36%	yes	36%	yes
NH ₃	8%	11%	yes	11%	yes
PM2.5	26%	52%	yes	55%	yes

Recalculations and improvements

In 2022, recalculations have a minor effect on the emission levels compared to previous submissions. The recalculations cause a lower emission level by 10.4 % for Cd. For NO_x, NMVOC, SO_x, PM2.5, CO and Pb, recalculations lead to a decrease of emissions in 2022 between 1 % and 3 %. For all other pollutants, the difference does not exceed 1 %.

Also in 1990, recalculations only have a minor effect on the emission levels compared to previous submissions. The recalculations cause a lower emission level by 2.2 % for Cd. For all other pollutants, the difference in emissions due to recalculations for 1990 does not exceed 1 %.

In the latest submission 2025, several improvements were conducted and a number of further planned improvements are identified. The following improvements had a relevant impact on the inventory in submission 2025:

- 1A: NO_x and CO emission factors of boilers were updated based on a large number of air pollution control measurements of combustion installations (gas oil, natural gas) in several Swiss cantons.
- 2G: The emission factor for Cd was updated for source category 2G Consumption of tobacco products based on a country-specific estimation.

Switzerland prioritizes inventory improvements according to the key category analysis (KCA) and the uncertainty analysis where appropriate. The results of the uncertainty analysis are used to prioritize improvements through the results of the key category analysis, approach 2, in which source categories are sorted by decreasing order of contribution to the inventory uncertainty.

1 Introduction

1.1 National inventory background

Switzerland has signed and ratified the 1979 Geneva Convention on Long-range Transboundary Air Pollution (CLRTAP) and its Protocols (Swiss Confederation 2004):

- The 1985 Helsinki Protocol on the Reduction of Sulphur Emissions or their Transboundary Fluxes by at least 30 %.
- The 1988 Sofia Protocol concerning the Control of Emissions of Nitrogen Oxides or their Transboundary Fluxes.
- The 1991 Geneva Protocol on the Control of Emissions of Volatile Organic Compounds or their Transboundary Fluxes.
- The 1994 Oslo Protocol on Further Reduction of Sulphur Emissions.
- The 1998 Aarhus Protocol on Heavy Metals and its amendment 2012.
- The 1998 Aarhus Protocol on Persistent Organic Pollutants and its both amendments adopted in 2009.
- The 1999 Gothenburg Protocol to Abate Acidification, Eutrophication and Ground-level Ozone and its amendment 2012 (national emission reduction commitments for 2020 for SO_x (as SO₂), NO_x (as NO₂), NH₃, NMVOC and for PM2.5).

According to the obligations of the CLRTAP, Switzerland is annually submitting its emission inventory (CLRTAP Inventory). For the present submission in March 2025, Switzerland provides for the eighteenth time an Informative Inventory Report (IIR) with the documentation on hand.

1.2 Institutional arrangements

The Swiss inventory system for the CLRTAP is developed and managed under the auspices of the Federal Office for the Environment (FOEN). As stipulated in the Ordinance on Air Pollution Control of 16 December 1985 (Swiss Confederation 1985), this Office has the lead within the Federal administration regarding air pollution policy and its implementation.

The FOEN publishes overviews of emissions and air quality levels. It has also built up and maintains the Swiss Emission Information System (EMIS) that contains all basic data needed to prepare the CLRTAP Inventory (and which contains also all greenhouse gas emissions as required for the preparation of the UNFCCC Greenhouse Gas Inventory).

1.3 Inventory preparation process

Various data suppliers collect the data needed for the preparation of the CLRTAP Inventory. The individual data suppliers are in charge for the quality of the data provided, so they are also responsible for the collection of activity data and for the selection of emission factors and methods. Thereby, the relevant guidelines including the Guidelines for Reporting Emissions and Projections data under the Convention on Long-range Transboundary Air Pollution (ECE 2023, ECE 2023a), the EMEP/EEA guidebook (EMEP/EEA 2019 and EMEP/EEA 2023) and the 2006 IPCC Guidelines for National Greenhouse Gas Inventories as well as the 2019 Refinement (IPCC 2006, 2019) are also required to be considered.

Various QA/QC activities (see chp. 1.6) provide provisions for maintaining and successively improving the quality of inventory data.

As mentioned above, the Air Pollution Control and Chemicals Division at FOEN maintains the EMIS database, which contains all basic data needed for the preparation of the CLRTAP Inventory. Simultaneously, background information on data sources, activity data, emission factors and methods used for emission estimation is also documented in EMIS and cited in the subsequent chapters as EMIS 2025/(*NFR-Code*).

Figure 1-1 illustrates in a simplified manner the data collection and processing steps leading to the EMIS database and its main outputs into the CLRTAP air pollution emission inventory and into the IPCC/UNFCCC greenhouse gas inventory.

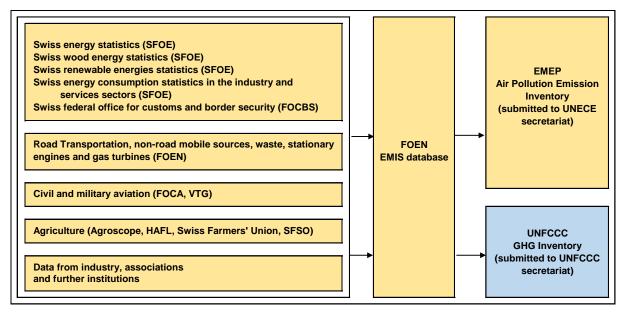


Figure 1-1 Data collection for EMIS database and CLRTAP air pollution emission inventory (GHG: Greenhouse Gas).

The preparation of the CLRTAP Inventory is closely connected to the preparation of the GHG inventory. Therefore, there are several parallel working steps. Also, the compilation of the Informative Inventory Report (IIR, the document on hand) and of the National Inventory Document (NID, see FOEN 2025) are going on simultaneously and are, partly, updated by the same persons. Therefore, both reports are structured similarly.

Annual Stage 1 and 2 reviews were carried out by the EMEP Centre on Emission Inventories and Projections (CEIP) and documented on the EMEP Website (UNECE 2024). Additionally, in-depth Stage 3 reviews took place in 2010, 2016, 2020, 2022, 2023 and 2024 documented in UNECE (2010, 2016, 2020a, 2022a, 2023a, 2024a). The recommendations of the latest Stage 1, 2 and 3 reviews were implemented in the latest emission inventory and in the IIR as far as possible.

Archiving of the database and related internal documentation is carried out by the inventory compiler, while any other material is archived on the internal data management system by the QA/QC officer.

1.4 Methods and data sources

1.4.1 Improvements conducted for this submission

The following issues were mentioned as planned improvements in the IIR of submission 2024 in chp. 8.2 (FOEN 2024b). Switzerland prioritises inventory improvements according to the key category analysis (KCA) and the uncertainty analysis where appropriate. The list shows the current state of realisation:

- 1A: The NO_x and CO emission factors of boilers (gas oil, natural gas) were updated based on a large number of air pollution control measurements of combustion installations in several Swiss cantons. Source categories 1A1a, 1A2gviii, 1A4ai and 1A4bi are key categories for NO_x. Current state: Done.
- 2D3 Other solvent use and 2G Other product use: A comprehensive update of all NMVOC emissions from solvent and product use is on-going. Several sub-categories within 2D3 as well as source category 2G are key categories for NMVOCs. Current state: In progress.

Further additional improvements have been implemented for this submission 2025 as follows:

- 2G: The emission factor for Cd was updated for source category 2G Consumption of tobacco products based on a country-specific estimation. Source category 2G is a key category for Cd.
- 1A3: Adjustments were made to driving performance, mileage and energy consumption in the Handbook of Emission Factors for Road Transport (HBEFA, version 4.2. Additionally, new emission factors were adopted to the handbook. This leads to changes in activity data and emission factors in source category 1A3b Road transportation.
- 2H2: The NMVOC emission factor for bread production was updated based on a countryspecific estimation. This leads to changes in NMVOC emissions in source category 2H2 Food and beverages industry. Source category 2H2 is a key category for NMVOCs.

1.4.2 General description

Emission key categories and uncertainties are calculated on the basis of the standard methods and procedures as described in:

- UNECE: Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution (ECE 2023).
- EMEP/EEA air pollutant emission inventory guidebook version 2023 (EMEP/EEA 2023), including:
 - Chp. 2. Key category analysis and methodological choice
 - Chp. 5. Uncertainties

Note that there is an important statement regarding the system boundaries for emission modelling in chapter V "Methods", section A "Emission estimation methods and principles" of the Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution. Paragraph 23 states:

"For Parties for which emission ceilings or emission reduction commitments are derived from national energy projections based on the amount of fuels sold, compliance checking will be

based on fuels sold in the geographic area of the Party. Other Parties within the EMEP region (i.e., Austria, Belgium, Ireland, Lithuania, Luxembourg, the Netherlands, Switzerland and the United Kingdom of Great Britain and Northern Ireland) may choose to use the national emission total calculated on the basis of fuels used in the geographic area of the Party as a basis for compliance with their respective emission ceilings or emission reduction commitments." (ECE 2023)

This means that the national totals of the emissions as reported in the NFR tables as "National total for the entire territory (based on fuel sold)" (row 141 in the corresponding template) deviate from "National total for compliance assessment) as reported in row 152 of the template because Switzerland's compliance assessment refers to "fuel used" (fu) and not to "fuel sold". Differences exclusively occur in sector 1A3b Road transportation (see Table 3-6 and description of system boundaries in chapter 3.1.6.1). When comparing numbers from the IIR with the NFR tables, please refer to the blue coloured line in the NFR table reporting the national compliance assessment. The KCA and the uncertainty analysis were carried out with emission values based on fuel used.

The methods used for the NFR sectors are given in the following Table 1-1. The classification follows the EMEP/EEA guidebook (EMEP/EEA 2023) in the respective chapters for the source categories.

Table 1-1 Overview of applied methods, emission factors and activity by NFR category. CS = country-specific, D default, T1 = Tier 1, T2 = Tier 2, T3 = Tier 3. Default emission factors mainly stem from EMEP/EEA 2023. In Sector 1A Fuel Combustion source categories with a higher tier method are listed specifically. The methods described for sectors marked with a * apply only to the specific source category description.

Sector	Source category	Method applied	Emission factors	Activity data
1	Energy			
1A	Fuel Combustion activities (excluding source categories marked with a * below)	T2	CS, D	CS
1A2gvii* 1A3a* 1A3c*	Mobile combustion in manufacturing industries and construction Civil Aviation Railways			
1A3d* 1A4aii* 1A4bii* 1A4cii* 1A5b*	Domestic navigation Commercial/Institutional: Mobile Residential: Household and gardening (mobile) Agriculture/Forestry/Fishing: Off-road vehicles and other machinery Other (Military non-road)	ТЗ	CS, D	CS
1A3b*	Road Transportation	T3 (exhaust pol.), T2 (non-exhaust pol.)	CS, D	CS
1B	Fugitive emissions from fuels	T1, T2, T3	CS, D	CS
2	Industrial processes and product use			
2A	Mineral products	T2	CS, D	CS
2B	Chemical industry	T2	CS	CS
2C	Metal production	T2	CS, D	CS
2D	Other solvent and product use	T1, T2	CS, D	CS
2G	Other product use	T2	CS, D	CS
2H	Other	T2	CS	CS
21	Wood processing	T2	CS	CS
2K	Consumption of POPs and heavy metals	T2	CS	CS
2L	Other production, consumption, storage, transportation or handling of bulk products	T2	CS	CS
3	Agriculture			
3B	Manure management	T1, T2, T3	CS, D	CS
3D	Crop production and agricultural soils	T1, T2, T3	CS, D	CS
5	Waste			
5A	Biological treatment of waste - Solid waste disposal on land	T2	CS	CS
5B	Biological treatment of waste - Composting and anaerobic digestion at biogas facilities	T2	CS	CS
5C	Waste incineration and open burning of waste	T2	CS, D	CS
5D	Wastewater handling	T2	CS	CS
5E	Other waste	T2	CS	CS
6	Other			
6A	Other sources	T1, T2, T3	CS, D	CS
11	Natural emissions			
11B	Forest fires	T2	CS	CS
11C	Other natural emissions	T2	CS	CS

1.4.3 Swiss emission inventory system

Emission data is extracted from the Swiss emission information system (EMIS), which is operated by FOEN (see FOEN 2006). EMIS was established at SAEFL (former name of FOEN) in the late 1980s. Its initial purpose was to record and monitor emissions of air pollutants. Since then, it has been extended to cover greenhouse gases, too. Its structure corresponds to the EMEP/EEA system for classifying emission-generating activities. EMEP/EEA uses the Nomenclature for Reporting ("NFR code", ECE 2023).

EMIS maintains a database where emissions for various pollutants and greenhouse gases are calculated using emission factors and activity data according to the EMEP/EEA methodology, respectively IPCC Guidelines. Pollutants included are NO_x, NMVOC, SO_x, NH₃, particulate matter (PM2.5, PM10, TSP and BC), CO, priority heavy metals (Pb, Cd and Hg), POPs (PCDD/PCDF and PAHs), HCB and PCB, as well as the greenhouse gases CO₂

(fossil/geogenic origin and CO₂ from biomass), CH₄, N₂O and F-gases. The input data originates from a variety of sources such as various emission measurements, production data and emission factors from the industry, industry associations and research institutions and from Swiss statistics concerning population size, employment, waste and agriculture. Amongst others, these are the SFOE Swiss overall energy statistics, the SFOE Swiss wood energy statistics, FOEN statistics and models for emissions from road transportation, statistics and models of non-road activities, waste statistics and agricultural models and statistics (see Figure 1-1).

EMIS is documented in an internal FOEN manual for the database (FOEN 2006). The original EMIS database underwent a full redesign in 2005/2006. It was extended to incorporate more data sources, updated, and migrated to a new software platform. Simultaneously, activity data and emission factors were being checked and updated. Ever since then, updating is an ongoing process. Therefore, the data used in this submission are referenced to the specific EMIS data source.

As much as possible, all tables and figures in the IIR contain numeric values that are stored in and can be directly traced back to the EMIS database. All displayed units are (multiple of) existing units according to the international system of units. For all tables, by default two significant figures are represented for each value, independently of the uncertainty associated to the value. For a few tables representing trends, three significant figures are used to make the trend visible. In graphs, units for axis are represented following the guideline from the Bureau International des Poids et Mesures (BIPM 2019), i.e. the sign "/" is represented before the unit.

1.4.4 Data suppliers

No.	Institution	Subject	Data supplied for inventory category										
			1A1 1A2 1A3 1			1A4	1A5	1B	2	3	5	6	11
	Data suppliers (annual updates)												
1	FOEN, Air Pollution Control	EMIS database	х	х		х	х	х	х	х	х	х	х
2	FOEN, Climate	Swiss ETS monitoring reports	х	х		х		х	х				
3	FOEN, Waste and Raw Materials	Waste statistics	х	х							х		
4	SFOE	Swiss overall energy statistics	х	х	х	х		х			х		
5	SFOE	Swiss wood energy statistics	х	х		х							
6	SFOE	Swiss renewable energy statistics	х	х	х	х					х		
7	SFOE	Energy consumption statistics in the industry and services sectors		x									
8	FOCA	Civil aviation			х								
9	DDPS/VTG	Military machinery and aviation					х						
10	SFSO	Transport, Solvents, Agriculture, Waste, Other			х				х	х	х	х	
11	HAFL	Agriculture								х			
12	Industry and Industry Associations	Ind. processes and solvents	х					х	x				
13	Avernergy Suisse / Swiss Petroleum Association	Oil statistics						x	x				
	Data suppliers (sporadic updates)												
14	FOEN, Air Pollution Control	Non-road database		х	х	х	х						
15	SGWA	Gas distribution losses						х					
16	Empa	Various emission factors	х	х	х	х							
17	INFRAS	On-road emission model			х								
18	INFRAS	Non-road emission model		х	х	х	х						
19	INFRAS	Model of stationary engines and gas turbines	х	х	х	х							
20	ecolot	Solvents and product use							x				
21	Verenum	Wood energy, emission factor model	х	х		х							

Table 1-2 Primary and secondary data suppliers: 1–13 provide annual updates, 14–21 provide sporadic updates.

1.5 Key categories

In order to identify the source categories which are the main contributors to the emissions of each pollutant ("level assessment"), or to the emission trend between the base year 1990 and the reporting year ("trend assessment"), and/or to the associated uncertainties, a Key Category Analysis (KCA) is performed according to the methodology described in the EMEP/EEA guidebook (EMEP/EEA 2023). Note that to compute the trend assessment, we use the formula from the 2019 Refinement to the 2006 IPCC Guidelines (IPCC 2019). The KCA can be performed based on two approaches: in approach 1, categories are set out in decreasing order of contribution to the inventory emissions or trend. In approach 2, this ranking is weighted by the uncertainty assigned to each category. Approach 1 therefore highlights categories which mostly contribute to emissions or to emission changes, while approach 2 identifies categories mostly contributing to the inventory uncertainty. A key category is prioritised within the inventory system because its estimate has a significant influence on the national total.

Note that for this submission, the key category analysis is performed based on the approach "fuels used", (in contrast to "fuels sold"; for differentiation of the two approaches see chapter 3.1.6.1). For approach 2 of the KCA, the emission uncertainty of each category is taken from the results of the Monte Carlo simulations (see details in chp. 1.7).

For the pollutants for which uncertainty estimates are available (NO_x, NMVOC, SO_x, NH₃, PM2.5 and PM10), key category analyses were conducted according to approach 1 and 2, for the base year, the reporting year and the trend. A KCA according to approach 1 was also conducted for TSP, BC, CO, Pb, Cd, Hg, PCDD/PCDF, PAHs, HCB and PCBs. All level and trend assessments were performed for all emission sources accounting for 80 % of the total national emissions (or total national trend).

1.5.1 Summary of KCA results, approaches 1 and 2

By comparison to the previous submission, the major sources of pollutants remain very similar:

- For NO_x, a large fraction of emissions for the year 2023 are caused by category 1A3 Transport. The three source categories 1A3bi Passenger cars, 1A3bii Light duty-vehicles and 1A3biii Heavy-duty vehicles and buses represents almost half of the inventory emissions. Each of these categories has a pronounced decreasing trend between 1990 and 2023 (see also chp. 2.3.1 and Annex A1.2).
- For NMVOCs, the major contributors are categories 2D3 Other solvent use and 3B1 Manure management.
- For SO_x, category 1A2f Non-metallic minerals represents about 45 % of emissions. Its trend for 1990-2023 is decreasing.
- Almost all NH₃ emissions originate from livestock production within Sector 3 Agriculture, particularly from 3Da2a Animal manure applied to soils and 3B Manure management.
- For PM2.5 the main source is category 1A4bi Residential: stationary plants, with approx. one third of emissions, followed by 1A3bvi Road transportation: automobile tyre and brake wear (15 %, note that this category contains only non-exhaust emissions). The trend 1990-2023 for category 1A3bvi is positive whereas it is negative for 1A4bi.
- The main source of PM10 emissions is category 1A3bvi Road transportation: automobile tyre and brake wear, representing 18 % of emissions, followed by categories 1A2gvii Mobile combustion in manufacturing industries and construction (17 %). As for PM2.5, the trend 1990-2023 for category 1A3bvi is positive.

Due to the absence of significantly large recalculations, there is no outstanding change in the list of key categories to report. The detailed results of the key category analysis, approaches 1 and 2, level and trend assessments, are reported in Table 1-3 to Table 1-11, where numeric values represent the percentage contributions to the assessment total, for each pollutant. In each table, the source categories are set out in order according to their NFR code.

1.5.2 KCA approach 1 results

1.5.2.1 Level key category analysis (approach 1)

The results of the key category analysis according to approach 1, level, are summarised in Table 1-3 for the year 1990 and in Table 1-4 for the year 2023 for NO_x, NMVOC, SO_x, NH₃, PM2.5 and PM10. See Table 1-5 and Table 1-6 for TSP, BC, CO, Pb, Cd, Hg, PCDD/PCDF, PAHs, HCB and PCBs.

Table 1-3 List of Switzerland's approach 1 level key categories for 1990, for the main pollutants, PM2.5 and PM10. Contributions are given in percentage of the total assessment per pollutant and depicted using a colour scale, a darker colour indicating a larger contribution. The bottom line reports the cumulative total over all key source categories per pollutant, which amounts to more than 80 % according to the KCA procedure. The column to the right reports the sum of contributions from all pollutants per category.

NFR Code	Source category	Key categories approach 1: % level contribution to totals 1990								
NFR Code	Source category	NOx	NMVOC	SOx	NH3	PM2.5	PM10	category		
1A1a	Public electricity and heat production	4.5		9.4		2.9	2.9	20		
1A2d	Stationary combustion in manufacturing industries and construction: pulp paper and coint			8.3				8.3		
	print Chatiana and the standard for the inc		_							
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	7.5		9.0			2.3	19		
1A2gvii	Mobile combustion in manufacturing industries and construction	4.5				2.7	6.0	13		
1A2gviii	Stationary combustion in manufacturing industries and construction: other			9.0		3.2	2.5	15		
1A3bi(fu)	Road transportation: passenger cars (fuel used)	31	19	4.1				54		
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	4.4						4.4		
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	21		4.7		5.8	4.3	36		
1A3bv(fu)	Road transportation: gasoline evaporation (fuel used)		5.8					5.8		
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)					2.5	5.6	8.1		
1A3c	Railways						2.7	2.7		
1A4ai	Commercial/institutional: stationary			9.9		5.0	3.9	19		
1A4bi	Residential: stationary plants	8.3	3.4	26		53	42	134		
1A4ci	Agriculture/forestry/fishing: stationary					2.6		2.6		
1B2av	Distribution of oil products		6.5					6.5		
2C1	Iron and steel production					3.0	4.1	7.1		
2D3a	Domestic solvent use including fungicides		3.0					3.0		
2D3d	Coating applications		14					14		
2D3e	Degreasing		4.0					4.0		
2D3g	Chemical products		9.3					9.3		
2D3h	Printing		6.9					6.9		
2G	Other product use		7.6					7.6		
21	Wood processing						2.4	2.4		
3B1a	Manure management - Dairy cattle		2.2		14			16		
3B1b	Manure management - Non-dairy cattle				7.6			7.6		
3B3	Manure management - Swine				10			10		
3Da2a	Animal manure applied to soils				50			50		
3De	Cultivated crops						2.9	2.9		
Total contr	ribution from key categories, %	81	81	81	82	81	81			

Table 1-4 List of Switzerland's approach 1 level key categories 2023, for the main pollutants, PM2.5 and PM10. Contributions are given in percentage of the total assessment per pollutant and depicted using a colour scale, a darker colour indicating a larger contribution. The bottom line reports the cumulative total over all key source categories per pollutant, which amounts to more than 80 % according to the KCA procedure. The column to the right reports the sum of contributions from all pollutants per category.

NFR Code	Course antenna	Key c	ategories app	proach 1: % l	evel contribu	tion to total	s 2023	% sum of
NFR Code	Source category	NOx	NMVOC	SOx	NH3	PM2.5	PM10	category
1A1a	Public electricity and heat production	4.8		9.0				14
	Stationary combustion in manufacturing							
1A2f	industries and construction: non-metallic	6.0		46				52
	minerals							
1.4.2	Mobile combustion in manufacturing industries					6.2	17	22
1A2gvii	and construction					6.2	17	23
1A2gviii	Stationary combustion in manufacturing	3.5		9.2		3.0		16
TAZĞANI	industries and construction: other	5.5		9.2		5.0		10
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	4.2		4.9				9.1
1A3bi(fu)	Road transportation: passenger cars (fuel used)	32	5.1					37
1A3bii(fu)	Road transportation: light duty vehicles (fuel	7.5						7.5
TH3DII(IU)	used)	7.5						7.5
1A3biii(fu)	Road transportation: heavy duty vehicles and	6.5						6.5
	buses (fuel used)	0.5						0.5
1A3bv(fu)	Road transportation: gasoline evaporation (fuel		2.5					2.5
TY200(I0)	used)		2.5					2.5
1A3bvi(fu)	Road transportation: automobile tyre and brake					15	19	34
. ,	wear (fuel used)						15	34
1A3c	Railways					3.7	11	15
1A4ai	Commercial/institutional: stationary	6.1				6.9	3.2	16
1A4bi	Residential: stationary plants	7.4	3.3	7.3		30	14	62
1A4ci	Agriculture/forestry/fishing: stationary					3.3		3.3
1A4cii	Agriculture/forestry/fishing: off-road vehicles	3.4						3.4
2,1101	and other machinery	0.1.						5.1
1A5b	Other mobile (including military land-based and						1.9	1.9
	recreational boats)						2.0	
1B2av	Distribution of oil products		2.8					2.8
2A5a	Quarrying and mining of minerals other than						2.5	2.5
	coal						2.0	
2B5	Carbide production			7.0				7.0
2D3a	Domestic solvent use including fungicides		9.1					9.1
2D3b	Road paving with asphalt		3.8					3.8
2D3d	Coating applications		12					12
2D3e	Degreasing		2.2					2.2
2D3g	Chemical products		4.5					4.5
2D3h	Printing		5.1					5.1
2D3i	Other solvent use		2.7					2.7
2G	Other product use		8.9			5.3	2.8	17
2H1	Pulp and paper industry					2.4		2.4
2H2	Food and beverages industry					2.7	2.2	4.9
3B1a	Manure management - Dairy cattle		9.2		19	ļ		28
3B1b	Manure management - Non-dairy cattle		10		14			24
3B3	Manure management - Swine				9.0			9.0
3Da1	Inorganic N-fertilizers (includes also urea				4.3			4.3
	application)							
3Da2a	Animal manure applied to soils				38			38
3De	Cultivated crops						7.1	7.1
5C1a	Municipal waste incineration					3.5	1.7	5.3
Total contr	ibution from key categories, %	82	81	83	84	82	81	

Table 1-5 List of Switzerland's approach 1 level key categories 1990, for TSP, BC, CO, priority heavy metals, PCDD/PCDF, PAHs total, HCB and PCBs. Contributions are given in percentage of the total assessment per pollutant and depicted using a colour scale, a darker colour indicating a larger contribution. The bottom line reports the cumulative total over all key source categories per pollutant, which amounts to more than 80 % according to the KCA procedure. The column to the right reports the sum of contributions from all pollutants per category.

			k	(ey catego	ries appro	ach 1: % l	evel contr	ibution to	totals 199	0		% sum of
NFR Code	Source category	TSP	BC	со	Pb	Cd	Hg	PCDD/PC DF	PAHs total	НСВ	PCB	category
1A1a	Public electricity and heat production	1.9			8.4	55	62	68				195
1A2b	Stationary combustion in manufacturing industries and construction: non-ferrous metals									100		100
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	2.2				21						23
1A2gvii	Mobile combustion in manufacturing industries and construction	5.4	4.5									9.8
1A3bi(fu)	Road transportation: passenger cars (fuel used)		4.2	56	60							120
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)			9.6								9.6
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	2.8	14									17
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	3.6										3.6
1A3c	Railways	2.3										2.3
1A4ai	Commercial/institutional: stationary	2.7	5.2									7.9
1A4bi	Residential: stationary plants	29	56	15				9.2	71			180
2B10a	Chemical industry: other						6.1					6.1
2C1	Iron and steel production	4.8			17	14	18	6.5				60
2C3	Aluminium production								12			12
21	Wood processing	7.7										7.7
2К	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)										65	65
3De	Cultivated crops	19										19
5E	Other waste										9.2	9.2
6A	Other sources										12	12
Total contri	ibution from key categories, %	81	84	81	85	90	86	83	83	100	87	

Table 1-6 List of Switzerland's approach 1 level key categories 2023, for TSP, BC, CO, priority heavy metals, PCDD/PCDF, PAHs total, HCB and PCBs. Contributions are given in percentage of the total assessment per pollutant and depicted using a colour scale, a darker colour indicating a larger contribution. The bottom line reports the cumulative total over all key source categories per pollutant, which amounts to more than 80 % according to the KCA procedure. The column to the right reports the sum of contributions from all pollutants per category.

			k	Key catego	ries appro	ach 1: %	evel contr	ibution to	totals 202	.3		% sum of
NFR Code	Source category	TSP	BC	со	Pb	Cd	Hg	PCDD/PC DF	PAHs total	НСВ	PCB	category
1A1a	Public electricity and heat production				22	37	52	8.1		54		174
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals			5.9		6.2	10					22
1A2gvii	Mobile combustion in manufacturing industries and construction	13				4.7						17
1A2gviii	Stationary combustion in manufacturing industries and construction: other				7.5		5.0					12
1A3aii(i)	Civil aviation (domestic cruise)				8.5							8.5
1A3bi(fu)	Road transportation: passenger cars (fuel used)			33					8.9			42
1A3biv(fu)	Road transportation: mopeds and motorcycles (fuel used)			3.5								3.5
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	9.3	12			23						43
1A3c	Railways	7.2										7.2
1A3dii	National navigation (shipping)			3.6								3.6
1A4ai	Commercial/institutional: stationary	1.7	9.1	4.5				9.5	11	11		46
1A4aii	Commercial/institutional: mobile			4.7								4.7
1A4bi	Residential: stationary plants	7.3	50	17	4.4	6.2	8.3	34	57	25		210
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery		9.3	8.8								18
2A5a	Quarrying and mining of minerals other than coal	3.0										3.0
2C1	Iron and steel production						6.7					6.7
2G	Other product use					6.5						6.5
2К	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)										90	90
3B3	Manure management - Swine	2.2										2.2
3B4gi	Manure management - Laying hens	2.6										2.6
3De	Cultivated crops	36										36
5C1a	Municipal waste incineration				20			20				40
5C2	Open burning of waste								8.1			8.1
6A	Other sources				22			8.1				30
Total contri	bution from key categories, %	81	80	81	84	84	82	80	85	89	90	

1.5.2.2 Trend key category analysis (approach 1)

The results of the KCA according to approach 1, trend, for 1990-2023 are summarised in Table 1-7 and Table 1-8.

Table 1-7 List of Switzerland's approach 1 key categories for the trend 1990-2023, for the main pollutants, PM2.5 and PM10. Contributions are given in percentage of the total assessment per pollutant and depicted using a colour scale, a darker colour indicating a larger contribution. The bottom line reports the cumulative total over all key source categories per pollutant, which amounts to more than 80 % according to the KCA procedure. The column to the right reports the sum of contributions from all pollutants per category.

	Course antenna	Key ca	ategories app	roach 1: % c	ontribution t	o trend 1990	- 2023	% sum of
NFR Code	Source category	NOx	NMVOC	SOx	NH3	PM2.5	PM10	category
1A1a	Public electricity and heat production					2.8	2.7	5.5
	Stationary combustion in manufacturing							
1A2d	industries and construction: pulp paper and			8.0				8.0
	print							
	Stationary combustion in manufacturing							
1A2f	industries and construction: non-metallic	3.7		36			1.9	41
	minerals							
142 muii	Mobile combustion in manufacturing industries	3.1				4.6	11	19
1A2gvii	and construction	5.1				4.0	11	19
1A2gviii	Stationary combustion in manufacturing	4.9						4.9
IAZgvili	industries and construction: other	4.5						4.5
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	8.5		4.4				13
1A3bi(fu)	Road transportation: passenger cars (fuel used)	2.6	19					22
1A3bii(fu)	Road transportation: light duty vehicles (fuel	7.8						7.8
	used)	7.0						7.0
1A3biii(fu)	Road transportation: heavy duty vehicles and	37		4.2		6.9	4.3	52
173011(10)	buses (fuel used)	57		7.2		0.5	4.5	52
1A3bv(fu)	Road transportation: gasoline evaporation (fuel		4.6					4.6
1/(357(10)	used)		4.0					1.0
1A3bvi(fu)	Road transportation: automobile tyre and brake					17	14	31
. ,	wear (fuel used)							
1A3c	Railways					4.1	8.6	13
1A3dii	National navigation (shipping)	3.0						3.0
1A4ai	Commercial/institutional: stationary	6.1		6.7		2.5		15
1A4bi	Residential: stationary plants			18	L	31	30	80
1B2av	Distribution of oil products		5.0					5.0
2B5	Carbide production			5.2				5.2
2C1	Iron and steel production					3.8	4.2	8.1
2D3a	Domestic solvent use including fungicides		8.4					8.4
2D3b	Road paving with asphalt		2.9					2.9
2D3d	Coating applications		3.0					3.0
2D3e	Degreasing		2.5					2.5
2D3g	Chemical products		6.7					6.7
2D3h	Printing		2.5					2.5
2G	Other product use					4.5		4.5
2H2	Food and beverages industry		2.1			2.6		4.7
3B1a	Manure management - Dairy cattle		9.7		15			25
3B1b	Manure management - Non-dairy cattle		12		16			28
3Da1	Inorganic N-fertilizers (includes also urea				5.3			5.3
20.020	application)	4.1			33			37
3Da2a	Animal manure applied to soils	4.1						-
3Da2b	Sewage sludge applied to soils				4.6			4.6
3Da2c	Other organic fertilisers applied to soils				5.1			5.1
2002	(including compost)		+		4.2			12
3Da3	Urine and dung deposited by grazing animals				4.2		1 5	4.2
3De	Cultivated crops Biological treatment of waste - Anaerobic						4.5	4.5
5B2			2.2					2.2
Total contr	digestion at biogas facilities ibution from key categories, %	81	81	83	83	80	81	
	ibution nom key categories, 10	01	01	60	65	00	01	

Table 1-8 List of Switzerland's approach 1 key categories for the trend 1990-2023, for TSP, BC, CO, priority heavy metals, PCDD/PCDF, PAHs total, HCB and PCBs. Contributions are given in percentage of the total assessment per pollutant and depicted using a colour scale, a darker colour indicating a larger contribution. The bottom line reports the cumulative total over all key source categories per pollutant, which amounts to more than 80 % according to the KCA procedure. The column to the right reports the sum of contributions from all pollutants per category.

			Key	ategorie	s approad	ch 1: % co	ontributio	on to trer	d 1990 -	2023		% sum of
NFR Code	Source category	TSP	BC	со	Pb	Cd	Hg	PCDD/ PCDF	PAHs total	нсв	PCB	category
1A1a	Public electricity and heat production				8.6	19	16	41		27	14	126
1A2b	Stationary combustion in manufacturing									50		50
IAZD	industries and construction: non-ferrous metals									50		50
	Stationary combustion in manufacturing											
1A2f	industries and construction: non-metallic	2.2		6.6		16	11					35
	minerals											
1A2gvii	Mobile combustion in manufacturing industries	8.2	5.1			4.6						18
TYZENI	and construction	0.2	5.1			4.0						10
1A2gviii	Stationary combustion in manufacturing						7.7					7.7
1/ 1284111	industries and construction: other						7.7					,.,
1A3aii(i)	Civil aviation (domestic cruise)				5.0							5.0
1A3bi(fu)	Road transportation: passenger cars (fuel used)			37	37				15			89
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)			11								11
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	3.1	25									28
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	6.4	21			22						50
1A3c	Railways	5.6										5.6
1A4ai	Commercial/institutional: stationary		8.1	4.7			7.7	5.8	8.8			35
1A4aii	Commercial/institutional: mobile			6.6								6.6
1A4bi	Residential: stationary plants	24	13	3.7			12	17	26	12		109
1A4bii	Residential: household and gardening (mobile)			3.8								3.8
1A4cii	Agriculture/forestry/fishing: off-road vehicles		11	8.1								19
IA4CII	and other machinery		11	0.1								19
2B10a	Chemical industry: other						9.9					9.9
2C1	Iron and steel production	5.4			9.1	14	18					46
2C3	Aluminium production								23			23
2G	Other product use					5.9						5.9
21	Wood processing	6.8										6.8
2К	Consumption of POPs and heavy metals (e.g.										50	50
	electrical and scientific equipment)										50	- 50
3De	Cultivated crops	19										19
5C1a	Municipal waste incineration				12			12				24
5C2	Open burning of waste								8.8			8.8
5E	Other waste										18	18
6A	Other sources				12			5.0				17
Total contr	ribution from key categories, %	81	84	82	83	81	81	81	82	89	82	

1.5.3 KCA approach 2 results

1.5.3.1 Level key category analysis (approach 2)

The results of the KCA according to approach 2, level assessment, are summarised in Table 1-9 for the year 1990 and in Table 1-10 for the year 2023.

Table 1-9 List of Switzerland's approach 2 level key categories 1990, for the main pollutants, PM2.5 and PM10.Contributions are given in percentage of the total assessment per pollutant and depicted using a colour scale, a darker colour indicating a larger contribution. The bottom line reports the cumulative total over all key source categories per pollutant, which amounts to more than 80 % according to the KCA procedure. The column to the right reports the sum of contributions from all pollutants per category.

	Source category	Key	ategories app	oroach 2: % le	evel contribu	tion to totals	s 1990	% sum of	
NFR Code	Source category	NOx	NMVOC	SOx	NH3	PM2.5	PM10	category	
1A1a	Public electricity and heat production	3.7		13		2.7	2.5	21	
	Stationary combustion in manufacturing	-							
1A2d	industries and construction: pulp paper and			6.5				6.5	
	print								
	Stationary combustion in manufacturing								
1A2f	industries and construction: non-metallic	4.9		9.6				14	
	minerals								
1.4.2	Mobile combustion in manufacturing industries						2.0	2.6	
1A2gvii	and construction						3.6	3.6	
14200	Stationary combustion in manufacturing			9.6		2.8	2.0	14	
1A2gviii	industries and construction: other			9.0		2.0	2.0	14	
1A3bi(fu)	Road transportation: passenger cars (fuel used)	45	14					59	
1A3bii(fu)	Road transportation: light duty vehicles (fuel	5.4						5.4	
(ur)iideAt	used)	5.4						5.4	
1A3biii(fu)	Road transportation: heavy duty vehicles and	14		2.6		2.1		19	
IA30III(IU)	buses (fuel used)	14		2.0		2.1		15	
1A3biv(fu)	Road transportation: mopeds and motorcycles		6.8					6.8	
173010(10)	(fuel used)		0.0					0.0	
1A3bv(fu)	Road transportation: gasoline evaporation (fuel		3.3					3.3	
1/(357(10)	used)		5.5					5.5	
1A3bvi(fu)	Road transportation: automobile tyre and brake						3.4	3.4	
. ,	wear (fuel used)								
1A4ai	Commercial/institutional: stationary			5.6		5.1	3.7	14	
1A4bi	Residential: stationary plants	4.2	3.3	16		54	38	115	
1B2aiv	Fugitive emissions oil: refining / storage			3.3				3.3	
1B2av	Distribution of oil products		3.7					3.7	
2A1	Cement production					1.8	1.9	3.6	
2A5a	Quarrying and mining of minerals other than						2.7	2.7	
	coal		_						
2C1	Iron and steel production			45		4.4	5.4	9.7	
2C3	Aluminium production			15				15	
2D3d	Coating applications		8.8					8.8	
2D3e	Degreasing Chaming lange		3.6					3.6	
2D3g	Chemical products		13 4.4					13 4.4	
2D3h	Printing							1	
2D3i 2G	Other solvent use Other product use		3.8 17			2.4	1.8	3.8 21	
20 2H2			1/			2.4	2.8	5.3	
2H2 2I	Food and beverages industry Wood processing		+			2.5	7.8	5.3	
21 3B1a	Manure management - Dairy cattle				12	2.9	7.0	11	
3B1a 3B1b	Manure management - Dairy Cattle Manure management - Non-dairy cattle				6.4			6.4	
3B10 3B3	Manure management - Non-Garry Cattle				13			13	
звз 3B4gi	Manure management - Laying hens				3.6			3.6	
	Inorganic N-fertilizers (includes also urea							5.0	
3Da1	application)	3.3			9.5			13	
3Da2a	Animal manure applied to soils				34			34	
3Daza 3De	Cultivated crops				54		5.3	5.3	
6A	Other sources				4.0		5.5	4.0	
-	ibution from key categories, %	81	81	81	4.0	80	81	7.0	
	isation nom key categories, 70	01	01	01	02	00	01	1	

Table 1-10 List of Switzerland's approach 2 level key categories 2023, for the main pollutants, PM2.5 and PM10. Contributions are given in percentage of the total assessment per pollutant and depicted using a colour scale, a darker colour indicating a larger contribution. The bottom line reports the cumulative total over all key source categories per pollutant, which amounts to more than 80 % according to the KCA procedure. The column to the right reports the sum of contributions from all pollutants per category.

	Course antenna	Key c	ategories app	proach 2: %	level contribu	ition to totals	5 2023	% sum of
NFR Code	Source category	NOx	NMVOC	SOx	NH3	PM2.5	PM10	category
1A1a	Public electricity and heat production	3.6		11				15
	Stationary combustion in manufacturing							
1A2f	industries and construction: non-metallic	3.6		45				49
	minerals							
1A2gvii	Mobile combustion in manufacturing industries					3.7	9.4	13
IAZgvii	and construction					5.7	9.4	15
1A2gviii	Stationary combustion in manufacturing			9.1		2.3		11
IAZgvili	industries and construction: other			9.1		2.5		11
1A3bi(fu)	Road transportation: passenger cars (fuel used)	42	3.4					46
1A3bii(fu)	Road transportation: light duty vehicles (fuel	8.3						8.3
173011(10)	used)	0.5						0.5
1A3biii(fu)	Road transportation: heavy duty vehicles and	4.0						4.0
173011(10)	buses (fuel used)	4.0						ч.0
1A3biv(fu)	Road transportation: mopeds and motorcycles		3.7					3.7
1/(001/(10)	(fuel used)		5.7					5.7
1A3bvi(fu)	Road transportation: automobile tyre and brake					9.2	10	20
. ,	wear (fuel used)							
1A3c	Railways						6.0	6.0
1A4ai	Commercial/institutional: stationary	3.3				6.4	2.8	13
1A4bi	Residential: stationary plants	3.4	2.9	4.0		27	12	49
1A4ci	Agriculture/forestry/fishing: stationary			2.6				2.6
2A1	Cement production					4.2	2.7	6.8
2A5a	Quarrying and mining of minerals other than coal					5.1	7.5	13
2B5	Carbide production			7.3				7.3
2B10a	Chemical industry: other			2.9				2.9
2D3a	Domestic solvent use including fungicides		5.9					5.9
2D3b	Road paving with asphalt		4.5					4.5
2D3d	Coating applications		6.7					6.7
2D3g	Chemical products		5.5					5.5
2D3h	Printing		2.9					2.9
2D3i	Other solvent use		5.0					5.0
2G	Other product use		18			5.9	3.0	26
2H1	Pulp and paper industry					4.4		4.4
2H2	Food and beverages industry		2.4			8.7	6.7	18
21	Wood processing					2.5	4.1	6.5
3B1a	Manure management - Dairy cattle		7.2		16			24
3B1b	Manure management - Non-dairy cattle		9.5		11			20
3B3	Manure management - Swine				10			10
3B4gi	Manure management - Laying hens						2.5	2.5
3B4gii	Manure management - Broilers		3.2		3.2		3.4	9.8
3Da1	Inorganic N-fertilizers (includes also urea application)	4.5			6.1			11
3Da2a	Animal manure applied to soils	5.4			24			29
3Da3	Urine and dung deposited by grazing animals	3.1			4.8			7.9
3De	Cultivated crops						12	12
5C1a	Municipal waste incineration					2.5		2.5
6A	Other sources				5.6			5.6
Total contr	ibution from key categories, %	82	81	82	82	82	82	

1.5.3.2 Trend key category analysis (approach 2)

The results of the KCA according to approach 2, trend assessment, for 1990-2023 are summarised in Table 1-11.

Table 1-11 List of Switzerland's approach 2 key categories for the trend 1990-2023, for the main pollutants, PM2.5 and PM10. Contributions are given in percentage of the total assessment per pollutant and depicted using a colour scale, a darker colour indicating a larger contribution. The bottom line reports the cumulative total over all key source categories per pollutant, which amounts to more than 80 % according to the KCA procedure. The column to the right reports the sum of contributions from all pollutants per category.

	_	Key ca	itegories appi	roach 2: % co	ontribution t	o trend 1990	- 2023	% sum of
NFR Code	Source category	NOx	NMVOC	SOx	NH3	PM2.5	PM10	category
1A1a	Public electricity and heat production	-				2.5	2.3	4.9
	Stationary combustion in manufacturing							
1A2d	industries and construction: pulp paper and			7.1				7.1
	print							
	Stationary combustion in manufacturing							
1A2f	industries and construction: non-metallic	2.5		43				46
	minerals							
1A2gvii	Mobile combustion in manufacturing industries					2.9	7.0	9.8
8	and construction							
1A2gviii	Stationary combustion in manufacturing	3.4						3.4
_	industries and construction: other							
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	6.7	1.4	2.8				9.5
1A3bi(fu)	Road transportation: passenger cars (fuel used)	3.9	14					18
1A3bii(fu)	Road transportation: light duty vehicles (fuel	9.9						9.9
	used) Road transportation: heavy duty vehicles and							
1A3biii(fu)	buses (fuel used)	26		2.7				29
	Road transportation: mopeds and motorcycles							
1A3biv(fu)	(fuel used)		3.9					3.9
	Road transportation: gasoline evaporation (fuel							
1A3bv(fu)	used)		2.7					2.7
	Road transportation: automobile tyre and brake							
1A3bvi(fu)	wear (fuel used)					11	8.3	19
1A3c	Railways					2.6	5.2	7.8
1A4ai	Commercial/institutional: stationary	3.9		4.3				8.2
1A4bi	Residential: stationary plants			12		30	27	70
1B2av	Distribution of oil products		2.9					2.9
1B2c	Venting and flaring (oil gas combined oil and	2.3						2.3
IDZC	gas)	2.5						2.5
2A1	Cement production					3.5		3.5
2A5a	Quarrying and mining of minerals other than					5.4	5.7	11
	coal							
2B5	Carbide production		-	6.6				6.6
2B10a	Chemical industry: other			2.4		5.2	5.0	2.4
2C1	Iron and steel production		6.1			5.2	5.6	11
2D3a 2D3b	Domestic solvent use including fungicides		6.1					6.1
2D3b 2D3e	Road paving with asphalt Degreasing		3.9 2.3					3.9 2.3
2D3e 2D3g	Chemical products		9.3					9.3
2D3g 2D3i	Other solvent use		2.5					2.5
2G	Other product use		3.9			5.2		9.1
2H1	Pulp and paper industry		0.0			3.9		3.9
2H2	Food and beverages industry		2.8			8.9	4.7	16
21	Wood processing						3.6	3.6
3B1a	Manure management - Dairy cattle		8.5		12			21
3B1b	Manure management - Non-dairy cattle		12		13			25
3B3	Manure management - Swine				3.7			3.7
3B4gi	Manure management - Laying hens		2.2					2.2
3B4gii	Manure management - Broilers		4.5		5.5		3.5	13
3Da1	Inorganic N-fertilizers (includes also urea	4.5			7.4			12
	application)							
3Da2a	Animal manure applied to soils	8.2			20			29
3Da2c	Other organic fertilisers applied to soils	2.6			7.8			10
	(including compost)							
3Da3	Urine and dung deposited by grazing animals	7.2			7.4		0.0	15
3De	Cultivated crops				4.0		8.2	8.2
6A Total contr	Other sources ibution from key categories, %	81	01	07	4.8	01	07	4.8
	ibution non key talegones, %	10	82	82	82	81	82	1

1.6 QA/QC and verification methods

The national inventory system (NIS), which covers air pollutant as well as greenhouse gases, has an established quality management system (QMS) that complies with the requirements of ISO 9001:2015 standard. Certification has been obtained in 2007 and is upheld since through annual audits. The latest audit according to ISO 9001:2015 was on 27th June 2024 and the current certificate is valid until 2025 (Swiss Safety Center 2022). The QMS is designed to comply with the UNFCCC reporting guidelines (UNFCCC 2019, 2022a) to ensure and continuously improve transparency, consistency, comparability, completeness, accuracy, and confidence in national GHG emission and removal estimates. Since the inventory system also covers air pollutants, the same quality requirements as ensured for GHG also hold for air pollutants. The quality manual (FOEN 2025a) contains all relevant information regarding the QMS. It is updated annually and made available to everyone contributing to the GHG inventory.

The NIS quality management system covers data compilation and inventory preparation based on the EMIS database, which is – as mentioned above – not only the tool for modelling the GHG emissions but also at the same time for modelling the air pollution emissions, which means that the process of emission modelling of air pollutants is also part of the quality management system.

Integrity of the database is ensured by creating a new copy of the database for every single submission and comparing the results from the new database with those from the previous version. Consistency of data between categories is to a large extent ensured by the design of the database, where specific emission factors and activity data that apply to various categories are used jointly by all categories to calculate emissions.

Checks regarding the correct aggregation are done on initial set-up of the various aggregations. There are also routine checks implemented in the database to identify incorrect internal aggregation processes.

Recalculations are compiled in a document and made available to the data compilers and the IIR authors. The recalculations file is of great importance in the QC procedures regarding the reporting tables (NFR) and in the preparation of the IIR. QC procedures regarding the reporting tables (NFR) comprise a detailed comparison of the reporting tables (NFR) of the previous submission with those of the latest submission for the base year and the latest common year. In addition, the time-series consistency is incrementally checked by comparing the latest inventory year with the preceding year. Any exceptional deviations are investigated by the sectoral or the EMIS database experts. These checks are performed in an iterative process: a first check is done by collaborators of the Air Pollution Control and Chemicals division and sectoral experts, providing feedback and comments to the EMIS database experts. Based on the comments, changes to the reporting tables or database are made as required. The process is repeated twice before producing the final reporting tables.

The QA/QC process can therefore be summarised as follows: The preparation steps for the production of the CLRTAP Inventory including data collection, compilation, emissions modelling within the EMIS database and generating the official emission reporting templates are part of the existing quality management system. So far, informal QC activities have been performed by the FOEN experts involved in the CLRTAP Inventory preparation and by the external authors of the Informative Inventory Report on hand. A separate and formalised CLRTAP Inventory quality system as it exists for the GHG emission inventory is not foreseen, however, a centralised plausibility check is in place.

Diverse QC procedures are implemented in the process of data-collection and generation of reporting tables and tables for the IIR. For example:

- Checks of consistency of activity data and emission factors in the individual sectors and subsectors while collecting data every year.
- Crosschecks of input and output (in particular within the energy model)

- Crosschecks between EMIS database and reporting tables
- Crosschecks with the greenhouse gas inventory concerning activity data and precursors (NO_x, CO, NMVOC and SO_x)
- Selective checks of emission factors of the inventory. For example, for submission 2025 a general comparison of emission factors with the newly published EMEP/EEA guidebook (EMEP/EEA 2023) has been conducted. In some source categories (e.g. 1A3b road transportation or 3D Crop production and agricultural soils) emission factors from guidebook version 2019 (EMEP/EEA 2019) are still used. The emission factors are progressively updated through methodological updates.
- Every year specific projects are implemented to improve the inventory in particular sections.

In addition to the QA/QC measures mentioned above, Switzerland regularly performs verification checks with data outside of the air pollutant inventory:

- The air pollutant inventory is intertwined with the GHG inventory, so any verification checks regarding precursor emissions or activity data in the GHG inventory are also applied to the air pollutant inventory.
- Switzerland systematically compares the emission factors with other European countries, especially if new emission factors are introduced to the inventory or if the accuracy of an emission factor or of a data source is questioned in an internal or external review process.
- Switzerland carries out sector-specific verification processes for individual source categories or processes.
- Switzerland regularly compares the emissions from the air pollutant inventory with the results of the national ambient concentration modelling "PolluMap" (NO₂, PM2.5 and PM10).

The continuous improvement of the inventory is in particular addressing recommendations and encouragements from the latest stage 3 review of Switzerland's emission inventory (UNECE 2024a). Switzerland prioritizes inventory improvements based on the findings from the stage 3 reviews and according to the key category analysis (KCA) and the uncertainty analysis, where appropriate.

1.7 General uncertainty evaluation

1.7.1 Data sources and data used

The uncertainty analysis is conducted using activity data and emission factors at the same level of aggregation as used for the NFR reporting tables (classification according to EMEP/EEA 2023). As for the key category analysis, emissions based on fuel used are considered.

Several sources of uncertainties are listed below. Uncertainty values for activity data and emission factors were updated where appropriate.

 Uncertainties of activity data are taken from the uncertainty analysis of Switzerland's GHG Inventory (FOEN 2024).

- Uncertainties for the emission factors and emissions of mobile sources are from the study IFEU/INFRAS (2010), in which uncertainties are evaluated for road and non-road categories.
- Uncertainties of emission factors for sector 2 Industrial processes and product use are based on default uncertainty values from the EMEP/EEA guidebook (EMEP/EEA 2023, part A, chp. 5, Table 2-2).
- To estimate the uncertainties associated with NH₃ emissions from sector 3 Agriculture, a model essentially based on the nitrogen-flow model AGRAMMON was previously developed by INFRAS (2015c, 2017b). Since then, the AGRAMMON model has been revised and in addition, a new survey on production techniques in Swiss agriculture has been performed in 2019. Based on these updates, INFRAS made a new uncertainty analysis for the year 2019 (INFRAS 2021). The new uncertainty estimate for ammonia emissions from Swiss agriculture is 12.6 %, which is slightly lower than the 13.6 % estimated in the previous study. Numeric values can be found in Annex A5.1.
- Detailed numeric values and references for the uncertainties are reported in Annex 5.

1.7.2 Methodology

The uncertainty aggregation for the main pollutants and particulate matter is carried out for the latest submission according to approach 1 (uncertainty propagation) and approach 2 (Monte Carlo simulations).

Input uncertainty values for activity data and emission factors at the same aggregation level as required for the key category analysis are used for the computation. For the main pollutants, PM2.5 and PM10, a total of 127 categories were considered, as in the NFR tables used to report emissions.

Uncertainties are assessed in accordance with the EMEP/EEA guidebook (EMEP/EEA 2023: Part A, chapter 5) and with the 2006 IPCC Guidelines (IPCC 2006), and, where applicable, the 2019 Refinement to the 2006 IPCC Guidelines (IPCC 2019). The Monte Carlo simulations follow the recommendations by JCGM (2008, Supplement 1).

The following assumptions were applied to both approaches:

- Full correlation or no correlation can be set between the base year and the reporting year for the same input variable.
- The following statistical distributions can be used: normal, triangular, gamma. If a variable cannot physically have negative values and has an uncertainty > 100 %, a gamma distribution is preferred in order to not generate negative values during Monte Carlo simulations. This is particularly relevant for emission factors.
- Asymmetric distribution: in approach 1, this is taken into account by computing the uncertainty propagation separately for each side of the mean. In approach 2, each distribution can be simulated, and asymmetric distributions are not an issue.

The following factors are not accounted for:

- Partial correlation between the base year and the reporting year for the same input variable.
- Correlations between categories (for different input variables).

For both approaches, all uncertainty results represent a 95 % confidence interval. For a symmetrical distribution, this interval is centred on the mean. For non-symmetrical

distributions obtained by Monte Carlo simulations, the reported uncertainties represent the narrowest 95 % interval, in agreement with JCGM (2008, S1). Uncertainties are given for the lower range (from the lower edge to the mean) and the upper range (from the mean to the upper edge), expressed as a percentage of the mean.

1.7.2.1 Aggregation of uncertainties using approach 1: uncertainty propagation

The uncertainty propagation is computed using the open source software Python (version 3.6.1, <u>https://www.python.org/</u>), in which the equations given in the guidelines are programmed. Results of approach 1 for the reporting year and for the trend for each considered pollutant are summarised in Table 1-12.

1.7.2.2 Aggregation of uncertainties using approach 2: Monte Carlo simulations

The Monte Carlo simulations were performed for the base year 1990, the reporting year 2023 and the trend at the aggregation level required for the KCA. All input variables can be found in Annex 5. Results for each pollutant are summarised in Table 1-12.

The main strategy in Monte Carlo analysis is to simulate a probability distribution for each input variable (distribution type, mean and standard deviation) and propagate these probability distributions to the final value of the model, in order to obtain a realistic uncertainty envelope for the final quantity. In practice, this is achieved by generating a large set of random numbers for each input quantity according to its distribution probability and by computing the intermediate (if any) and final values according to the equations of the model. The strength of this method is to propagate uncertainties accurately even if the equations of the model are non-linear and even if the final uncertainty envelope is non-symmetric. Another advantage is that a distribution is produced to represent the final quantity, while this information is not available from approach 1.

In our settings, each input quantity is an activity data associated with an emission factor or if applicable a direct emission. The final quantity is the emission at the inventory level and the mathematical model is the sum of emissions from each process.

Modelling framework

The Monte Carlo simulations are programmed using the open-source software Python (version 3.6.1, <u>https://www.python.org/</u>). Python is run through the Anaconda installation (<u>https://www.anaconda.com/</u>, version 4.4.0 (64 bit)) on a Windows PC.

To generate random numbers corresponding to the selected distributions, mean and variances, the Python function random is used. In practice, for each input emission factor and activity data (or direct emission, if applicable), random numbers are generated according to the input parameters. The final uncertainty envelope is obtained by computing the emissions as the product of activity data and emission factors and by then adding up all emissions. Intermediate sums can also be obtained, for example the sum for a given sector.

For each input quantity, 500'000 random values were generated resulting in equal numbers of values for the base year, the reporting year and the trend.

The average offset between the obtained mean for each process and the input mean is less than 0.1 % for each pollutant. This reflects the uncertainty introduced by the Monte Carlo method itself. This computational uncertainty remains small compared to the uncertainty introduced by activity data and emission factors.

Correlation

If two variables representing the base year (BY) and the reporting year (RY) for the same process are fully correlated, a random number is generated for the base year only, written BY_{random} . The random value for the reporting year RY_{random} is then computed as:

RY_{random} = BY_{random} * RY_{input, mean}/BY_{input, mean},

where RY_{input, mean} and BY_{input, mean} are the input mean values for the variables in the reporting year and the base year, respectively.

This method implicitly assumes that the uncertainty for the base year and the reporting year, expressed in percentage of the mean value, stays the same.

No correlation between activity data (or emission factors) resulting from different processes for the same year is programmed.

Sensitivity analysis

The sensitivity analysis investigates how sensitive the total emission is to each input emission. This analysis was conducted for the base year and the reporting year.

The sensitivity of a total value (total base year emission, total reporting year emission) to the variability of input quantities is computed as the correlation coefficient between total and input values, using in Python the function corrcoef from the numpy package. Each sensitivity value is computed on 500'000 pairs of points.

The sensitivity therefore has a value between -1 and +1, where a negative value indicates a negative correlation, and a positive value a positive correlation. For emissions, since the total values are a sum of input values, we expect only positive correlations.

Intuitively, the variability in the total value will be very sensitive to a process with also a high variability, compared to other processes with a smaller variability. In other words, the inventory total is expected to be mostly sensitive to processes with a high uncertainty (expressed in absolute values or in the same unit as the emissions).

Source code availability

The Python source code is available on the Github public platform with the repository name <inventory_uncertainty_UNFCCC_CLRTAP>.

1.7.3 Results of approach 1 and 2 uncertainty evaluation

Table 1-12 shows the results of the uncertainty evaluation using approaches 1 and 2 for the base year, the reporting year and the trend. Due to the availability of uncertainty data, the analysis was restricted to the main pollutants (NO_x , NMVOC, SO_x , NH_3) as well as PM2.5 and PM10. The total emissions in the base year and the reporting year as well as the emission trends 1990-2023 of these pollutants are also shown in Table 1-12. Since emission factors are generally the major sources of uncertainty (compared to activity data) and since they are considered correlated across years this may result in smaller uncertainties for the trends than for the emission levels.

Table 1-12 For each pollutant, emission levels for 1990 and 2023, trend and associated relative uncertainties obtained from the uncertainty propagation (approach 1) and from Monte Carlo simulations (approach 2), for the main pollutants, PM2.5 and PM10. Note that the trend and its associated uncertainties are expressed in the same unit, in percent. As an example, for a trend of -10 % with uncertainties of 2 %, the trend is comprised between - 12 % and -8 %.

Pollutant	Er	nissions 199	90	Er	nissions 202	23	Tre	nd 1990-20	23
Foliatalit	Value t	U(-)%	U(+)%	Value t	U(-)%	U(+)%	Value %	U(-)%	U(+)%
		Uncertair	nty propaga	tion (appro	ach 1)				
NOx	140'708	13	13	46'742	13	13	-66.8	1.1	1.1
NMVOC	294'961	17	30	71'290	17	31	-75.8	3.5	4.2
SOx	39'182	5.1	6.9	2'829	9.4	9.4	-92.8	0.56	0.56
NH3	68'492	13	13	52'895	12	12	-22.8	4.6	4.6
PM2.5	27'172	41	42	6'224	26	36	-77.1	4.7	6.3
PM10	36'471	33	40	14'078	20	39	-61.4	9.4	13
		Monte Ca	irlo simulati	ions (appro	ach 2)				
NOx	140'708	13	13	46'742	13	13	-66.8	1.1	1.2
NMVOC	294'961	22	25	71'290	23	25	-75.8	3.8	3.9
SOx	39'182	5.8	6.1	2'829	9.5	9.4	-92.8	0.62	0.62
NH3	68'492	13	13	52'895	12	12	-22.8	4.8	4.9
PM2.5	27'172	42	41	6'224	31	31	-77.1	5.1	6.3
PM10	36'471	36	37	14'078	28	31	-61.4	10	12

In general, uncertainties resulting from approaches 1 and 2 are in concordance, especially for the upper range uncertainty. For the lower range uncertainty, approach 1 may result in a smaller estimate in cases where the inventory probability distribution is asymmetric. We therefore recommend taking into consideration the uncertainty estimate provided by approach 2 (Monte Carlo simulations).

The level and trend uncertainty estimations for the latest submission remained similar for all pollutants compared to the values of the previous submission.

The detailed information on the uncertainties of activity data and the emission factors are provided in Annex 5.

For the other air pollutants such as heavy metals, the uncertainties are assumed to be in the range of 50 % to 100 %. For POPs, uncertainties might be even higher.

The Monte Carlo simulations provide data to conduct a sensitivity analysis between emissions from each category and the inventory (total) emission for NO_x, NMVOC, NH₃, SO_x, PM2.5 and PM10. This analysis quantifies the influence of a change in the emission of a given category on the inventory total. The results of the sensitivity analysis for the base year and the reporting year are shown in Annex A5.3.2. The processes ranked in descending order of importance according to the sensitivity analysis follow almost the same order as the processes ranked according to approach 2 of the key category analysis. Both methods highlight categories with large uncertainties, expressed in absolute values. The sensitivity analysis therefore confirms the results obtained by approach 2 of the KCA.

1.8 General assessment of completeness

Complete estimates were accomplished for all known sources for all gases. Compared with the obligations of the EMEP/EEA guidebook (EMEP/EEA 2023), the Swiss CLRTAP Inventory is complete.

1.8.1 Sources not estimated (NE)

Emissions of additional (non-priority) heavy metals in all sectors are not estimated. There are no large sources of non-priority heavy metals in Switzerland. For the most important processes (e.g. wood waste furnaces, waste incineration plants, steelworks), measured emissions values for non-priority heavy metals are not available. Due to limited resources, the focus lies on priority heavy metals in Switzerland's inventory.

In few other source categories, specific pollutants were "not estimated" (NE). For further details, see respective list in Annex 3.

1.8.2 Sources included elsewhere (IE)

Emissions of a number of source categories are specified as "included elsewhere" (IE). For further information about the whereabouts of the emissions from these source categories please refer to the respective list in Annex 3.

1.8.3 Other notation keys

Not occurring (NO)

Various pollutants or emissions do not occur in Switzerland since related processes do not exist or did not exist in the reporting period in Switzerland. Therefore, the activity data do not exist, and specific emissions are reported as "not occurring (NO)".

Not applicable (NA)

A number of source categories do occur within in the Swiss inventory but do not result in emissions of one or several specific pollutants. These are reported as "not applicable (NA)".

2 Emission trends 1980-2023

General remark concerning emission results presented in this chapter:

Note that all the values for emissions in this chapter refer to the "national total for compliance assessment" based on "fuel used" (fu), which deviates from the "national total for the entire territory" based on "fuel sold". Be aware that the reporting tables contain information on both, "national total emissions for the entire territory" (based on "fuel sold") as well as "national total for compliance assessment" (based on "fuel used"). When comparing numbers from this chapter with the reporting tables, the reader shall refer to the blue coloured lines in the reporting tables, which relate to the "national total for compliance assessment". For further information concerning this differentiation, see chapter 3.1.6.1.

2.1 Comments on trends

2.1.1 General trend

Switzerland's emissions of air pollutants are generally decreasing in the period 1980-2023 (see Table 2-1). Only the emissions of non-exhaust particulate matter (PM2.5, PM10, TSPs, BC) are increasing. Note that there is a methodological difference between data before 1990 and data from 1990 onward due to lower data availability before 1990. This can lead to interpolation-based edges in the time series.

Pollutant	Unit	1980	1990	2005	2023	1980–2023	1990–2023	2005–2023
NO _x	kt	165	141	94	47	-72%	-67%	-50%
NMVOC	kt	314	295	112	71	-77%	-76%	-36%
SO ₂	kt	113	39	14	2.8	-97%	-93%	-80%
NH ₃	kt	65	68	60	53	-18%	-23%	-11%
PM2.5 total	kt	26	27	14	6.2	-76%	-77%	-55%
PM2.5 exhaust	kt	24	25	12	3.9	-84%	-84%	-67%
PM2.5 non-exhaust	kt	2.2	2.4	2.2	2.3	5%	-1%	7%
PM10 total	kt	36	36	21	14	-61%	-61%	-34%
PM10 exhaust	kt	27	27	13	4.3	-84%	-84%	-66%
PM10 non-exhaust	kt	9.4	9.4	8.9	9.8	4%	4%	10%
TSP total	kt	61	56	36	28	-54%	-50%	-21%
TSP exhaust	kt	33	30	13	4.6	-86%	-84%	-65%
TSP non-exhaust	kt	28	27	22	23	-15%	-12%	5%
BC total	kt	4.9	5.7	3.5	0.83	-83%	-85%	-77%
BC exhaust	kt	4.9	5.7	3.5	0.73	-85%	-87%	-79%
BC non-exhaust	kt	0.026	0.071	0.078	0.097	276%	38%	25%
СО	kt	1'135	752	305	139	-88%	-82%	-54%
Pb	t	1'326	355	18	7.8	-99%	-98%	-57%
Cd	t	5.2	3.2	0.48	0.41	-92%	-87%	-16%
Hg	t	7.5	6.3	0.73	0.56	-93%	-91%	-23%
PCDD/PCDF	g I-Teq	443	192	31	12	-97%	-94%	-61%
BaP	t	2.3	2.3	1.4	0.70	-70%	-70%	-51%
BbF	t	2.6	2.6	1.6	0.75	-71%	-71%	-53%
BkF	t	1.6	1.7	1.0	0.47	-70%	-72%	-54%
IcdP	t	1.2	1.4	0.82	0.42	-65%	-70%	-49%
PAH tot	t	7.6	8.0	4.9	2.3	-69%	-71%	-52%
HCB	kg	97	173	0.44	0.34	-100%	-100%	-23%
РСВ	t	3.6	2.3	1.3	0.31	-91%	-87%	-76%

Table 2-1 Total emissions of main pollutants, particulate matter, CO, priority heavy metals and POPs (including trends). Note that numbers refer to the national total for compliance assessment (based on fuel used), which deviate from the national total for the entire territory based on fuel sold.

2.1.2 Legal basis for the implementation of reduction measures

The mainly decreasing trend is the result of the implementation of a consistent clean air policy of the Swiss government. It is based on the Federal Environmental Protection Act (EPA) and the Ordinance on Air Pollution Control (OAPC), which were introduced in 1983 and 1985, respectively. The EPA contains the fundamental principles whereas the OAPC contains the detailed prescriptions on air pollution control, e.g. specific emission limit values for stationary sources, ambient air quality standards, prescriptions on enforcement, etc. Main goal of the OAPC is to protect human beings, animals, plants, their biological communities and habitats and the soil against harmful effects or nuisances of air pollution. In addition, the OAPC exclusively contains a limit value for particle number emissions for construction machinery operating on construction sites. For other non-road machinery, in general, the same legislation holds as in the European Union with Regulation (EU) 2016/1628. Requirements for road vehicles are integrated into the Swiss road traffic legislation and are all in accordance with the European Union (Euro standards).

The air pollution control policy is based on:

- Federal Constitution of the Swiss Confederation: Article 74 "Protection of the environment" (Swiss Confederation 1999).
- Federal Act on the Protection of the Environment (EPA) (Swiss Confederation 1983).
- Ordinance on Air Pollution Control (OAPC) (Swiss Confederation 1985, see Figure 2-1 for an overview of the revisions).
- Federal Council's "Concept on Air Pollution Control": On behalf of the Swiss Parliament, the Federal Council has adopted a strategy containing national emission reduction targets, actions and measures at the national level, which will allow for reaching the air quality standards and an improved air quality in general. The strategy is regularly updated, the last version dates from 2009 and is still currently applicable (Swiss Confederation 2009).
- Ordinance on the Technical Standards for Motor Vehicles and their Trailers (Swiss Confederation 1995).
- Ordinance on the incentive tax on volatile organic compounds (VOC) since 2000 (Swiss Confederation 1997).
- Federal Act on the reduction of CO₂ emissions (Swiss Confederation 2011).
- Ratification of the seven additional protocols containing emission reduction commitments to the 1979 CLRTAP (Swiss Confederation 2004), including the 1985 Sulphur Protocol (ratified in 1987), the 1988 NO_x Protocol (ratified in 1990), the 1991 VOC Protocol (ratified in 1994), the 1994 Sulphur Protocol (ratified in 1998), the 1998 POP Protocol and 1998 Heavy Metals Protocol (both ratified in 2000) as well as the 1999 (2012) Gothenburg Protocol (ratified in 2005), and the revised 2012 Gothenburg Protocol (ratified in 2019).

Generally, revisions and amendments of the Air Pollution Control Strategy and the Ordinance on Air Pollution Control (OAPC) in Switzerland are driven by scientific findings or advancements in state-of-the-art abatement technologies. In addition, the harmonization of specific regulations (e.g. placing on the market of combustion installations, placing on the market of machinery) with the European Union leads to revisions and amendments. Main steps of revisions and amendments of the OAPC and its driving facts are outlined in Figure 2-1 below.

EPA introduced Oct 7, 1983; e.g. Art. 11 on principles for emissions, Art. 35a-c on refundable environment tax, Art. 44 on CAAP	emissions, Art. 35a-c on	ı refundable environment tax, Art	. 44 on CAAP					
OAPC introduced Dec 16, 1985; on basis of EPA; e.g. Art. 1-26 on emissions, Art. 31 on CAAP A	; e.g. Art. 1-26 on emiss	sions, Art. 31 on CAAP	LL M	<u>0</u> W		а В В	2 I I	
	0000	OVOC introduced Nov 12, 1997; on basis of EPA	asis of EPA		<u>a</u>			
FAV 1/2/3 introduced Oct 1, 1987; I C	<u>۲</u> –	AFV 1 introduced June 19, 1995; all on basis of SVG	SVG					
Concept on Air Pollution Control introduced	oduced Sept 10, 1986							
- 8		Η	×	z				
				+	+			
	95 97 98	99 2000	05 06 07 08	8 09 10	12	15 16 17	18	22 23 24
Policies and measures A – ELV (for ca. 40 installation types and ca. 150 pollutants)	I – New quality re	New quality requirements for diesel oil and casoline	oline		T – Lowered I	 Lowered ELV and enhanced requirements for combustion 	uirements for con	bustion
 E.F. You G. A. Poussenerger, SPAS and G. A. Downsteins, Regulation for household and industry combustion Requirement for combustion and transport fuel 	(limits for sulp	(limits for sulphur, lead, benzene)				installations, introduction of an ambient limit value for PM2.5	ambient limit valu	e for PM2.5
- Ambient air quality standards	J – Substitution of	Substitution of sample testing (combustions) by a conformity declaration	y a conformity declaı		 U – Lowered I emissions 	– Lowered ELV for cement plants, measures to reduce \ensuremath{NH}_3 emissions in agriculture	measures to redu	e NH ₃
 Concept on air pollution control publ. by the Federal Council, encouraging action by cantons & municipalities 	K – Improvement	 Improvement of national emission reduction targets 	argets	-	V – Lowered F	 Lowered ELV for chipboard and fiberboard plants 	fiberboard plants	
 C – Requirement of three-way catalysts for passenger cars 	 Lowered ELV for the second seco	 – Lowered ELV for general PM emissions and wood combustion installations, requirements for the placing on market of oil, gas & wood combustion inst. 	od combustion instal 3as & wood combusti		W – Measure	 Measures to reduce NH₃ emissions in agriculture 	ions in agriculture	
D – Emission reductions of fuel handling	M – Particle numbe	– Particle number ELV for construction machinery and particle filter systems	y and particle filter s	ystems	Legend	- Close Air Action Dlan		
 VOC-Emission reductions in value and inducting NO_x-reductions in combustions ("low NO_x") Extension of combustion control and sample testing of human and human and	 N – Improvement the market of r 	Improvement of nat. em. reduction targets, requirements for placing on the market of machinery with spark ignition engine	quirements for placin gine	uo Bu	2/3	 - Gean Automirman = Environmental Protection Act - Ordinance on the Emissions of - (11) light Transportation Motor Vahicles 	ection Act nissions of rion Motor Vehicle	
	O – Specifications	Specifications for exhaust emissions for working equipment	g equipment			(2) Heavy Transportation Motor Vehicles,	ation Motor Vehicle	's,
 I echnical requirements for motor vehicles of different weight classes 	P – Revision of req	- Revision of requirements for fugitive VOC emissions	sions		OAPC	 (5) Motor-cycle it ansportation Venicles = Ordinance on Air Pollution Control - Ordinance on the Incentive Tex on Molatile 	Isportation Venicle Ilution Control contive Tay on Vol-	tilo
${f F}$ – Regulation of VOC emissions through refundable tax	Q – Lowered ELV f	 Lowered ELV for stationary internal combustion engines & gas turbines 	n engines & gas turbi	ines		Organic Compounds		2
G – New ambient limit value for PM10	R – Lowered ELV fo	 Lowered ELV for cement plants 			TAFV 1	 Ordinance on Technical Standards for Motor Wobiclos and their Technical 	ical Standards for	Aotor
${f H}$ – Improvement of national emission reduction targets	S – Revision of req	Revision of requirements for wood fuels			ELV	 Emission Limit Values 	dirers	

Figure 2-1 Overview of the OAPC Revisions in Switzerland. The Concept on Air Pollution Control is also referred to as the Air Pollution Control Strategy.

For further information on legislation on the abatement of air pollution, see <u>https://www.bafu.admin.ch/bafu/en/home/topics/air/law.html</u> [29.01.2025].

2.2 Overall trends of total emissions

2.2.1 Main air pollutants and CO

Emission trends of the main air pollutants and CO show a decline over the past 40 years as a result of the strict air pollution control policy and the implementation of a large number of emission reduction measures (see Figure 2-2 and Table 2-2).

Overall, the most effective reduction measures were the abatement of exhaust emissions from road vehicles and stationary installations and the incentive taxes on VOC (since 2000) and on fossil combustible fuels (since 2008). The latter measure was (jointly) responsible for the significant shift in the fuel mix of standard fossil fuels in industry from solid and liquid fuels to natural gas and the strong reduction of the use of residual fuel oil. As a result, NO_x, NMVOC and CO emissions clearly declined between 1980 and 2023.

In addition, the legal restrictions of the sulphur content in liquid fuels and the switch from gas oil to natural gas in residential heating are important for the significant decrease in SO_x emissions observed. The lowering of the sulphur content in liquid fuels is shown inTable 3-29. Annual fluctuations of SO_x emissions occur mainly due to annual variations of heating degree days, which affects the consumption of gas oil.

The reduction of NH₃ emissions since 1980 is not as pronounced as for the other pollutants mentioned above. NH₃ emissions are influenced by changes in the number of livestock (and thus N excretions), changes in housing systems due to developments in animal welfare regulations as well as changes in agricultural production techniques including a decline in the use of mineral fertiliser (see Figure 2-2). Between 1990 and 2020, the amount of N excreted by livestock decreased by 17 % (Kupper et al. 2022), which had a corresponding effect on NO_x and NH₃ emissions from agriculture (see chapters 5.1.1 and 5.1.3).

In the year 2020, a drop of NO_x emissions happened mainly due to the COVID-19 pandemic measures and the resulting reduction of traffic in Switzerland. The reduced traffic volumes affected all pollutants which are emitted by a large share from the source category 1A3 Transport (in particular 1A3b Road transportation).

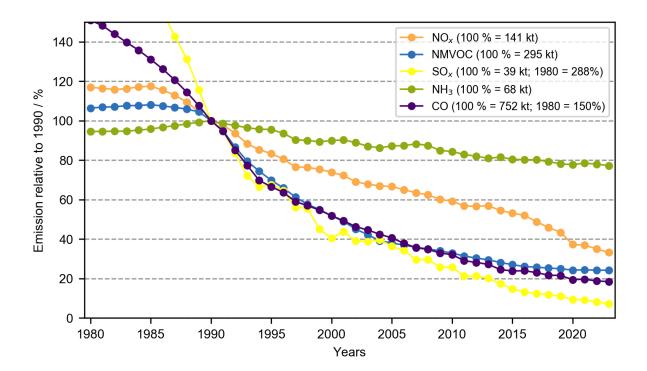


Figure 2-2 Relative trends for the total emissions of main air pollutants and CO in Switzerland 1980–2023 in percentage of 1990). Potential discrepancies between the values before 1990 and those afterwards result from higher data availability after 1990.

Table 2-2 Main pollutants: Total emissions in kt. Note that numbers refer to the national total for compliance assessment (based on fuel used), which deviate from the national total for the entire territory based on fuel sold.

Year	NOx	NMVOC	SOx	NH3	CO
rear	kt	kt	kt	kt	kt
1980	165	314	113	65	1'135
1985	165	319	68	66	985
1990	141	295	39	68	752
1995	117	206	26	65	500
2000	104	153	16	62	390
2005	94	112	14	60	305
2010	83	97	10	58	241
2014	77	83	6.8	56	184
2015	75	80	5.8	55	179
2016	73	77	5.2	55	180
2017	69	76	4.9	55	173
2018	65	75	4.7	54	163
2019	61	74	4.3	54	162
2020	52	72	3.7	53	146
2021	52	72	3.6	54	148
2022	49	71	3.2	53	141
2023	47	71	2.8	53	139
2023 vs 2005 (%)	-50	-36	-80	-11	-55

2.2.2 Suspended particulate matter

Emissions for suspended particulate matter (PM2.5, PM10, TSP and BC) show a significant decline since 1990 (see Figure 2-3 and Table 2-3). This decline can be mainly attributed to a reduction of exhaust particulate matter emissions (see Figure 2-4 and Table 2-4). The following measures were important for the reductions:

- The abatement of exhaust emissions from road vehicles and from residential heating systems, mainly affecting the fractions of fine particles (PM2.5, BC).
- An action plan to reduce particulate matter emissions was initiated by the Federal Council in 2006, including 14 measures on the national level. Some of these measures led to a revision of the Ordinance of Air Pollution Control (OAPC) in 2007 and in 2018 with more stringent emission limit values for general dust emissions and total solids emission limit values for wood combustion installations.
- Another OAPC revision in 2008 introduced a particle number emission limit value for construction machines and particle filter systems. With the OAPC revision in 2018, the particle number emission limit value became mandatory for new machines in all sectors in accordance with new EU regulations. It aims at reducing the fine fraction of particulate matter (PM2.5) and soot (see also Figure 2-1).

In contrast to exhaust particulate matter emissions, non-exhaust emissions show an increasing trend since about 2003 (see Figure 2-5, Table 2-5). This increase is mainly due to growing activity data (annual mileage and machine hours) of mobile sources, and in absolute terms it is more distinctive for TSP and PM10 than for PM2.5 (see chp. 2.4.4). Since annual mileage dropped in 2020 and 2021 due to the COVID-19 pandemic measures, non-exhaust

particulate matter emissions have decreased in 2020 and 2021 compared to 2019 as well (see Figure 2-5).

Note that in the years 1980 to 1990, BC exhaust emissions increased due to a large increase in the consumption of wood energy mainly in households (1A4bi), and to a lower extent also in the commercial sector (1A4ai) and in agriculture and forestry (1A4ci).

Condensable fractions are included in TSP, PM10 and PM2.5 emissions of wood energy combustion (1A1a, 1A2gviii, 1A4ai/bi/ci; see respective sections in chp. 3.2.1.1.2), road transportation (1A3b), non-road vehicles and machinery (1A2gvii, 1A3c/d, 1A4aii/bii/cii and 1A5b), bonfires (1A4bi) and charcoal use (1A4bi).

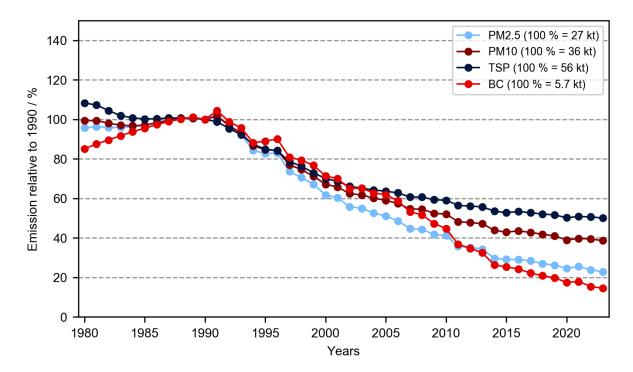


Figure 2-3 Total emissions of suspended particulate matter TSP, PM10, PM2.5 and BC in Switzerland 1980–2023 (in percentage of 1990). Potential discrepancies between the values before 1990 and those afterwards result from higher data availability after 1990.

Table 2-3 Total emissions of particulate matter in kt. Note that numbers refer to the national total for compliance assessment (based on fuel used), which deviate from the national total for the entire territory based on fuel sold.

Year	PM2.5	PM10	TSP	BC
real	kt	kt	kt	kt
1980	26	36	61	4.9
1985	26	35	56	5.5
1990	27	36	56	5.7
1995	22	31	48	5.1
2000	17	24	39	4.1
2005	14	21	36	3.5
2010	11	19	33	2.6
2014	8.1	16	30	1.5
2015	7.9	16	30	1.4
2016	7.9	16	30	1.4
2017	7.7	16	30	1.3
2018	7.3	15	29	1.2
2019	7.1	15	29	1.1
2020	6.7	14	28	1.0
2021	6.9	14	29	1.0
2022	6.5	14	28	0.88
2023	6.2	14	28	0.83
2023 vs 2005 (%)	-55	-34	-21	-77

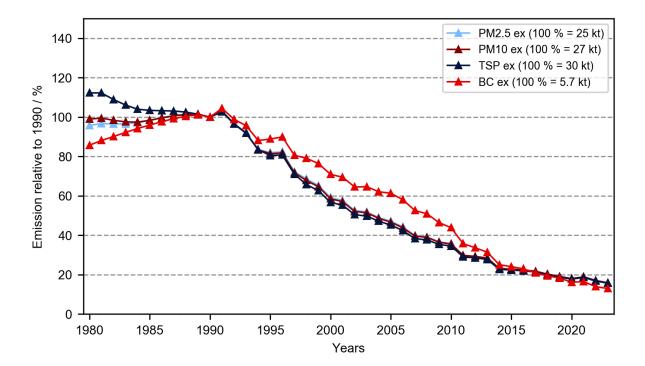


Figure 2-4 Exhaust emissions of suspended particulate matter TSP, PM10, PM2.5 and BC in Switzerland 1980–2023 (in percentage of 1990). Potential discrepancies between the values before 1990 and those afterwards result from higher data availability after 1990.

Table 2-4 Exhaust emissions of particulate matter in kt. Note that numbers refer to the national total for
compliance assessment (based on fuel used), which deviate from the national total for the entire territory based
on fuel sold.

Year	PM2.5 ex	PM10 ex	TSP ex	BC ex
real	kt	kt	kt	kt
1980	24	27	33	4.9
1985	24	27	31	5.4
1990	25	27	30	5.7
1995	20	22	24	5.0
2000	15	16	17	4.0
2005	12	13	13	3.5
2010	8.9	9.6	10	2.5
2014	5.7	6.3	6.7	1.4
2015	5.6	6.2	6.6	1.4
2016	5.5	6.1	6.5	1.3
2017	5.3	5.9	6.3	1.2
2018	4.9	5.5	5.9	1.1
2019	4.7	5.2	5.5	1.0
2020	4.4	4.9	5.2	0.91
2021	4.6	5.1	5.5	0.93
2022	4.1	4.6	5.0	0.78
2023	3.9	4.3	4.6	0.73
2023 vs 2005 (%)	-67	-66	-65	-79

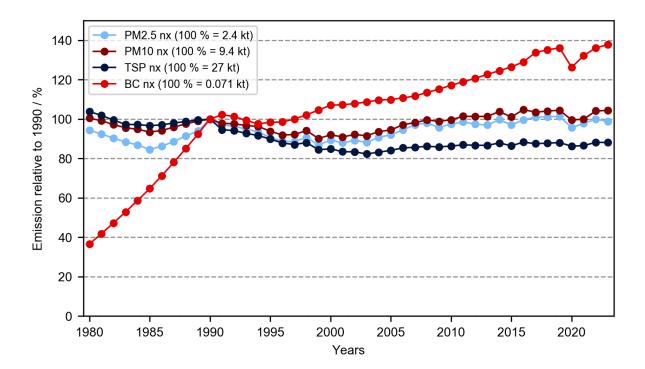


Figure 2-5 Non-exhaust emissions of suspended particulate matter TSP, PM10, PM2.5 and BC in Switzerland 1980–2023 (in percentage of 1990). Potential discrepancies between the values before 1990 and those afterwards result from higher data availability after 1990.

fuel sold.				
Year	PM2.5 nx	PM10 nx	TSP nx	BC nx
rear	kt	kt	kt	kt
1980	2.2	9.4	28	0.026
1985	2.0	8.8	26	0.046
1990	2.4	9.4	27	0.071
1995	2.1	8.8	24	0.069
2000	2.1	8.6	23	0.076
2005	2.2	8.9	22	0.078
2010	2.3	9.3	23	0.083
2014	2.3	9.7	23	0.088
2015	2.3	9.5	23	0.089
2016	2.3	9.8	23	0.091
2017	2.4	9.7	23	0.095
2018	2.4	9.8	23	0.095
2019	2.4	9.8	23	0.096

9.3

9.4

9.8

9.8

10

2.3

2.3

2.4

2.3

7.3

Table 2-5 Non-exhaust emissions of particulate matter in kt. Note that numbers refer to the national total for compliance assessment (based on fuel used), which deviate from the national total for the entire territory based on fuel sold.

2.2.3 Priority heavy metals

2020

2021

2022

2023

2023 vs 2005 (%)

Between 1980 and 2003, emissions of priority heavy metals (Pb, Cd and Hg) show a pronounced decline (see Figure 2-6 and Table 2-6). The continuous decrease of the lead content in gasoline and the final ban on leaded gasoline in 2000 resulted in an important decrease of Pb emissions. The decrease of Cd and Hg emissions is mainly due to the strict emission limit values for waste incineration plants. Since 2003, the decreasing trend of heavy metals emissions is less pronounced.

23

23

23

23

4.8

0.089

0.093

0.096

0.097

25

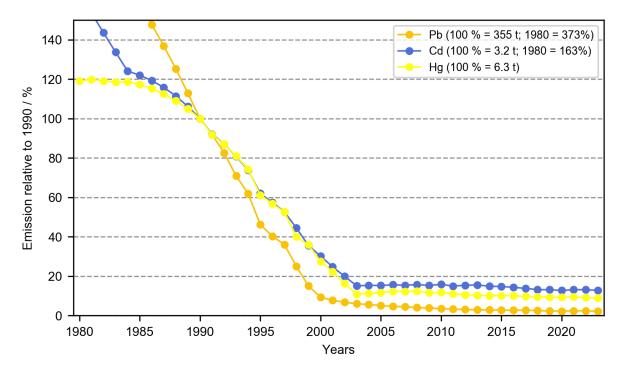


Figure 2-6 Emissions of priority heavy metals in Switzerland 1980–2023 (in percentage of 1990). Potential discrepancies between the values before 1990 and those afterwards result from higher data availability after 1990.

Table 2-6 Total emissions of priority heavy metal in tons. Note that numbers refer to the national total for compliance assessment (based on fuel used), which deviate from the national total for the entire territory based on fuel sold.

Year	Pb	Cd	Hg
i eai	t	t	t
1980	1'326	5.2	7.5
1985	559	3.9	7.4
1990	355	3.2	6.3
1995	164	2.0	3.9
2000	33	0.96	1.7
2005	18	0.48	0.73
2010	12	0.50	0.74
2014	10	0.47	0.63
2015	9.6	0.47	0.64
2016	9.4	0.46	0.64
2017	9.5	0.44	0.61
2018	9.0	0.42	0.59
2019	8.2	0.42	0.59
2020	8.0	0.41	0.58
2021	8.5	0.42	0.60
2022	8.2	0.42	0.57
2023	7.8	0.41	0.56
2023 vs 2005 (%)	-57	-16	-23

2.2.4 Persistent organic pollutants (POPs)

The emissions of persistent organic pollutants have generally declined since 1980 (see Figure 2-7 and Table 2-7).

Between 1980 and 2003, PCDD/PCDF emissions decreased as a result of an indirect effect of the equipment of waste incineration plants with DeNOx techniques. From 2003 onward, emissions continue to decrease, albeit with a reduced rate.

Emissions of (total) PAH increased slightly in the period 1980-1991, but since then strongly decreased due to reduction measures for waste incineration plants and technological improvements of wood combustion installations in 1A Fuel combustion. In addition, the wood energy consumption decreased by more than half in manually operated furnaces and increased by about a factor of eight in automatic combustion installations since 1990.

HCB emissions are strongly influenced by activity data of the secondary aluminium production. The trend shown in Figure 2-7 is primarily a reflection of the activity of the single plant for secondary aluminium production in Switzerland which ceased in 1993. Since then, total HCB emissions remain on a generally low level with a slight further decrease. The remaining sources of HCB emissions are waste incineration plants in source category 1A1 Energy industries, all wood combustion installations and with a smaller share the use of coal (other bituminous coal and lignite) in 1A Fuel combustion. The annual fluctuations in HCB emissions are due to the wood consumption in 1A4bi Residential: Stationary, which is strongly influenced by climate variabilities, in particular by the winter mean temperatures (heating degree days).

With the exception of a sudden sharp increase in 1999, PCB emissions decreased continuously since 1980. Although the use of PCBs in anti-corrosive paints and joint sealants

(so-called open applications) is prohibited since 1972, they are the predominant PCB emission sources for most of the time. In 1986, a total ban was placed on any form of PCB use in Switzerland. Between 1975 and 1985 and around 2000, burning of PCB contaminated waste oil in outdoor fires (ceased in 1999) and shredding of electronic waste containing PCBs in small capacitors, respectively, were the dominant PCB sources. The latter was also the cause for the sudden sharp emission increase in 1999. Mainly in the seventies and eighties, accidental release by fire, small and large capacitors and waste incineration were important emission sources as well.

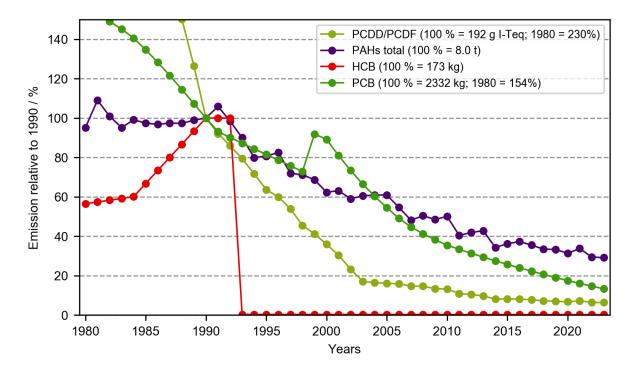


Figure 2-7 Emissions of POPs Annex III¹: PAH – as the sum of benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene – PCDD/PCDF, HCB and PCB in Switzerland 1980–2023. Note that values for PCDD/PCDF before 1989 are not displayed here but illustrated in the table below. Potential discrepancies between the values before 1990 and those afterwards result from higher data availability after 1990.

¹ Annex III of the 1998 Aarhus Protocol on Persistent Organic Pollutants (POPs)

Table 2-7 Total emissions of POPs Annex III (see footnote 1, p. 54). Please consider the different units. Note that numbers refer to the national total for compliance assessment (based on fuel used), which deviate from the national total for the entire territory based on fuel sold.

Year	PCDD/ PCDF	BaP	BbF	BkF	IcdP	PAHs total	HCB	PCB
	g I-Teq	t	t	t	t	t	kg	kg
1980	443	2.3	2.6	1.6	1.2	7.6	97	3'607
1985	397	2.3	2.6	1.6	1.3	7.8	115	3'140
1990	192	2.3	2.6	1.7	1.4	8.0	173	2'332
1995	123	2.0	2.1	1.3	1.2	6.5	0.49	1'901
2000	69	1.5	1.6	1.1	0.87	5.0	0.43	2'079
2005	31	1.4	1.6	1.0	0.82	4.9	0.44	1'270
2010	25	1.3	1.3	0.77	0.71	4.0	0.45	827
2014	16	0.84	0.89	0.55	0.49	2.8	0.35	642
2015	16	0.89	0.94	0.57	0.51	2.9	0.36	600
2016	16	0.91	0.96	0.59	0.53	3.0	0.38	559
2017	15	0.86	0.91	0.57	0.51	2.9	0.37	519
2018	14	0.81	0.86	0.54	0.48	2.7	0.36	481
2019	14	0.81	0.86	0.54	0.48	2.7	0.36	444
2020	13	0.76	0.81	0.51	0.45	2.5	0.35	408
2021	14	0.82	0.87	0.54	0.48	2.7	0.37	374
2022	12	0.71	0.76	0.48	0.42	2.4	0.34	341
2023	12	0.70	0.75	0.47	0.42	2.3	0.34	310
2023 vs 2005 (%)	-61	-51	-53	-54	-49	-52	-23	-76

2.3 Trends of main pollutants per gas and sectors

2.3.1 Trends for NO_x

Switzerland's emissions of NO_x (sum of NO and NO₂, expressed as NO₂ equivalents) mainly stem from sector 1 Energy. The trend of NO_x emissions per sector is given in Table 2-8 and Figure 2-8. Overall, NO_x emissions in Switzerland constantly declined between 1990 and 2023.

The decline has mainly occurred due to emission reductions in the energy sector. Within the energy sector, in particular categories 1A3 Transport, 1A4 Other sectors and 1A2 Manufacturing industries are relevant for NO_x emissions in 2023. The decrease of NO_x emissions in sector 1 Energy was primarily due to the abatement of exhaust emissions from road vehicles (in category 1A3 Transport) and from production of process heat in manufacturing industries (1A2) and in residential, commercial and institutional heating (1A4).

The reductions in 1A3b Road transportation were triggered by the implementation of new strict emission standards for road vehicles. The first step happened in the late 80's when Switzerland reduced the standards to a level that required the equipment of three-way catalysts for new passenger cars. Later, when the European Union introduced the first Euro standards in 1993, Switzerland adopted the subsequent reduction path (Euro 2/II in 1995, Euro 3/III in 2000, Euro 4/IV in 2005, Euro V in 2008, Euro 5 in 2009, Euro VI in 2013 and Euro 6 in 2014). However, the reduction of NO_x emissions due to emission standards has not been as pronounced as expected in the years before 2015 because of

an increasing share of diesel-powered passenger cars and higher emission factor than expected (the "dieselgate" scandal², detected in the year 2015).

- In the years 2020 and 2021, the COVID-19 pandemic led to measures that resulted in a massive reduction in transport activities (1A3). The lower traffic volume led to a strong decrease in NO_x emissions from 1A3b Road transportation and a sharp drop in emissions from 1A3a Aviation, especially international aviation. However, the share of NO_x emissions from 1A3a Aviation in 1A3 Transport is smaller than that from 1A3b Road transportation, in particular due to the system boundaries (only LTO emissions from air traffic are taken into account in the national total, see chapter 3.1.6.1).
- The reductions in 1A2 Manufacturing industries and construction were a result of three main factors: First, there has been a fuel switch from residual fuel oil, coal and gas oil towards natural gas and a reduction in total fuel use since 2008. Second, a reduction has been reached due to an on-going sectoral agreement (from 1998) targeting NO_x emissions of the cement industry. Third, manufacturing plants reduced NO_x emissions through technical improvements (e.g. DeNO_x technology, selective non-catalytic reduction technology SNCR).
- In the past, the number of buildings and apartments increased, as well as the average floor space per person and workplace. Both effects resulted in an increase of the total heated area. On the other hand, higher standards were specified for insulation and for combustion equipment efficiency for new or renovated buildings including low-NO_x standards. Furthermore, a substantial substitution of gas oil by natural gas under 1A4 Other sectors resulted in further reductions of NO_x emissions (i.e. natural gas consumption increased by half from 1990 to 2023). These emission reductions compensate for the expected increase in emissions due to higher demand for heating energy as a result of more heating surface, and lead to a total reduction of NO_x emissions under category 1A4 Other sectors.

NO_x emissions from Agriculture decrease on a rather low absolute emission level. This was mainly due to a reduction and thus N excretions of livestock (-17 % between 1990 and 2020) and a strong decrease of N fertiliser use (-38 % N applied between 1990 and 2020) due to nutrient balance restrictions (Kupper et al. 2022).

NOx emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	135	89	79	43	-56	-46	-52	92
1A(fu) Combustion	135	89	79	43	-56	-46	-52	92
1A1 Energy industries	6.8	3.0	3.1	2.6	-3.7	-0.36	-12	5.6
1A2 Manufacturing industries and construction	23	14	12	6.5	-10	-7.9	-55	14
1A3(fu) Transport	83	54	48	25	-35	-29	-54	53
1A4 Other sectors	22	17	15	8.3	-6.7	-8.3	-50	18
1A5 Other	0.88	0.60	0.54	0.40	-0.34	-0.20	-34	0.85
1B Fugitive emissions from fuels	0.21	0.29	0.11	0.00057	-0.098	-0.28	-100	0.0012
2 Industrial processes and product use	0.52	0.34	0.40	0.20	-0.11	-0.14	-41	0.43
3 Agriculture	5.0	3.8	4.0	3.5	-0.97	-0.35	-9.2	7.5
5 Waste	0.29	0.16	0.15	0.12	-0.14	-0.035	-22	0.27
6 Other sources	0.092	0.097	0.100	0.085	0.0079	-0.012	-12	0.18
National total for compliance	141	94	83	47	-57	-47	-50	100
Gothenburg Protocol, target emission ceiling 2010			79					
Gothenburg Protocol revised, target emission reduction 2005-2020							-41	

Table 2-8 NO_x emissions, trends and share per sector as well as emission ceiling for 2010 from the Gothenburg Protocol (national total for compliance; fuel used (fu)).

Emission trends 1980-2023: Trends of main pollutants per gas and sectors - Trends for NOx

² Dieselgate: «The EPA had found that Volkswagen had intentionally programmed turbocharged direct injection diesel engines to activate certain emissions controls only during laboratory emissions testing. Volkswagen deployed this programming in about eleven million cars worldwide» Source: https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal [29.01.2025]

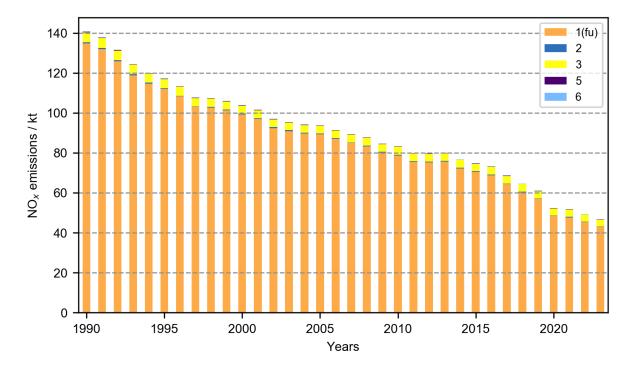


Figure 2-8 Trend of NO_x emissions (kt) in Switzerland by sector ((fu) means fuel used approach).

2.3.2 Trends for NMVOC

Switzerland's emissions of NMVOC mainly stem from the sectors 2 IPPU, 3 Agriculture and 1 Energy. The trend of NMVOC emissions per sector is given in Table 2-9 and Figure 2-9. The NMVOC emissions have decreased in the time span 1990-2023.

The relevant reductions were achieved in sectors 2 IPPU and 1 Energy:

- In sector 2 IPPU, the emission reduction was more pronounced for the years 1990-2004 than from 2004 onwards. The reduction of 1990-2004 can be mainly attributed to category 2D3d Coating applications, where the paint composition changed from solvent based to water-based paints. In addition, paint consumption in 2D3d decreased for construction (1990-1998) as well as for industrial paint application (2001-2004) which is partly due to substitution of conventional paints by powder coatings. Despite population growth and the associated increase in product use (e.g. cosmetics, toiletries, cleaning agents and care products), the general trend of NMVOC emissions from sector 2 IPPU was still decreasing from 2004-2016 (and rather constant values afterwards). This was mainly a result of reduced emissions caused by the ordinance on the VOC incentive tax (enactment of the tax in 2000 and revision in 2012).
- In sector 1 Energy, the emission reduction was mainly influenced from category 1A3b Road transportation, in particular resulting from the higher Euro standards for passenger cars (Euro 1 in 1993, Euro 2 in 1995, Euro 3 in 2000, Euro 4 in 2005, Euro 5 in 2009 and Euro 6 in 2014). Furthermore, the share of diesel oil in fuels used under 1A3b has increased compared to gasoline between 1990 and 2023, which leads to a decrease of NMVOC emissions. In 2020 and 2021, the COVID-19 pandemic led to a reduction of NMVOC emissions from road transportation due to reduced traffic volumes. The measures against the pandemic also led to a sharp drop in emissions from 1A3a Aviation in 2020 and 2021, especially international aviation. However, the share of NMVOC emissions from 1A3a Aviation in 1A3 Transport is smaller than that from 1A3b

Road transportation, in particular due to the different fuel types (most NMVOC emissions stem from gasoline engines and the system boundaries (only LTO emissions from air traffic are taken into account in the national total, see chapter 3.1.6.1).

 NMVOC emissions of source category 1A4 Other sectors declined in the same period as well due to technical improvements of wood combustion installations and a reduction in the number and energy consumption of emission intensive types of log wood furnaces.

NMVOC emissions from sector 3 Agriculture show a significant increase between 2000 and 2008 and have remained at about constant level since 2014. They depend on the number of livestock, in particular, the number of cattle receiving silage feeding. Thus, the emission increase is mainly due to the increase in non-dairy cattle which predominately are fed by silage.

Table 2-9 NMVOC emissions, trends and share per sector as well as the emission ceiling for 2010 from the Gothenburg Protocol (national total for compliance; fuel used).

NMVOC emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	130	44	31	15	-99	-29	-65	21
1A(fu) Combustion	109	37	26	13	-83	-24	-65	18
1A1 Energy industries	0.33	0.32	0.26	0.20	-0.067	-0.12	-39	0.28
1A2 Manufacturing industries and construction	2.4	2.1	1.6	0.85	-0.78	-1.2	-59	1.2
1A3(fu) Transport	89	23	15	7.0	-74	-16	-69	9.9
1A4 Other sectors	17	12	9.3	4.7	-8.2	-6.9	-60	6.6
1A5 Other	0.16	0.11	0.090	0.064	-0.070	-0.045	-42	0.090
1B Fugitive emissions from fuels	21	7.2	5.2	2.4	-16	-4.8	-67	3.4
2 Industrial processes and product use	149	51	47	36	-102	-15	-29	51
3 Agriculture	14	16	17	18	2.8	2.0	12	25
5 Waste	1.1	1.0	1.2	1.8	0.049	0.75	73	2.5
6 Other sources	0.20	0.20	0.18	0.17	-0.024	-0.037	-18	0.23
National total for compliance	295	112	97	71	-198	-41	-36	100
Gothenburg Protocol, target emission ceiling 2010			144					
Gothenburg Protocol revised, target emission reduction 2005-2020							-30	

Figure 2-9 Trend of NMVOC emissions (kt) in Switzerland by sector ((fu) means fuel used approach).

2.3.3 Trends for SO_x

Switzerland's emissions of SO_x (sum of SO₂ and SO₃, expressed as SO₂ equivalents) mainly stem from sector 1 Energy. The trend of SO_x emissions per sector is given in Table 2-10 and Figure 2-10. SO_x emissions show a decreasing trend with some fluctuations between 1990 and 2023.

The decrease can be mainly attributed to three measures in Switzerland in the sector Energy:

- First, the Ordinance on Air Pollution Control (Swiss Confederation 1985) introduced a limitation of the sulphur content in liquid fuels, with further stepwise lowering in 1991, 2000, 2005, 2008 and 2009 for liquid fuels (Table 3-28). These stringent measures resulted in a significant decrease of the sulphur oxide emissions from fuel combustion under 1A3 Transport and 1A4 Other sectors (gas oil, diesel oil and gasoline, see Table 3-28).
- Second, a substantial substitution of gas oil with natural gas and eco-grade gas oil (with low sulphur and nitrogen content, from 2006 onwards) under 1A4 Other sectors resulted in further reductions of sulphur emissions (natural gas consumption increased by half from 1990 to 2023).
- Third, a similar substitution of residual fuel oil, coal and gas oil by natural gas has reduced sulphur emissions as well in 1A2 Manufacturing industries (i.e. coal and residual fuel oil from 1990, gas oil from about 2005 onwards).

In addition, SO_x emissions from 2C Metal production declined between 1990 and 2007, mainly following the decrease in aluminium production volume, which was ceased in 2006. SO_x emissions of sector 2B Chemical industry show no clear trend in the period 1990–2023. They stem predominately from the sulphur content of the raw materials of the graphite and silicon carbide production (petroleum coke and other bituminous coal) and reflect, thus, the production volumes.

SOx emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	37	13	9.2	2.5	-28	-11	-81	90
1A(fu) Combustion	37	13	9.0	2.5	-28	-10	-80	89
1A1 Energy industries	4.3	1.6	1.7	0.31	-2.6	-1.3	-81	11
1A2 Manufacturing industries and construction	13	4.2	2.9	1.6	-10	-2.5	-61	58
1A3(fu) Transport	4.0	0.18	0.20	0.19	-3.8	0.010	5.6	6.8
1A4 Other sectors	15	6.6	4.1	0.34	-11	-6.3	-95	12
1A5 Other	0.078	0.037	0.037	0.033	-0.041	-0.0044	-12	1.2
1B Fugitive emissions from fuels	0.72	0.51	0.22	0.015	-0.50	-0.50	-97	0.54
2 Industrial processes and product use	1.6	1.0	0.80	0.26	-0.84	-0.78	-75	9.0
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	0.16	0.063	0.063	0.030	-0.10	-0.033	-52	1.1
6 Other sources	0.0092	0.0094	0.0074	0.0072	-0.0017	-0.0022	-23	0.25
National total for compliance	39	14	10	2.8	-29	-11	-80	100
Gothenburg Protocol, target emission ceiling 2010			26					
Gothenburg Protocol revised, target emission reduction 2005-2020							-21	

Table 2-10 SO_x emissions, trends and share per sector as well as the emission ceiling for 2010 from the Gothenburg Protocol (national total for compliance; fuel used).

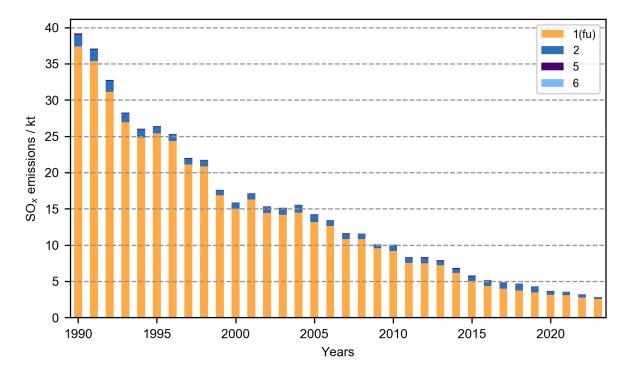


Figure 2-10 Trend of SO_x emissions (kt) in Switzerland by sector (SO_x as sum of SO₂ and SO₃, expressed as SO₂ equivalents) ((fu) means fuel used approach).

2.3.4 Trends for NH₃

Switzerland's emissions of NH_3 mainly stem from sector 3 Agriculture. The trend of NH_3 emissions per sector is given in Table 2-11 and Figure 2-11. NH_3 emissions show a decreasing trend between 1990 and 2023.

Emission reductions (with fluctuations) occurred mainly in source category 3D Crop production and agricultural soils, especially in 3Da2a Animal manure applied to soils, while emissions from source category 3B Manure management slightly increased. In 2023, both categories are about equally important. Agricultural ammonia emissions decreased between 1990 and 2004, followed by a slight increase until 2007 and another decrease since then. This non-monotonic trend results from a combination of changes in animal numbers, introduction of nutrient balance regulations for nitrogen, introduction of new housing systems and more grazing due to developments in animal welfare regulations, increase of animal productivity, changes in production techniques and a considerable decrease of N fertiliser use due to nutrient balance restrictions (Kupper et al. 2015, 2018, 2022). Between 1990 and 2020, N excretions from livestock decreased by 17 % and N excretions of livestock going into the manure stream even by 27 % (Kupper et al. 2022). A further reason for the downward trend of agricultural NH₃ emissions is the growing importance of grazing due to animal welfare incentives. The share of soluble N (TAN) of excretions of livestock going to grazing increased from 8 % in 1990 to 17 % in 2020 (Kupper et al. 2022).

Table 2-11 NH₃ emissions, trends and share per sector as well as the emission ceiling for 2010 from the Gothenburg Protocol (national total for compliance; fuel used).

NH3 emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	1.7	3.9	2.7	1.3	1.1	-2.6	-68	2.4
1A(fu) Combustion	1.7	3.9	2.7	1.3	1.1	-2.6	-68	2.4
1A1 Energy industries	0.0049	0.029	0.036	0.042	0.032	0.014	47	0.080
1A2 Manufacturing industries and construction	0.17	0.19	0.24	0.21	0.077	0.015	7.5	0.40
1A3(fu) Transport	1.3	3.5	2.3	0.90	0.99	-2.6	-74	1.7
1A4 Other sectors	0.18	0.14	0.14	0.10	-0.038	-0.042	-29	0.19
1A5 Other	0.000037	0.000039	0.000042	0.000041	0.000005	0.000001	3.3	0.000077
1B Fugitive emissions from fuels	NA	NA	NA	NA	-	-	-	-
2 Industrial processes and product use	0.37	0.35	0.21	0.13	-0.16	-0.22	-63	0.25
3 Agriculture	65	54	53	50	-12	-4.0	-7.5	94
5 Waste	0.91	0.93	0.89	0.86	-0.020	-0.064	-6.9	1.6
6 Other sources	0.85	0.88	0.92	0.97	0.073	0.095	11	1.8
National total for compliance	68	60	58	53	-11	-6.8	-11	100
Gothenburg Protocol, target emission ceiling 2010			63					
Gothenburg Protocol revised, target emission reduction 2005-2020							-8.0	

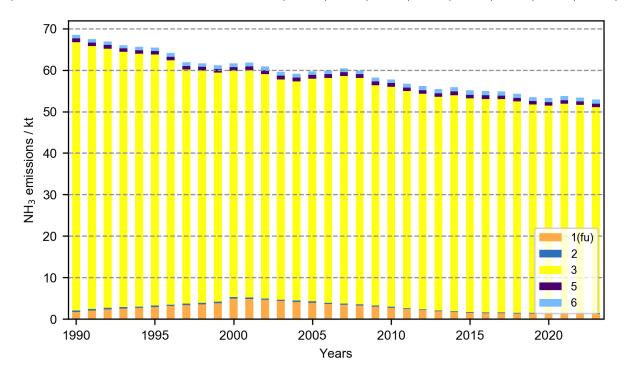


Figure 2-11 Trend of NH₃ emissions (kt) in Switzerland by sector. ((fu) means fuel used approach).

Trends of particulate matter per pollutant 2.4

2.4.1 Features commonly holding for all particulate matter fractions PM2.5, PM10, TSP and BC

Switzerland's emissions of particulate matter (PM2.5, PM10, TSP and BC) mainly stem from sector 1 Energy. For TSP, due to the considerable emission reductions in sector 1 Energy, the emissions from sector 3 Agriculture have gained in importance and have been of comparable size in recent years.

Particulate matter emissions per sector are given in Table 2-12 and Figure 2-12 for PM2.5, in Table 2-13 for PM10, in Table 2-14 to Table 2-16 and Figure 2-13 for TSP and in Table 2-17 for BC. Total particulate matter emissions generally show decreasing trends from 1990 on. The observed reduction of emissions in PM2.5, PM10, TSP and BC were achieved in sectors 1 Energy and 2 IPPU.

In the sector 1 Energy, the decline can be mainly attributed to a reduction of exhaust particulate matter emissions:

- The large reduction of exhaust particulate matter emissions is primarily due to the development of emissions from wood combustion, especially in single-room furnaces and building heating systems (1A4). The reduction was achieved through technological improvements of the combustion installations and a reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves). In addition, wood energy consumption in manually operated furnaces decreased by more than half since 1990. Furthermore, the revision of the Ordinance of Air Pollution (Swiss Confederation 1985) in 2007 introduced more stringent emission limits (2007, 2008 and 2012) for mainly automatic wood combustion installations, which also led to a reduction in emissions from these installations (mainly in 1A1 and 1A2), although their wood energy consumption increased by about a factor of eight since 1990.
- A further reduction of exhaust emissions under 1A3 Transport was caused by the abatement of exhaust emissions from road vehicles. Throughout the years, a continuous reduction of these emissions has been achieved with the stepwise adoption of the Euro standards. New diesel cars must be equipped with diesel particle filters.
- Under category 1A2 Manufacturing industries and construction, a reduction of exhaust emissions resulted from technological improvements in construction machineries (an installation of particle filters for new construction machineries with diesel engines is required by the Ordinance on Air Pollution Control (OAPC) since 2009) and from a fuel switch in stationary combustion (i.e. from coal, residual fuel oil and gas oil to natural gas).
- There is an underlying increasing in non-exhaust particulate matter emissions from growing activity data (annual mileage and machine hours) of mobile sources 1A3 Transport and 1A2gvii Mobile combustion in manufacturing industries and construction which affects larger particle emissions (TSP and PM10) more than PM2.5. This is due to a larger share of non-exhaust emissions with a particle diameter of 10 micrometres and larger. Therefore, the overall decreasing trend in TSP emissions is less pronounced as compared to the decrease in PM2.5 emissions. Note: In 2020 and 2021, despite this underlying increasing trend, the measures against the COVID-19 pandemic led to a reduction of non-exhaust PM10 emissions from road transportation due to reduced traffic volumes.

In sector 2 IPPU, particulate matter emissions strongly decrease in the period 1990-2001 and fluctuate only slightly since then. In 1990, the source categories 2A Mineral products (PM2.5, PM10, TSP), 2C Metal production (PM2.5, PM10, TSP), 2G Other product use (PM2.5), 2H Other (PM2.5) and 2I Wood processing (PM10, TSP) contributed the most to the particulate matter emissions. After 1999, IPPU emissions (e.g. from cement production, gravel plants and use of fireworks and tobacco, wood processing) became a smaller source of total particulate matter emissions. The following measures contribute to the decreasing trend:

- Significant emission reductions up to 1999 occurred in category 2C1 Iron and steel production in two steps. In 1995, two steel production sites were closed in Switzerland, whereas the drastic drop in emission in 1998/1999 was due to the installation of new filters in the remaining two steel plants.
- For TSP emissions, also the emission reduction in 2I Wood processing between 1990 and 2003 was relevant. On the one hand, this was achieved by refurbishments due to the enforcement of the OAPC (Swiss Confederation 1985), but also by the area-wide introduction of filter systems due to occupational safety regulations (carcinogenic effect of beech wood dust).

2.4.2 Trends for PM2.5

Switzerland's emissions of PM2.5 per sector are given in Table 2-12 and Figure 2-12. For explanations regarding the trends, see chp. 2.4.1 for features commonly holding for all particulate matter emissions.

Table 2-12 PM2.5 emissions, trends and share per sector (national total for compliance; fuel used).

PM2.5 emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	24	12	9.3	4.8	-15	-7.2	-60	77
1A(fu) Combustion	24	12	9.3	4.8	-15	-7.2	-60	77
1A1 Energy industries	0.83	0.19	0.20	0.061	-0.64	-0.13	-69	0.98
1A2 Manufacturing industries and construction	2.3	1.7	1.2	0.62	-1.1	-1.1	-63	10.0
1A3(fu) Transport	3.7	2.8	2.3	1.5	-1.5	-1.4	-48	24
1A4 Other sectors	17	7.2	5.6	2.6	-11	-4.6	-64	42
1A5 Other	0.087	0.057	0.050	0.045	-0.037	-0.012	-21	0.72
1B Fugitive emissions from fuels	0.00060	0.00066	0.00031	0.000039	-0.00029	-0.00062	-94	0.00063
2 Industrial processes and product use	2.5	1.3	1.4	0.99	-1.1	-0.35	-26	16
3 Agriculture	0.12	0.13	0.13	0.15	0.013	0.017	13	2.3
5 Waste	0.57	0.38	0.36	0.27	-0.20	-0.11	-28	4.3
6 Other sources	0.0044	0.0043	0.0044	0.0047	0.000007	0.00038	8.8	0.075
National total for compliance	27	14	11	6.2	-16	-7.6	-55	100
Gothenburg Protocol, target emission ceiling 2010			-					
Gothenburg Protocol revised, target emission reduction 2005-2020							-26	

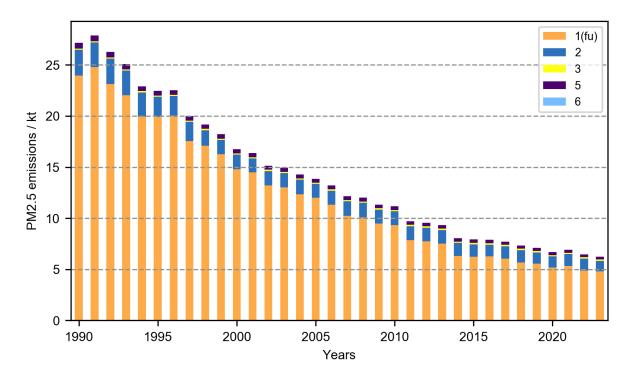


Figure 2-12 Trend of PM2.5 emissions (kt) in Switzerland by sector ((fu) means fuel used approach).

2.4.3 Trends for PM10

Switzerland's emissions of PM10 per sector are given in Table 2-13. For explanations regarding the trends, see chp. 2.4.1 for features commonly holding for all particulate matter emissions.

PM10 emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	29	17	14	10	-15	-6.8	-40	72
1A(fu) Combustion	29	17	14	10	-15	-6.8	-40	72
1A1 Energy industries	1.1	0.20	0.20	0.062	-0.90	-0.14	-69	0.44
1A2 Manufacturing industries and construction	4.2	3.6	3.1	2.6	-1.1	-0.93	-26	19
1A3(fu) Transport	5.9	5.3	4.9	4.4	-0.97	-0.89	-17	31
1A4 Other sectors	18	7.7	6.0	2.8	-12	-4.9	-64	20
1A5 Other	0.29	0.27	0.27	0.26	-0.018	-0.0041	-1.5	1.9
1B Fugitive emissions from fuels	0.0020	0.0013	0.00098	0.00038	-0.0011	-0.00091	-71	0.0027
2 Industrial processes and product use	4.5	2.2	2.3	1.7	-2.2	-0.47	-22	12
3 Agriculture	1.7	1.7	1.7	1.8	0.015	0.12	7.3	13
5 Waste	0.64	0.42	0.41	0.30	-0.24	-0.12	-28	2.1
6 Other sources	0.23	0.21	0.14	0.11	-0.086	-0.10	-47	0.80
National total for compliance	36	21	19	14	-18	-7.4	-34	100

Table 2-13 PM10 emissions, trends and share per sector (national total for compliance; fuel used).

2.4.4 Trends for TSP

Switzerland's emissions of TSP per sector are given in Table 2-14 to Table 2-16 and Figure 2-13. In addition to the features commonly holding for all particulate matter emissions mentioned in chp. 2.4.1, the contribution of sector 3 Agriculture to non-exhaust TSP emissions is significant (see Table 2-16). Its dominant emission sources are soil cultivation and crop harvesting reported in 3De Cultivated crops. These emissions remained on a rather constant level since 1990 and account for a high share of TSP emissions. In recent years, the TSP emission shares of the sectors 1 Energy and 3 Agriculture are of comparable size. In comparison, non-exhaust PM10 and PM2.5 emissions from the agriculture sector contribute less. Accordingly, the (relative) decreasing trend of TSP is less pronounced than the ones of PM10 and PM2.5.

Table 2-14 Total TSP emissions (sum of exhaust and non-exhaust), trends and share per sector (national total for compliance; fuel used).

TSP emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	32	19	16	12	-16	-6.9	-36	43
1A(fu) Combustion	32	19	16	12	-16	-6.9	-36	43
1A1 Energy industries	1.1	0.22	0.22	0.065	-0.90	-0.15	-70	0.23
1A2 Manufacturing industries and construction	5.5	4.7	4.2	3.8	-1.3	-0.82	-18	14
1A3(fu) Transport	6.2	5.7	5.3	4.9	-0.87	-0.77	-14	17
1A4 Other sectors	19	8.1	6.3	2.9	-13	-5.1	-64	10
1A5 Other	0.40	0.39	0.40	0.39	-0.0054	0.00074	0.19	1.4
1B Fugitive emissions from fuels	0.0045	0.0023	0.0021	0.00095	-0.0024	-0.0014	-59	0.0034
2 Industrial processes and product use	9.9	3.4	3.4	2.8	-6.5	-0.57	-17	9.9
3 Agriculture	13	13	13	13	-0.33	0.073	0.58	45
5 Waste	0.79	0.51	0.49	0.37	-0.29	-0.14	-28	1.3
6 Other sources	0.31	0.31	0.23	0.20	-0.083	-0.11	-34	0.72
National total for compliance	56	36	33	28	-23	-7.6	-21	100

TSP ex emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	26	12	8.7	3.5	-17	-8.2	-70	76
1A(fu) Combustion	26	12	8.7	3.5	-17	-8.2	-70	76
1A1 Energy industries	1.1	0.22	0.22	0.065	-0.90	-0.15	-70	1.4
1A2 Manufacturing industries and construction	2.9	1.6	1.0	0.33	-1.9	-1.3	-80	7.0
1A3(fu) Transport	2.9	1.9	1.3	0.28	-1.7	-1.6	-85	6.0
1A4 Other sectors	19	8.0	6.2	2.8	-13	-5.1	-64	61
1A5 Other	0.057	0.020	0.012	0.0066	-0.044	-0.014	-67	0.14
1B Fugitive emissions from fuels	0.00044	0.00059	0.00024	0.000001	-0.00021	-0.00059	-100	0.000025
2 Industrial processes and product use	2.6	0.83	0.81	0.57	-1.8	-0.27	-32	12
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	0.78	0.50	0.49	0.36	-0.29	-0.14	-28	7.8
6 Other sources	0.30	0.29	0.21	0.18	-0.096	-0.11	-38	3.9
National total for compliance	30	13	10	4.6	-19	-8.7	-65	100

TSP nx emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	6.4	7.3	7.8	8.6	1.4	1.3	18	37
1A(fu) Combustion	6.4	7.3	7.8	8.6	1.4	1.3	18	37
1A1 Energy industries	NA	NA	NA	NA	-	-	-	-
1A2 Manufacturing industries and construction	2.6	3.0	3.2	3.5	0.61	0.45	15	15
1A3(fu) Transport	3.3	3.8	4.1	4.6	0.78	0.84	22	20
1A4 Other sectors	0.13	0.12	0.11	0.10	-0.021	-0.018	-15	0.44
1A5 Other	0.34	0.37	0.38	0.38	0.039	0.015	3.9	1.6
1B Fugitive emissions from fuels	0.0040	0.0017	0.0019	0.00095	-0.0022	-0.00080	-46	0.0040
2 Industrial processes and product use	7.4	2.5	2.6	2.2	-4.7	-0.30	-12	9.5
3 Agriculture	13	13	13	13	-0.33	0.073	0.58	54
5 Waste	0.0034	0.0036	0.0036	0.0036	0.00024	0.000000	0.000	0.015
6 Other sources	0.0072	0.017	0.020	0.022	0.013	0.0045	26	0.093
National total for compliance	27	22	23	23	-3.6	1.1	4.8	100

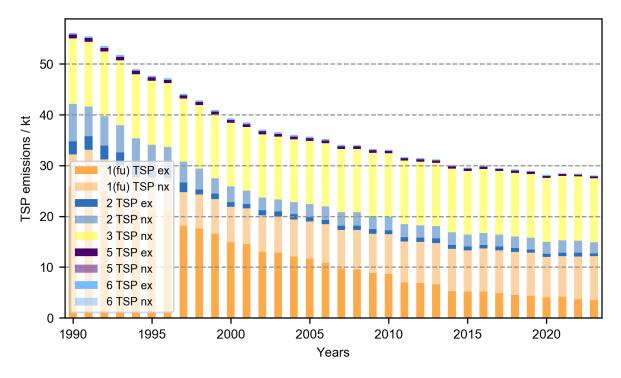


Figure 2-13 Trend of TSP emissions (kt) in Switzerland for sectors 1-6 split in exhaust (ex) and non-exhaust (nx) fraction. Non-exhaust emissions cross-hatched ((fu) means fuel used approach).

2.4.5 Trends for BC

Switzerland's emissions of BC mainly stem from sector 1 Energy, especially from stationary combustion in category 1A4bi Residential. The trend of BC emissions per sector is given in Table 2-17. BC emissions have decreased throughout the time period 1990-2023.

BC emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	5.7	3.5	2.5	0.81	-3.1	-2.7	-77	98
1A(fu) Combustion	5.7	3.5	2.5	0.81	-3.1	-2.7	-77	97
1A1 Energy industries	0.038	0.016	0.016	0.0072	-0.022	-0.0086	-54	0.87
1A2 Manufacturing industries and construction	0.42	0.32	0.14	0.030	-0.28	-0.29	-91	3.6
1A3(fu) Transport	1.4	1.2	0.86	0.19	-0.52	-1.1	-85	23
1A4 Other sectors	3.8	1.9	1.5	0.58	-2.3	-1.3	-70	70
1A5 Other	0.026	0.0099	0.0058	0.0032	-0.020	-0.0067	-67	0.39
1B Fugitive emissions from fuels	0.00020	0.00018	0.00010	0.000023	-0.00010	-0.00016	-88	0.0028
2 Industrial processes and product use	0.0063	0.0026	0.0016	0.0012	-0.0047	-0.0014	-54	0.15
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	0.040	0.027	0.026	0.019	-0.014	-0.0072	-27	2.3
6 Other sources	0.00016	0.00015	0.000099	0.000078	-0.000063	-0.000070	-47	0.0094
National total for compliance	5.7	3.5	2.6	0.83	-3.2	-2.7	-77	100

Table 2-17 BC emissions, trends and share per sector (national total for compliance; fuel used).

2.5 Trends of other gases

2.5.1 Trends for CO

Switzerland's emissions of CO mainly stem from sector 1 Energy. The trend of CO emissions per sector is given in Table 2-18. The CO emissions have decreased between 1990 and 2023.

The relevant reductions were achieved in sector 1 Energy:

- Reductions of CO emissions in road transportation (1A3b) through the abatement of exhaust emissions from road vehicles (similar as for NMVOC emissions, see chp. 2.3.2). In 2020 and 2021, the COVID-19 pandemic led to a strong reduction of CO emissions from road transportation due to reduced traffic volumes.
- A reduction of CO emissions under 1A4 Other sectors due to technological improvements of wood combustion installations, a reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves) and a decrease in wood energy consumption in manually operated furnaces by more than half.

CO emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kt	kt	kt	kt	kt	kt	%	%
1(fu) Energy	737	294	232	133	-506	-162	-55	96
1A(fu) Combustion	737	294	232	133	-506	-162	-55	96
1A1 Energy industries	1.2	1.1	1.0	0.66	-0.19	-0.42	-39	0.47
1A2 Manufacturing industries and construction	27	21	20	14	-7.2	-6.5	-31	10
1A3(fu) Transport	546	165	118	63	-428	-102	-62	45
1A4 Other sectors	162	106	92	54	-70	-53	-49	39
1A5 Other	1.2	0.92	0.87	0.76	-0.34	-0.16	-17	0.55
1B Fugitive emissions from fuels	0.048	0.063	0.025	0.00014	-0.022	-0.063	-100	0.00010
2 Industrial processes and product use	11	8.1	7.2	4.4	-3.9	-3.7	-46	3.2
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	2.6	1.8	1.7	1.4	-0.83	-0.48	-26	0.99
6 Other sources	0.93	0.86	0.57	0.46	-0.35	-0.40	-47	0.33
National total for compliance	752	305	241	139	-511	-166	-55	100

Table 2-18 CO emissions, trends and share per sector (national total for compliance; fuel used).

2.6 Trends of priority heavy metals per pollutant

2.6.1 Lead (Pb)

Switzerland's emissions of Pb mainly stem from sector 1 Energy. Due to significant reductions of Pb emissions in sector 1 Energy, also sectors 6 Other and 5 Waste contribute significantly to emission since 2000 and 2010, respectively. The trend of Pb emissions per

sector is given in Table 2-19. Pb emissions have strongly declined between 1990 and 2000 and from then on continued a slightly decreasing trend.

The most relevant reductions were achieved in sectors 1 Energy and 2 IPPU:

- A pronounced decrease of Pb emissions in the energy sector (in particular 1A3b Road transportation) was achieved due to a stepwise reduction of lead content in gasoline, and finally due to the introduction of unleaded gasoline in the OAPC revision of the year 2000 (see Figure 2-1).
- Further measures that resulted in a significant decrease of the emissions under 2C1 Iron and steel production were the closing down of two production sites in 1995 and the installation of new filters in the electric arc furnaces of the remaining secondary steel production plants in 1998/1999.
- Furthermore, a significant reduction was achieved under category 1A1 Energy industries in the period 1990–2003 by equipping municipal solid waste incineration plants with flue gas treatment or by improving the already installed technology.

Since 2000, the emissions further decrease on a lower level. The main reductions in this time period were achieved in the sectors, 1 Energy, 6 Other and 2 IPPU:

- In sector 1 Energy, specifically source category 1A2f Non-metallic minerals (dominated by the emission reduction in container glass production due to reduced lead contamination of the glass cullet and installation of electrofilters in 2011) as well as 1A3b Road transportation due to a higher share of diesel oil in comparison to gasoline (diesel oil has a much lower lead content than gasoline).
- The Pb emissions in sector 6 Other originate from fire damages (6Ad) and their reduction is mainly caused by a decrease in the number of building fires per year.
- In sector 2 IPPU, the ban of Pb in fireworks (2G) in 2003 lead to Pb emission reductions.

Pb emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	t	t	t	t	t	t	%	%
1(fu) Energy	275	6.7	5.4	4.0	-270	-2.7	-40	52
1A(fu) Combustion	272	6.7	5.4	4.0	-266	-2.7	-40	52
1A1 Energy industries	30	1.9	1.8	1.7	-28	-0.22	-11	22
1A2 Manufacturing industries and construction	6.3	2.7	1.8	0.89	-4.5	-1.8	-67	11
1A3(fu) Transport	232	1.2	1.0	0.84	-231	-0.36	-30	11
1A4 Other sectors	3.8	0.94	0.90	0.57	-2.9	-0.37	-39	7.3
1A5 Other	0.033	0.00023	0.00024	0.00024	-0.032	0.000011	4.8	0.0031
1B Fugitive emissions from fuels	3.5	0.0011	0.00043	0.000002	-3.5	-0.0011	-100	0.000027
2 Industrial processes and product use	67	2.1	0.70	0.51	-66	-1.6	-76	6.5
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	4.3	2.3	2.3	1.6	-2.0	-0.74	-32	20
6 Other sources	7.6	6.8	3.8	1.7	-3.8	-5.1	-75	22
National total for compliance	355	18	12	7.8	-342	-10	-57	100

Table 2-19 Pb emissions, trends and share per sector (national total for compliance; fuel used).

2.6.2 Cadmium (Cd)

Switzerland's emissions of Cd mainly stem from sector 1 Energy. The trend of Cd emissions per sector is given in Table 2-20. Cd emissions showed a decreasing trend between 1990 and 2003 and remained about constant since then until 2013. After that, emissions slightly decrease.

The decrease 1990-2003 was mainly achieved with the following measures within sectors 1 Energy and 2 IPPU:

- By equipping municipal solid waste incineration plants with flue gas treatment or by improving the already installed technologies, a significant reduction has been achieved in the period 1990–2003 under category 1A1a Public electricity and heat production.
- A significant reduction occurred also in source category 1A2 Manufacturing industries dominated by an emission decrease in the production of mixed goods (1A2f). (Please note that Cd emission measurements are extremely limited and thus these emissions are associated with a high uncertainty.)
- Further measures, resulting in a significant decrease of emissions under 2C1 Iron and steel production, were the closing down of two production sites in 1995 and the installation of new filters in the electric arc furnaces of the remaining secondary steel production plants in 1998/1999.

The slight decrease since 2013 is mainly due to continuous technical improvement in municipal solid waste incineration plants (source category 1A1a Public electricity and heat production), but also in sewage sludge incineration plants (source category 5C1).

Cd emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	t	t	t	t	t	t	%	%
1(fu) Energy	2.6	0.43	0.44	0.37	-2.2	-0.063	-15	90
1A(fu) Combustion	2.6	0.43	0.44	0.37	-2.2	-0.062	-14	90
1A1 Energy industries	1.8	0.18	0.20	0.15	-1.6	-0.026	-15	37
1A2 Manufacturing industries and construction	0.74	0.10	0.091	0.066	-0.65	-0.037	-36	16
1A3(fu) Transport	0.069	0.077	0.083	0.096	0.013	0.019	24	24
1A4 Other sectors	0.084	0.068	0.068	0.051	-0.017	-0.017	-25	12
1A5 Other	0.00048	0.00051	0.00054	0.00053	0.000058	0.000015	2.9	0.13
1B Fugitive emissions from fuels	0.0011	0.0015	0.00058	0.000003	-0.00056	-0.0015	-100	0.00071
2 Industrial processes and product use	0.49	0.033	0.032	0.031	-0.45	-0.0022	-6.6	7.6
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	0.046	0.021	0.027	0.0088	-0.020	-0.012	-57	2.2
6 Other sources	0.0023	0.0023	0.0017	0.0016	-0.00054	-0.00065	-29	0.40
National total for compliance	3.2	0.48	0.50	0.41	-2.7	-0.078	-16	100

Table 2-20 Cd emissions, trends and share per sector (national total for compliance; fuel used).

2.6.3 Mercury (Hg)

Switzerland's emissions of Hg mainly stem from sector 1 Energy. The trend of Hg emissions per sector is shown in Table 2-21. Hg emissions showed a decreasing trend between 1990 and 2003 and from then on, a further slightly decreasing trend.

The decrease 1990-2003 was mainly achieved with the following measures within the sectors 1 Energy and 2 IPPU:

- A significant reduction under category 1A1 Energy industries has been achieved in the period 1990–2003 by equipping municipal solid waste incineration plants with flue gas treatment or by improving the already installed technology.
- The closing down of two steel production sites in 1995 and the installation of new filters in the two remaining secondary steel production plants in 1998/1999 were the leading measures in reducing emissions under 2C1.

Since 2003, the decreasing trend continued on a lower level mainly due to continuous technical improvements in waste and special waste incineration plants (1A1a) as well as crematoria (5C1).

Hg emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	t	t	t	t	t	t	%	%
1(fu) Energy	4.3	0.59	0.59	0.49	-3.7	-0.096	-16	88
1A(fu) Combustion	4.3	0.59	0.59	0.49	-3.7	-0.095	-16	88
1A1 Energy industries	3.9	0.34	0.32	0.29	-3.6	-0.049	-14	52
1A2 Manufacturing industries and construction	0.25	0.12	0.14	0.088	-0.11	-0.034	-28	16
1A3(fu) Transport	0.034	0.037	0.037	0.032	0.0026	-0.0049	-13	5.7
1A4 Other sectors	0.089	0.086	0.094	0.078	0.0048	-0.0079	-9.2	14
1A5 Other	0.000027	0.000028	0.000030	0.000029	0.000003	0.000001	2.4	0.0052
1B Fugitive emissions from fuels	0.00020	0.00025	0.000098	0.000000	-0.000098	-0.00025	-100	0.000087
2 Industrial processes and product use	1.5	0.067	0.066	0.040	-1.4	-0.027	-41	7.1
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	0.52	0.077	0.081	0.029	-0.44	-0.048	-62	5.2
6 Other sources	0.0011	0.0011	0.00080	0.00073	-0.00029	-0.00034	-32	0.13
National total for compliance	6.3	0.73	0.74	0.56	-5.6	-0.17	-23	100

Table 2-21 Hg emissions, trends and share per sector (national total for compliance; fuel used).

2.7 Trends of POPs

2.7.1 PCDD/PCDF

Switzerland's emissions of PCDD/PCDF mainly stem from sector 1 Energy. The trend of PCDD/PCDF emissions per sector is given in Table 2-22. PCDD/PCDF emissions were significantly reduced between 1990 and 2003. From then on, the decrease continues on a lower level. Due to the significant reductions in PCDD/PCDF emissions, particularly in sector 1 Energy, sector 5 Waste has also become an important PCDD/PCDF emission source.

The significant decrease between 1990 and 2003 was mainly achieved in category 1A1a Public electricity and heat production by retrofitting municipal solid waste incineration plants with flue gas treatment or by improving the already installed technology. Further reductions between 1990 and 2003 were achieved in source categories 2C1 Iron and steel production (i.e. closing down of two production sites in 1995 and installation of new filters in the electric arc furnaces of the remaining two secondary steel production plants in 1998/1999) and 5C1 Waste incineration (i.e. a continuous reduction of clinical waste incinerated at the hospital sites themselves which ceased in 2002 completely).

In source category 1A4bi Residential: Stationary, a continuous emission reduction occurred over the entire time series (technological improvements of wood combustion installations, reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves) and wood energy consumption in manually operated furnaces decreased by more than half).

Since 2003, the slightly decreasing trend is mainly shaped through reductions in categories 1A4bi Residential: Stationary and 1A1a Public electricity and heat production (mainly due to further technical improvements in municipal solid waste incineration plants).

PCDD/ PCDF emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	g I-Teq	g I-Teq	g I-Teq	g I-Teq	g I-Teq	g I-Teq	%	%
1(fu) Energy	161	23	19	7.7	-142	-15	-67	64
1A(fu) Combustion	161	23	19	7.7	-142	-15	-67	64
1A1 Energy industries	130	5.2	3.4	0.99	-127	-4.3	-81	8.1
1A2 Manufacturing industries and construction	8.4	2.8	2.1	0.90	-6.3	-1.9	-68	7.4
1A3(fu) Transport	1.6	1.7	1.7	0.43	0.076	-1.3	-75	3.6
1A4 Other sectors	20	13	12	5.4	-8.3	-8.0	-60	45
1A5 Other	0.00036	0.00038	0.00040	0.00039	0.000040	0.000009	2.4	0.0032
1B Fugitive emissions from fuels	0.000006	NA	NA	NA	-0.000006	-	-	-
2 Industrial processes and product use	17	2.1	1.2	0.69	-16	-1.4	-67	5.7
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	13	4.3	4.0	2.7	-9.1	-1.5	-36	22
6 Other sources	1.6	1.6	1.1	0.99	-0.51	-0.58	-37	8.1
National total for compliance	192	31	25	12	-167	-19	-61	100

Table 2-22 PCDD/PCDF emissions, trends and share per sector (national total for compliance; fuel used).

2.7.2 Polycyclic aromatic hydrocarbons (PAHs)

Switzerland's emissions of PAH mainly stem from sector 1 Energy. The trend of PAH emissions per sector is given in Table 2-23. PAH emissions have been reduced continuously between 1990 and 2023, except for 1A3b Road transportation, where PAH emissions increased in parallel with the increase of traffic volumes (except for 2020/2021, where traffic volumes shrank due to the COVID-19 pandemic).

The PAH emissions are dominated by wood energy combustion in single-room furnaces and building heating installations. Their reduction has mainly been achieved in the dominant source category 1A4 Other sectors through technological improvements of wood furnaces and a reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves) as well as a decrease of wood energy consumption by more than half in manually operated furnaces. The superimposed fluctuations in the emission trend reflect the climate variabilities (i.e. warmer or colder winters).

PAHs total emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	t	t	t	t	t	t	%	%
1(fu) Energy	6.7	4.1	3.7	2.0	-3.0	-2.1	-50	86
1A(fu) Combustion	6.7	4.1	3.7	2.0	-3.0	-2.1	-50	86
1A1 Energy industries	0.0076	0.0085	0.011	0.0098	0.0030	0.0013	15	0.42
1A2 Manufacturing industries and construction	0.23	0.18	0.16	0.095	-0.075	-0.083	-47	4.1
1A3(fu) Transport	0.15	0.17	0.21	0.29	0.061	0.12	73	12
1A4 Other sectors	6.3	3.7	3.3	1.6	-3.0	-2.1	-56	70
1A5 Other	0.00071	0.00073	0.00076	0.00068	0.000051	-0.000053	-7.2	0.029
1B Fugitive emissions from fuels	0.000002	0.000002	0.000001	0.000000	-0.000001	-0.000002	-100	0.000000
2 Industrial processes and product use	0.96	0.51	0.023	0.019	-0.94	-0.49	-96	0.80
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	0.28	0.23	0.21	0.19	-0.075	-0.037	-16	8.1
6 Other sources	0.065	0.086	0.092	0.11	0.027	0.024	28	4.7
National total for compliance	8.0	4.9	4.0	2.3	-4.0	-2.6	-52	100

Table 2-23 PAH emissions, trends and share per sector (national total for compliance; fuel used).

2.7.3 HCB

Switzerland's emissions of HCB exclusively stem from sector 1 Energy. The trend of HCB emissions per sector is shown in Table 2-24. HCB emissions have significantly dropped in 1993 and then slightly decreased until 2023.

The decrease of HCB emissions in 1993 occurred in category 1A2b Non-ferrous metals due to the shutdown of the single secondary aluminium production plant. Since then, emissions continue to slightly decrease, in particular in category 1A4 Other sectors due to changes in wood energy combustion (i.e. technological improvements of wood combustion installations, reduction in the number of emission intensive types of wood furnaces and decrease in wood energy consumption in manually operated furnaces by more than half). In contrast, the amount of municipal solid waste incinerated has increased (1A1a Public electricity and heat production), which leads to an increase in HCB emissions in this source category.

Table 2-24 HCB emissions, trends and share per sector (national total for compliance; fuel used).

HCB emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kg	kg	kg	kg	kg	kg	%	%
1(fu) Energy	173	0.44	0.45	0.34	-172	-0.10	-23	100
1A(fu) Combustion	173	0.44	0.45	0.34	-172	-0.10	-23	100
1A1 Energy industries	0.11	0.15	0.17	0.18	0.060	0.031	21	54
1A2 Manufacturing industries and construction	172	0.051	0.051	0.033	-172	-0.018	-35	9.8
1A3(fu) Transport	NE	NE	NE	NE	-	-	-	-
1A4 Other sectors	0.38	0.24	0.22	0.12	-0.16	-0.12	-49	36
1A5 Other	NE	NE	NE	NE	-	-	-	-
1B Fugitive emissions from fuels	NA	NA	NA	NA	-	-	-	-
2 Industrial processes and product use	NA	NA	NA	NA	-	-	-	-
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	NA	NA	NA	NA	-	-	-	-
6 Other sources	NA	NA	NA	NA	-	-	-	-
National total for compliance	173	0.44	0.45	0.34	-172	-0.10	-23	100

2.7.4 PCBs

Switzerland's emissions of PCBs mainly stem from sector 2 IPPU, i.e. from source category 2K Usage of PCBs. To a lesser extent, also sectors 5 Waste and 6 Other contribute to PCB emissions. The trend of PCB emissions per sector is shown in Table 2-25. PCB emissions have decreased continuously between 1990 and 2023 except for a sudden sharp increase in 1999.

PCBs were used in Switzerland in transformers, large and small capacitors, anti-corrosive paints and joint sealants between 1946 and 1986, before a total ban was placed on any form of PCB use. The use in so-called open applications, i.e. anti-corrosive paints and joint sealants, was already forbidden in 1972. The emissions from source category 2K Usage of PCBs are dominated by the two open applications and are decreasing since 1975, while still remaining the major source until now (see also Table 1-6 and Figure A - 2).

At the end of the PCB containing products' life cycle, they are disposed of. Some of them undergo priorly a treatment process. Shredding of electronic waste containing PCBs in small capacitors (5E) is the dominant emission source in sector 5 Waste from 1990 onwards and is the cause for the sudden sharp increase in 1999. As a consequence of the legal ban of disposal of combustible waste in landfills a sharp increase in shredding of small capacitors occurred in 1999 although they should have been treated as special waste from 1998 onwards. Between 1999 and 2002, shredding was even the largest emission source of all. Before 1990, 5C1bii Open burning, i. e. burning of PCB contaminated waste oil in outdoor fires (ceased in 1999) dominated the emissions from 5 Waste.

From all PCB usages, PCBs can also be accidentally released by fire or by spilling to soil. Accidental release by fire is dominating the emissions from sector 6 Other which has decreased continuously since 1980.

PCB emissions from 1A1a Municipal solid waste incineration were of somewhat lower importance reaching a maximum in the early 1980s. From 1998 onwards, all PCB containing waste has to be incinerated in special waste incineration plants only.

PCB emissions arise also from combustion of solid and liquid fuels. Like PCDD/PCDF, PCBs are synthesized in the combustion process as by-products involving chloride and organic carbon or are due to incomplete combustion of PCB impurities in the fuel. Please note that these emissions are orders of magnitude smaller than the emissions from former use and subsequent disposal of PCBs.

PCB emissions	1990	2005	2010	2023	1990- 2010	2005- 2023	2005- 2023	share in 2023
	kg	kg	kg	kg	kg	kg	%	%
1(fu) Energy	165	1.4	0.55	0.36	-164	-1.1	-75	0.11
1A(fu) Combustion	165	1.4	0.55	0.36	-164	-1.1	-75	0.11
1A1 Energy industries	164	1.1	0.18	0.061	-164	-1.0	-94	0.020
1A2 Manufacturing industries and construction	0.50	0.35	0.38	0.29	-0.12	-0.061	-17	0.095
1A3(fu) Transport	0.00037	0.00037	0.00034	0.000088	-0.000027	-0.00028	-76	0.000029
1A4 Other sectors	0.0022	0.0015	0.0013	0.00069	-0.00093	-0.00080	-54	0.00022
1A5 Other	NE	NE	NE	NE	-	-	-	-
1B Fugitive emissions from fuels	NA	NA	NA	NA	-	-	-	-
2 Industrial processes and product use	1'537	922	708	279	-829	-643	-70	90
3 Agriculture	NA	NA	NA	NA	-	-	-	-
5 Waste	347	254	56	5.1	-291	-249	-98	1.6
6 Other sources	282	93	62	25	-220	-68	-73	8.2
National total for compliance	2'332	1'270	827	310	-1'505	-960	-76	100

Table 2-25 PCB emissions, trends and share per sector (national total for compliance; fuel used).

2.8 Compliance with the Gothenburg Protocol

2.8.1 Emission ceilings 2010

Under the CLRTAP, the 1999 Gothenburg Protocol requires that parties shall reduce and maintain the reduction in annual emissions in accordance with emission ceilings set for 2010 and beyond. Table 2-26 shows the emission ceilings, the reported emissions for 2010 and the respective compliance. Accordingly, Switzerland is in compliance with the Gothenburg Protocol emission ceilings for all pollutants except for NO_x in 2010. All emissions 2023 are in compliance with the emission ceilings for 2010.

Table 2-26 Emission ceilings of the Gothenburg Protocol for 2010 and beyond compared to the reported emissions for 2010 and 2023 of the latest submission (2025).

Pollutants	National emission ceilings for 2010	Emissions 2010 (Subm. 2025)	Compliance with emission ceilings 2010 in 2010	Emissions 2023 (Subm. 2025)	Compliance with emission ceilings 2010 in 2023
	kt	kt		kt	
SO _x (as SO ₂)	26	10	yes	2.8	yes
NO _x (as NO ₂)	79	83	no	47	yes
NMVOC	144	97	yes	71	yes
NH ₃	63	58	yes	53	yes

2.8.2 Emission reduction commitments 2020

After five years of negotiations, a revised Gothenburg Protocol was successfully finalised on 4 May 2012 at a meeting of the parties to the Convention on Long-range Transboundary Air Pollution (CLRTAP) in Geneva.

The revised protocol specifies emission reduction commitments in terms of percentage reductions from the reference year 2005 to 2020. It has also been extended to cover one additional air pollutant, namely particulate matter (PM2.5), and thereby also black carbon as a component of PM2.5. On 7 October 2019, the amended protocol including the new reduction commitments for 2020 has entered into force.

Table 2-27 shows the emission reduction commitments of the amended Gothenburg protocol and the corresponding emissions in 2023. The emission reduction commitments 2020 are achieved for all the pollutants (SO_x, NO_x, NMVOC, NH₃ and PM2.5).

Pollutant	Emission reduction commitments 2020	Reduction achieved in 2020	Compliance with reduction commitments 2020 in 2020	Reduction achieved in 2023	Compliance with reduction commitments 2020 in 2023	
	%-reduction of 2005 level	%-reduction of 2005 level		%-reduction of 2005 level		
SO _x (as SO ₂)	21%	74%	yes	80%	yes	
NO _x (as NO ₂)	41%	44%	yes	50%	yes	
NMVOC	30%	36%	yes	36%	yes	
NH ₃	8%	11%	yes	11%	yes	
PM2.5	26%	52%	ves	55%	ves	

Table 2-27 Reported emission reductions in 2020 and 2023 versus level of 2005 and reduction commitments per 2020. The Emission commitments 2020 are defined as reductions in percentages from 2005.

3 Energy

3.1 Overview of emissions

In this introductory chapter, an overview of emissions separated by most relevant pollutants in sector 1 Energy is presented. In the sector 1 Energy the substances NO_x, NMVOC, PM2.5 and SO_x are the main contributors to air pollution. The following source categories are reported:

- 1A Fuel combustion
- 1B Fugitive emissions from fuels

3.1.1 Overview and trend for NO_x

According to Figure 3-1, emissions from 1A3 Transport contribute most to NO_x emissions in the energy sector for all years. The largest share of 1A3 Transport since 1990 was reached in the year 2015, afterwards the share decreases. Emissions from 1A2 Manufacturing industries and construction and 1A4 Other sectors (commercial/institutional, residential, agriculture/forestry/fishing) are also contributing a noticeable amount. As a consequence of the air pollution ordinance endorsed in 1985 (Swiss Confederation 1985), NO_x emissions steadily decreased ever since. The legislation prescribes clear reduction targets that are mirrored in the trends of most energy related sectors. Various measures led to a total NO_x reduction between 1990 and 2023:

- The reductions in 1A3b Road transportation were triggered by the implementation of new strict emission standards for road vehicles. The first step happened in the late 80's when Switzerland reduced the standards to a level that required the equipment of three-way catalysts for new passenger cars. Later, when the European Union introduced the first Euro standards in 1993, Switzerland adopted the subsequent reduction path (Euro 2/II in 1995, Euro 3/III in 2000, Euro 4/IV in 2005, Euro V in 2008, Euro 5 in 2009, Euro VI in 2013 and Euro 6 in 2014). However, the reduction of NO_x emissions due to emission standards has not been as pronounced as expected in the years before 2015 because of an increasing share of diesel-powered passenger cars and higher emission factor than expected (the "dieselgate" scandal³, detected in the year 2015).
- In the years 2020 and 2021, the COVID-19 pandemic led to measures that resulted in a massive reduction in transport activities (1A3). The lower traffic volume led to a strong decrease in NO_x emissions from 1A3b Road transportation and a sharp drop in emissions from 1A3a Aviation, especially international aviation. However, the share of NO_x emissions from 1A3a Aviation in 1A3 Transport is smaller than that from 1A3b Road transportation, in particular due to the system boundaries (only LTO emissions from air traffic are taken into account in the national total, see chapter 3.1.6.1).
- The reductions in 1A2 Manufacturing industries and construction were a result of three main factors: First, there has been a fuel switch from residual fuel oil, coal and gas oil towards natural gas and a reduction in total fuel use since 2008. Second, a reduction has been reached due to an on-going sectoral agreement (from 1998) targeting NO_x emissions of the cement industry. Third, manufacturing plants reduced NO_x emissions through technical improvements (e.g. DeNO_x technology, selective non-catalytic reduction technology SNCR).
- In the past, the number of buildings and apartments increased, as well as the average floor space per person and workplace. Both phenomena resulted in an increase of the total heated area. On contrary, higher standards were specified for insulation and for

⁴ <u>https://www.bafu.admin.ch/bafu/en/home/topics/air/state/non-road-datenbank.html</u> [06.02.2025]

combustion equipment efficiency for both new and renovated buildings including low-NO_x standards. Furthermore, a substantial substitution of gas oil by natural gas under 1A4 Other sectors resulted in further reductions of NO_x emissions (i.e. natural gas consumption increased by half from 1990 to 2023). These two effects compensated for the additional heated area, and lead to a reduction of NO_x emissions under category 1A4 Other sectors.

Emissions from 1A1 Energy industries are minor with a decreasing trend until 2015 and a slight increase in the recent years due to increasing use of wood waste. 1A5 Other (Military) and 1B Fugitive emissions are negligible. minor.

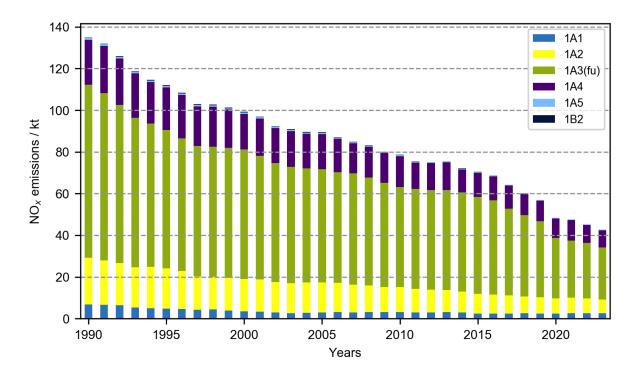


Figure 3-1 Switzerland's NO_x emissions from the energy sector by source categories 1A1-1A5 and 1B2 between 1990 and 2023 ((fu) means fuel used approach). The corresponding data can be found in Table 3-1.

NOx		1990	1995	2000	2005	2010	
1A1	kt	6.8	4.7	3.5	3.0	3.1	
1A2	kt	23	19	15	14	12	
1A3(fu)	kt	83	66	62	54	48	
1A4	kt	22	20	17	17	15	
1A5	kt	0.88	0.71	0.67	0.60	0.54	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	0.21	0.31	0.31	0.29	0.11	
Sum	kt	135	112	99	89	79	
NOx		2014	2015	2016	2017	2018	
1A1	kt	3.0	2.5	2.5	2.5	2.5	
1A2	kt	10	9.4	9.1	8.7	8.1	
1A3(fu)	kt	47	47	45	42	39	
1A4	kt	11	11	12	11	10	
1A5	kt	0.51	0.49	0.49	0.45	0.43	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	0.088	0.050	0.0031	0.0024	0.0024	
Sum	kt	72	70	69	64	60	
NOx		2019	2020	2021	2022	2023	2005-2023
1A1	kt	2.5	2.5	2.5	2.5	2.6	
1A2	kt	7.8	7.3	7.5	7.1	6.5	
1A3(fu)	kt	36	29	27	27	25	
1A4	kt	9.9	9.2	9.9	8.5	8.3	
1A5	kt	0.39	0.40	0.38	0.40	0.40	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	0.0016	0.0018	0.0013	0.00059	0.00057	
Sum	kt	57	48	48	45	43	

Table 3-1 NO_x emissions from sector 1 Energy by source categories 1A1-1A5 and 1B2 ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

3.1.2 Overview and trend for NMVOC

Figure 3-2 depicts the NMVOC emissions in energy related sectors since 1990. 1A3 Transport contributes the largest share of total emissions in the period between 1990 and 2023. Due to the decrease of NMVOC emissions from 1A3 Transport, the relative importance of NMVOC emissions from 1A4 Other sectors is increasing.

- In sector 1 Energy, the emission reduction was mainly influenced from category 1A3b Road transportation, in particular resulting from the higher Euro standards for passenger cars (Euro 1 in 1993, Euro 2 in 1995, Euro 3 in 2000, Euro 4 in 2005, Euro 5 in 2009 and Euro 6 in 2014). Furthermore, the share of diesel oil in fuels used under 1A3b has increased compared to gasoline between 1990 and 2023, which leads to a decrease of NMVOC emissions. In 2020 and 2021, the COVID-19 pandemic led to a reduction of NMVOC emissions from road transportation due to reduced traffic volumes. The measures against the pandemic also led to a sharp drop in emissions from 1A3a Aviation in 2020 and 2021, especially international aviation. However, the share of NMVOC emissions from 1A3a Aviation in 1A3 Transport is smaller than that from 1A3b Road transportation, in particular due to the different fuel types (most NMVOC emissions stem from gasoline engines and the system boundaries (only LTO emissions from air traffic are taken into account in the national total, see chapter 3.1.6.1).
- NMVOC emissions of source category 1A4 Other sectors declined in the same period as well due to technical improvements of wood combustion installations and a reduction in the number and energy consumption of emission intensive types of log wood furnaces.

-54 -50 -34

-100

 The decline of NMVOC emissions in 1B2 Fugitive emissions from oil and gas is due to technical improvement to reduce fugitive emissions caused by distribution and storage of gasoline.

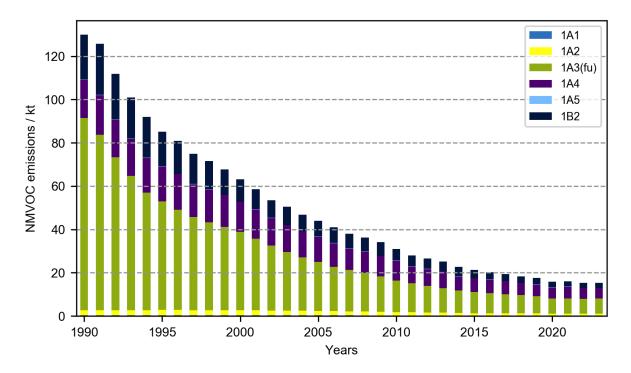


Figure 3-2 Switzerland's NMVOC emissions from the energy sector by source categories 1A1-1A5 and 1B2 between 1990 and 2023 ((fu) means fuel used approach). The corresponding data can be found in Table 3-2.

•••			•				
NMVOC		1990	1995	2000	2005	2010	
1A1	kt	0.33	0.33	0.35	0.32	0.26	
1A2	kt	2.4	2.4	2.3	2.1	1.6	
1A3(fu)	kt	89	50	36	23	15	
1A4	kt	17	16	14	12	9.3	
1A5	kt	0.16	0.14	0.13	0.11	0.090	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	21	16	10	7.2	5.2	
Sum	kt	130	85	63	44	31	
NMVOC		2014	2015	2016	2017	2018	
1A1	kt	0.21	0.21	0.21	0.21	0.21	
1A2	kt	1.2	1.1	1.1	1.1	1.0	
1A3(fu)	kt	10	9.7	9.2	8.8	8.4	
1A4	kt	6.3	6.3	6.4	6.1	5.7	
1A5	kt	0.079	0.075	0.076	0.070	0.068	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	4.4	3.8	3.3	3.1	3.0	
Sum	kt	23	21	20	19	18	
NMVOC		2019	2020	2021	2022	2023	2005-2023
1A1	kt	0.21	0.21	0.20	0.20	0.20	
1A2	kt	0.98	0.92	0.93	0.90	0.85	
1A3(fu)	kt	8.0	6.9	7.0	6.9	7.0	
1A4	kt	5.5	5.2	5.5	4.8	4.7	
1A5	kt	0.062	0.063	0.061	0.064	0.064	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	2.8	2.5	2.4	2.4	2.4	
Sum	kt	18	16	16	15	15	
		-					

Table 3-2 NMVOC emissions from sector 1 Energy by source categories 1A1-1A5 and 1B2 ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

3.1.3 Overview and trend for SO_x

Figure 3-3 depicts the SO_x emissions in energy related sectors since 1990. In 2023, the main contribution from the sector 1 Energy are SO_x emissions from source category 1A2 Manufacturing industries and construction. Other relevant sources are categories 1A1 Energy industries, 1A3 Transport and 1A4 Other sectors. SO_x emissions from the other source categories (1A5 and 1B2) are negligible in the meantime. Overall, there is a decreasing trend since 1990, which is more pronounced between 1990 and 2000. The time series also show some year-to-year fluctuations. These fluctuations are mainly due to annual variations in the number of heating degree days, which causes fluctuations in the SO_x emissions from fossil fuel-based heating systems in sector 1A4 Other sectors.

- First, the Ordinance on Air Pollution Control (Swiss Confederation 1985) introduced a limitation of the sulphur content in fuels, with further stepwise lowering in 1991, 2000, 2005, 2008 and 2009 for liquid fuels (Table 3-28). These stringent measures resulted in a significant decrease of the sulphur oxide emissions from fuel combustion under 1A3 Transport and 1A4 Other sectors (gas oil, diesel oil and gasoline, see Table 3-28).
- Second, a substantial substitution of gas oil with natural gas and eco-grade gas oil (with low sulphur and nitrogen content, from 2006 onwards) under 1A4 Other sectors resulted in further reductions of sulphur emissions (natural gas consumption increased by half from 1990 to 2023).
- Third, a similar substitution of residual fuel oil, coal and gas oil by natural gas has reduced sulphur emissions as well in 1A2 Manufacturing industries (i.e. coal and residual fuel oil from 1990, gas oil from about 2005 onwards).

-59 -69 -60

-67

Additionally, emissions of 1A1 are decreasing caused by substitution of emission intensive fuels (e.g. no more consumption of residual fuel oil since 2011 and no more bituminous coal since 2000) and by the closing of a refinery plant in 2015. The SO_x emissions from 1B2 Fugitive emissions from oil and gas are due to Claus units and flaring in refineries. The decrease between 1990 and 1995 can be explained by the retrofitting of the clause units due to the enactment of the Ordinance on Air Pollution Control in 1985. Further, the emission factors from clause units and flaring decreased over time.

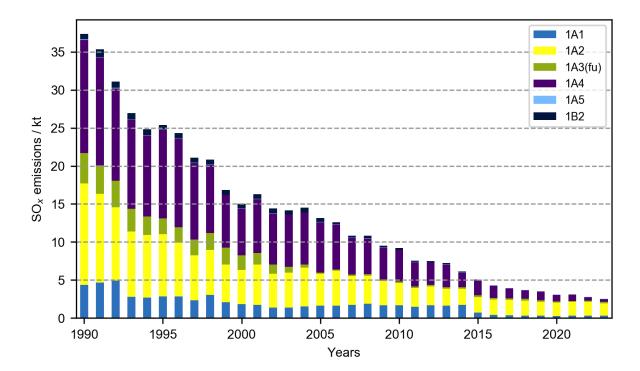


Figure 3-3 Switzerland's SO_x emissions from the energy sector by source category 1A1-1A5 and 1B2 between 1990 and 2023 ((fu) means fuel used approach). The corresponding data can be found in Table 3-3.

SOx		1990	1995	2000	2005	2010	
1A1	kt	4.3	2.8	1.8	1.6	1.7	
1A2	kt	13	8.2	4.5	4.2	2.9	
1A3(fu)	kt	4.0	2.1	1.9	0.18	0.20	
1A4	kt	15	12	6.1	6.6	4.1	
1A5	kt	0.078	0.049	0.045	0.037	0.037	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	0.72	0.63	0.59	0.51	0.22	
Sum	kt	37	25	15	13	9.2	
SOx		2014	2015	2016	2017	2018	
1A1	kt	1.7	0.73	0.39			
1A2	kt	2.1	2.0	2.0	2.0	2.0	
1A3(fu)	kt	0.21	0.22	0.22	0.22	0.23	
1A4	kt	1.9	1.9	1.6	1.3	1.1	
1A5	kt	0.037	0.036	0.038	0.034	0.034	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	0.16	0.085	0.019	0.018	0.019	
Sum	kt	6.1	5.0	4.3	4.0	3.7	
SOx		2019	2020	2021	2022	2023	2005-2023
1A1	kt	0.29	0.29	0.33			
1A2	kt	1.8	1.8	1.8			
1A3(fu)	kt	0.23	0.11	0.12	0.17	0.19	
1A4	kt	1.1	0.90	0.80	0.43	0.34	
1A5	kt	0.030	0.031	0.030	0.033	0.033	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	0.016	0.017	0.014	0.016	0.015	
Sum	kt	3.5	3.1	3.1			

Table 3-3 SO_x emissions from sector 1 Energy by source categories 1A1-1A5 and 1B2 ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

3.1.4 Overview and trend for NH₃

Figure 3-4 depicts the NH₃ emissions in energy related sectors since 1990. Note: The contribution of the energy sector is small in comparison to the national total. Therefore, there are no source categories from the energy sector that are key categories for NH₃. For all years, the main contributor among categories of sector 1 Energy is 1A3 Transport. Since 1990, total emissions underwent a twofold trend: Overall emissions increased continuously until 2000. This is mainly attributable to changes of sulphur contents in fuels used in road transportation in combination with three-way catalytic converters: with low sulphur petrol in use, higher NH₃ emissions result (Mejía-Centeno 2007). This effect manifests mainly for car fleets with EURO standards 1, 2 and 3. For cars registered as EURO 2, this effect becomes particularly evident and causes the model to reveal a pronounced jump in emission levels between 1999 and 2000. Afterwards, emissions decreased because the car fleet changes again towards stricter EURO standards, where the sulphur content in fuels has less influence on the NH₃ emissions due to technological improvements in three-way catalytic converters.

In 2020, the COVID-19 pandemic led to measures that resulted in a massive reduction in traffic. The lower traffic volume led to a small but visible decrease in NH_3 emissions from 1A3b Road transportation.

Emissions from the other source categories are comparably small. The NH_3 emissions in 1A2 Manufacturing industries and construction are mainly due to source category 1A2f Manufacturing industries and construction: Non-metallic minerals (especially cement and rock wool production). NH_3 emissions in 1A4 Other sectors stem mainly from residential wood combustions.

-61 5.6 -95 -12

-97 -81

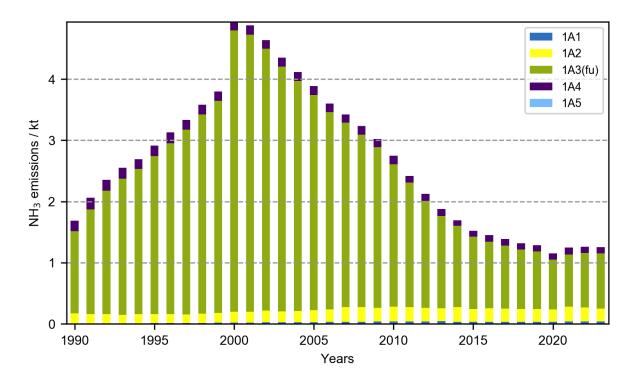


Figure 3-4 Switzerland's NH_3 emissions from the energy sector by source category 1A1-1A5 between 1990 and 2023 ((fu) means fuel used approach). There are no emissions from 1B. The corresponding data can be found in Table 3-4.

There are no NH₃ emissions from source category 1B Fugitive emissions from fuels.

Table 3-4 NH_3 emissions from sector 1 Energy by source categories 1A1-1A5 ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

NH3		1990	1995	2000	2005	2010	
1A1	kt	0.0049	0.011	0.021	0.029	0.036	
1A2	kt	0.17	0.15	0.18		0.24	
1A3(fu)	kt	1.3	2.6		3.5	2.3	
1A4	kt	0.18		0.14		0.14	
1A5	kt	0.000037		0.000039		0.000042	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	NA	NA	NA	NA	NA	
Sum	kt	1.7	2.9	4.9	3.9	2.7	
NH3		2014	2015	2016	2017	2018	
1A1	kt	0.034	0.032	0.032	0.034	0.033	
1A2	kt	0.24	0.21	0.23	0.22	0.21	
1A3(fu)	kt	1.3	1.2	1.1	1.0	0.98	
1A4	kt	0.090	0.098	0.11	0.10		
1A5	kt	0.000041	0.000041	0.000041	0.000041	0.000041	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	NA	NA	NA	NA	NA	
Sum	kt	1.7	1.5	1.4	1.4	1.3	
NH3		2019	2020	2021	2022	2023	2005-2023
1A1	kt	0.033	0.034		0.037	0.042	
1A2	kt	0.21	0.20	0.24	0.23	0.21	
1A3(fu)	kt	0.94	0.81	0.85		0.90	
1A4	kt	0.10	0.10	0.11	0.10	0.10	
1A5	kt	0.000041	0.000041	0.000041	0.000041	0.000041	
1B1	kt	NA	NA	NA	NA	NA	
1B2	kt	NA	NA	NA	NA	NA	
Sum	kt	1.3	1.2	1.2	1.3	1.3	

3.1.5 Overview and trend for PM2.5

Figure 3-5 depicts the PM2.5 emissions in energy related sectors since 1990. The main contributor is source category 1A4 Other sectors, followed by 1A3 Transport and 1A2 Manufacturing industries and construction. Within source category 1A4 Other sectors, mainly wood combustion in small and mid-sized wood furnaces contribute to PM2.5 emissions. Overall emissions declined since 1990. The following effects mainly attributed to the reduction of particulate matter emissions:

- The large reduction of exhaust particulate matter emissions is primarily due to the development of emissions from wood combustion, especially in single-room furnaces and building heating systems (1A4; not only filterable fractions, but also condensable fractions which are particularly relevant for single-room furnaces and building heating). The reduction was achieved through technological improvements of the combustion installations and a reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves). In addition, wood energy consumption in manually operated furnaces decreased by more than half since 1990. Furthermore, the revision of the Ordinance of Air Pollution (Swiss Confederation 1985) in 2007 introduced more stringent emission limits (2007, 2008 and 2012) for mainly automatic wood combustion installations, which also led to a reduction in emissions from these installations (mainly in 1A1 and 1A2), although their wood energy consumption increased by about a factor of eight since 1990.
- A further reduction of exhaust emissions under 1A3 Transport was caused by the abatement of exhaust emissions from road vehicles. Throughout the years, a continuous

-74 -29 3.3

-68

reduction of these emissions has been achieved with the stepwise adoption of the Euro standards. New diesel cars must be equipped with diesel particle filters.

- Under category 1A2 Manufacturing industries and construction, a reduction of exhaust emissions resulted from technological improvements in construction machineries (an installation of particle filters for new construction machineries with diesel engines is required by the Ordinance on Air Pollution Control (OAPC) since 2009) and from a fuel switch in stationary combustion (i.e. from coal, residual fuel oil and gas oil to natural gas).
- There is an underlying increasing in non-exhaust particulate matter emissions from growing activity data (annual mileage and machine hours) of mobile sources 1A3 Transport and 1A2gvii Mobile combustion in manufacturing industries and construction which affects larger particle emissions (TSP and PM10) more than PM2.5 (see Table 2-16 and Figure 2-13). This is due to a larger share of non-exhaust emissions with a particle diameter of 10 micrometres and larger. Therefore, the overall decreasing trend in TSP emissions is less pronounced as compared to the decrease in PM2.5 emissions. Note: In 2020 and 2021, despite this underlying increasing trend, the measures against the COVID-19 pandemic led to a reduction of non-exhaust PM10 emissions from road transportation due to reduced traffic volumes.

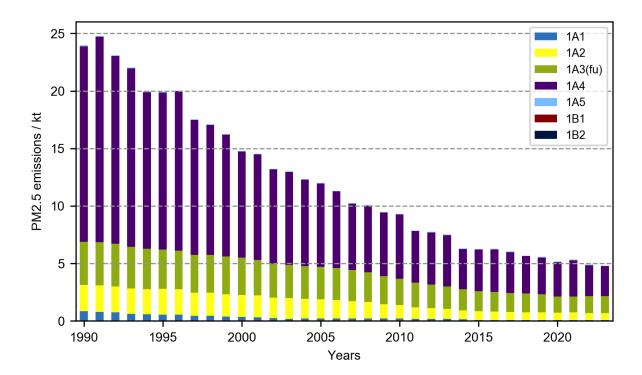


Figure 3-5 Switzerland's PM2.5 emissions from the energy sector by source categories 1A1-1A5 and 1B1 between 1990 and 2023 ((fu) means fuel used approach). The corresponding data can be found in Table 3-5.

Table 3-5 PM2.5 emissions from sector 1 Energy by source categories 1A1-1A5 and 1B1-1B2 ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

PM2.5		1990	1995	2000	2005	2010	
1A1	kt	0.83	0.55	0.35	0.19	0.20	
1A2	kt	2.3	2.2	1.9	1.7	1.2	
1A3(fu)	kt	3.7	3.4	3.3	2.8	2.3	
1A4	kt	17	14	9.2	7.2	5.6	
1A5	kt	0.087	0.063	0.062	0.057	0.050	
1B1	kt	0.00016	0.000086	0.000063	0.000070	0.000074	
1B2	kt	0.00044	0.00065	0.00065	0.00059	0.00024	
Sum	kt	24	20	15	12	9.3	
PM2.5		2014	2015	2016	2017	2018	
1A1	kt	0.15			0.069	0.065	
1A2	kt	0.75	0.75	0.73	0.71	0.69	
1A3(fu)	kt	1.9	1.7	1.7	1.6	1.6	
1A4	kt	3.5	3.6	3.7	3.6	3.3	
1A5	kt	0.047	0.046	0.046	0.046	0.045	
1B1	kt	0.000070	0.000064	0.000059	0.000057	0.000053	
1B2	kt	0.00018	0.00010	0.000006	0.000005	0.000005	
Sum	kt	6.3	6.2	6.3	6.0	5.7	
PM2.5		2019	2020	2021	2022	2023	2005-202
1A1	kt	0.067	0.062		0.060	0.061	
1A2	kt	0.67	0.65	0.67	0.63	0.62	
1A3(fu)	kt	1.6	1.4	1.4	1.5	1.5	
1A4	kt	3.2	3.0	3.1	2.7	2.6	
1A5	kt	0.045	0.045	0.045	0.045	0.045	
1B1	kt	0.000047	0.000046	0.000046	0.000048	0.000038	
1B2	kt	0.000003	0.000004	0.000003	0.000001	0.000001	
Sum	kt	5.6	5.2	5.3	4.9	4.8	

3.1.6 General method and disaggregation of energy consumption

3.1.6.1 System boundaries: Differences between CLRTAP and UNFCCC reporting

Switzerland uses the same data base for the Swiss greenhouse gas inventory as for the Swiss air pollution inventory and reports its greenhouse gas emissions according to the requirements of the UNFCCC as well as air pollutants according to the requirements of the CLRTAP. The nomenclature for both reportings is (almost) the same (NFR), but there are differences concerning the system boundaries.

Fuel used or fuel sold approach in 1A3b Road transportation

There are two different approaches for calculating emissions in source category 1A3b Road transportation. One is the fuel used approach, which is based on the road transportation model, that calculates the fuel consumption using kilometres driven per vehicle category in the Swiss territory as described in chapter 3.2.6. The other one is the fuel sold approach, which bases on the total amount of fuel sold as reported in the Swiss energy statistics. The difference between the calculated fuel consumption of diesel oil, gasoline, biodiesel, bioethanol and natural gas in the road transportation model and the Swiss energy statistics is called "statistical difference and fuel tourism". "Fuel tourism" refers to the amount of fuel sold in Switzerland but consumed abroad or vice versa. To calculate the emissions for the fuel sold approach, this difference in fuel consumption per fuel type is distributed proportionally across each vehicle category, whereby the activity data in GJ, driven kilometres and the number of vehicles is adjusted proportionally in each category.

3 (%) -69 -63 -48 -64 -21 -46 -100 -60 As Switzerland is a small country, the difference between these two approaches amounts to several percent, with considerable variation from year to year due to fluctuating fuel price differences between Switzerland and its neighboring countries.

Only domestic flights or only LTO cycles in 1A3a Aviation (civil)

Another difference concerns emissions from 1A3a Aviation: International flights are flights from a Swiss airport to a destination abroad. International flights with landing in Switzerland are not accounted because they bought their fuel at the departure airport abroad. Domestic flights are flights with departure and destination in Switzerland. For the GHG inventory only emissions from domestic flights are accounted, while emissions from international flights are reported as aviation bunker, i.e. as a memo item (1D1 International aviation). For the reporting of air pollutants under the CLRTAP, landing and takeoff (LTO) cycle emissions of domestic and international flights are reported as memo items only (see Table 3-6). Note that emissions from overflights without landing in Switzerland are not considered in either approach.

National totals for compliance with emission ceilings

Under the UNFCCC, there is no difference between the reported national total and the national total for assessing compliance as it is based on fuel sold within the national territory. Under the CLRTAP, the national total is based on fuel sold but for assessing compliance it is based on fuel used (fu) in 1A3b Road transportation within the Swiss boundaries.

			CLF	RTAP / NFR tal	UNFCCC / CRT tables				
Differences be	tween reportin	g under CLRTAP and UNFCCC	accounted to						
	•	nting to the national total		National total	Separated				
	5	3	National total	-	information /	National total	Bunker (1D)		
	1	Γ		compliance	Memo items				
1A3b - Road	1A3bi–v (fu) Fuel used - approach	Based on statistics of driven km and vehicle categories	No	Yes	Yes	No	No		
transportation	1A3bi-v Fuels sold - approach	The activity data of the fuel used-approach are adapted to reflect the total of fuel sold as reported in statistics.	Yes	No	No	Yes	No		
	Civil and domestic	Landing and Take-Off (LTO)	Yes	Yes	No	Yes	No		
	aviation	Cruise	No	No	Yes	Yes	No		
1A3a -		Landing and Take-Off (LTO)	Yes	Yes	No	No	Yes		
Aviation	International aviation	Cruise	No	No	Yes	No	Yes		
		Fuel Dumping	No	No	Yes	No	Yes		
		Overflights	No	No	No	No	No		

Table 3-6 Accounting rules for emissions from 1A3a Aviation and 1A3b Road transportation for CLRTAP and UNFCCC.

Emissions generated by road transportation considering fuel used in Switzerland as modelled in the road transportation model described in chp. 3.2.6.2.2 are reported in lines 143-149 in the NFR tables. Emissions generated by road transportation considering the amount of fuel sold in Switzerland are reported in lines 27-33 in the NFR tables.

The following memo items are reported for Switzerland in lines 157-164 in the NFR tables:

- 1A3ai(ii) International aviation cruise (civil) Emission modelling see chp. 3.2.6.2
 1A3aii(ii) Domestic aviation cruise (civil) Emission modelling see chp. 3.2.6.2
 1A3di(i) International maritime navigation
 11B Forest fires Emission modelling see chp. 7.3
- 11C Other natural emissions Emission modelling see chp. 7.4

Recalculations concerning emission estimates of source categories in 1A3 are described in chp. 3.2.6.3, recalculations for 11B in chp. 7.3.3 and for 11C in chp. 7.4.3.

Net calorific values (NCV)

Table 3-7 summarizes the net calorific values (NCV) which are used in order to convert from energy amounts in tonnes into energy quantities in gigajoules (GJ). More detailed explanations including information about the origin of the NCVs of the different fuels are given below.

Table 3-7 Net calorific values (NCVs) of various fuels. Where values for two years are indicated, the NCV is interpolated between these two years and constant NCVs are used before the first and after the second year (corresponding to the two indicated values). For the NCV of wood, a range covering all facility categories and years is provided. For the NCVs of natural gas and biogas see Table 3-8.

Fuel	Year		NCV	Unit	Data sources				
Fossil fuel									
Gasoline	until	1998	42.5	GJ/t	EMPA (1999)				
	from	2013	42.6	GJ/t	SFOE/FOEN (2014)				
Jet kerosene	until	1998	43.0	GJ/t	EMPA (1999)				
	from	2013	43.2		SFOE/FOEN (2014)				
Diesel oil	until	1998	42.8	GJ/t	EMPA (1999)				
	from	2013	43.0	GJ/t	SFOE/FOEN (2014)				
Gas oil	until	1998	42.6	GJ/t	EMPA (1999)				
	from	2013	42.9	GJ/t	SFOE/FOEN (2014)				
Residual fuel oil	from	1990	41.2	GJ/t	EMPA (1999)				
Liquefied petroleum gas	from	1990	46.0	GJ/t	SFOE (2024)				
Petroleum coke	until	1998	35.0		SFOE (2024)				
	from	2010	31.8		SFOE (2024)				
Other bituminous coal	until	1998	28.052	GJ/t	SFOE (2024)				
	from	2010	25.5	GJ/t	SFOE (2024)				
Lignite	until	1998	20.097	GJ/t	SFOE (2024)				
	from	2010	23.6	GJ/t	SFOE (2024)				
			Biofuel						
Biodiesel	from	1990	32.7	GJ/m3	SFOE (2024)				
Bioethanol	from	1990	21.1	GJ/m3	SFOE (2024)				
Wood	from	1990	8.6-14.6	GJ/t	SFOE (2024b)				

Gasoline, jet kerosene, diesel oil and gas oil

For gasoline, jet kerosene, diesel oil and gas oil, NCV for 1998 and 2013 are based on national measurement campaigns and are the same as used by the Swiss Federal Office of Energy (SFOE 2024). A first campaign was conducted by the Swiss Federal Laboratories for Materials Science and Technology (EMPA) in 1998 (EMPA 1999). Since earlier data are not available, the values for 1990–1998 are assumed to be constant at the 1998 levels. A second campaign, commissioned by the Swiss Federal Office of Energy (SFOE) and the Swiss Federal Office for the Environment (FOEN), was conducted in 2013 (SFOE/FOEN

2014). This study was based on representative samples covering summer and winter fuel qualities from the main import streams. The sampling started in July 2013 and lasted six months. Samples were taken fortnightly from nine different sites (large-scale storage facilities and the two refineries operating at that time in Switzerland) and analysed for carbon contents and NCVs amongst other. These updated values are used from 2013 onwards, while the NCVs for 1999–2012 are linearly interpolated between the measured values of 1998 and 2013.

Residual fuel oil

Residual fuel oil plays only a minor role in the Swiss energy supply. Therefore, this fuel was not analysed in the most recent measurement campaign in 2013 (SFOE/FOEN 2014). Thus, the respective NCV refers to the measurement campaign in 1998 (EMPA 1999). The NCV for residual fuel oil, which is the same as used by the Swiss Federal Office of Energy (SFOE 2024), is assumed to be constant over the entire reporting period.

Liquefied petroleum gas

The NCV of liquefied petroleum gas is the same as used by the Swiss Federal Office of Energy (SFOE 2024) and is – as in the Swiss overall energy statistics – constant over the entire reporting period. It is assumed that liquefied petroleum gas is a mixture of propane and butane in equal proportions.

Petroleum coke, other bituminous coal, lignite

For the entire reporting period the NCVs of petroleum coke, other bituminous coal and lignite are the same as used by the Swiss Federal Office of Energy (SFOE 2024). For these fuels, the Swiss overall energy statistics contains NCVs for the years 1998 and 2010. Values in between are interpolated, with values before the first and after the last year of available data held constant. The NCVs for 2010 are based on measured samples taken from Switzerland's cement plants as they are the largest consumers of these fuels in Switzerland. Samples from the individual plants were taken from January to September 2010 and analysed for NCVs by an independent analytical laboratory (Cemsuisse 2010a). For each fuel, the measurements from the individual plants were weighted according to the relative consumption of each plant.

Natural gas, biogas

The NCV of natural gas (see Table 3-8) and also the CO₂ emission factor used in the GHG inventory of natural gas are calculated based on measurements of gas properties and corresponding import shares of individual gas import stations. Measurements of gas properties are available from the Swiss Gas and Water Industry Association (SGWA) on an annual basis since 2009 and for selected years before. The latest report is SGWA (2024). Import shares are available for 1991, 1995, 2000, 2005, 2007 and from 2009 onwards on an annual basis. Estimated import shares for the years 1991, 1995 and 2000 are taken from Quantis (2014). Values for the years in between are interpolated. The calculation procedure is documented in FOEN (2024i). The NCV of biogas is assumed to be equal to the NCV of natural gas since the raw biogas is treated to fulfil the same quality level including its energetic properties as natural gas.

Table 3-8 Net calorific values of natural gas and biogas for selected years. Years in-between are linearly interpolated. Data source: annual reports of the Swiss Gas and Water Industry Association SGWA, the latest report is SGWA (2024). Spreadsheet to determine national averages: FOEN 2024i.

Year	NCV of natural gas and biogas [GJ/t]
1990	46.5
1991	46.5
1995	47.5
2000	47.2
2005	46.6
2007	46.3
2009	46.4
2010	46.3
2011	46.1
2012	45.8
2013	45.7
2014	45.7
2015	46.6
2016	47.1
2017	47.4
2018	47.6
2019	47.5
2020	47.6
2021	48.2
2022	48.0
2023	48.4

Wood

The net calorific value of wood depends on the type of wood fuel (for e.g. log wood, wood chips, pellets) and is based on the Swiss wood energy statistics (SFOE 2024b).

Table 3-7 illustrates the range of the NCV for all wood fuel types.

Bioethanol and biodiesel

The NCVs of bioethanol and biodiesel are the same as used by the Swiss Federal Office of Energy (SFOE 2024) and are – as in the Swiss overall energy statistics – constant over the entire reporting period.

3.1.6.2 Swiss energy model and final Swiss energy consumption

3.1.6.2.1 Swiss overall energy statistics

The fundamental data on final energy consumption is provided by the Swiss overall energy statistics (SFOE 2024). However, since Switzerland and Liechtenstein form a customs and monetary union governed by a customs treaty, data regarding liquid fuels in the Swiss overall energy statistics also cover liquid fuel consumption in Liechtenstein. To calculate the correct Swiss fuel consumption, Liechtenstein's liquid fossil fuel consumption, given by Liechtenstein's energy statistics (OS 2024), is subtracted from the figures provided by the Swiss overall energy statistics. In all years of the reporting period, the sum of liquid fossil fuels used in Liechtenstein was less than half a percent of the Swiss consumption.

The energy related activity data correspond to the energy balance provided in the Swiss overall energy statistics (SFOE 2024). The energy statistics are updated annually and

contain all relevant information about primary and final energy consumption. This includes annual aggregated consumption data for various fuels and main consumers such as households, transport, energy industries, industry, and services (see energy balance in Annex 4).

The main data sources of the Swiss overall energy statistics are:

- The Swiss organisation for the compulsory stockpiling of oil products Carbura and Avenergy Suisse (formerly Swiss petroleum association, EV) for data on import, export, sales, stocks of oil products and for processing of crude oil in refineries.
- Annual import data for natural gas from the Swiss gas industry association (VSG).
- Annual import data for petroleum products and coal from the Federal Office for Customs and Border Security (FOCBS).
- Data provided by industry associations (GVS, SGWA, Cemsuisse, VSG, VSTB, etc.).
- Swiss electricity statistics (SFOE 2024g).
- Swiss renewable energies statistics (SFOE 2024a).
- Swiss wood energy statistics (SFOE 2024b).
- Swiss statistics on combined heat and power generation (SFOE 2024c).

As can be seen in Figure 3-6, fossil fuels amount to slightly less than half of primary energy consumption. The main end-users of fossil fuels are the transport and the housing sector, as electricity generation is predominantly based on hydro- and nuclear power stations. The most recent energy balance is given in Annex 4.

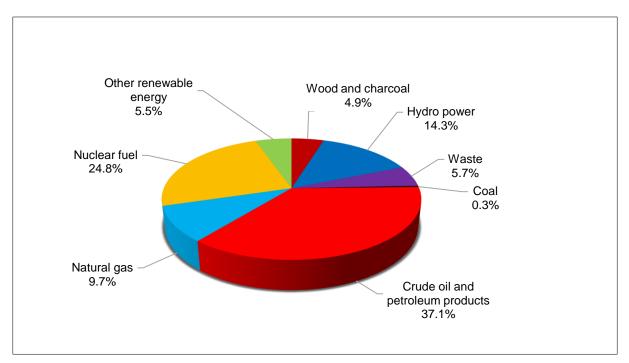


Figure 3-6 Switzerland's primary energy consumption in 2023 by fuel type (see corresponding data and additional information on energy consumption over time in SFOE 2024).

Table 3-9 shows primary energy consumption excluding nuclear fuel and hydro power. On the one hand, the combined effect of decreasing consumption of gasoline and increasing

consumption of jet kerosene and diesel oil led to an increasing trend until about 2010 and a stabilization thereafter in the transport sector. On the other hand, consumption in the residential and industry sector (mainly gas oil) substantially decreased. Overall, liquid fossil fuel consumption changed only little between 1990 and about 2010 but started to decrease thereafter. Natural gas consumption increased since 1990, compensating to some extent the decreasing use of gas oil and residual fuel oil in the various sectors. Due to the restrictions related to the COVID-19 pandemic the years 2020 and 2021 are exceptional, with lower fossil fuel consumption than in the years before. Particularly, in the transport sector the consumption of gasoline, jet kerosene and diesel oil, does not reach the level of 2019 anymore. Compared to 2021, total fuel consumption declined in 2022. In particular gas oil and natural gas consumption was lower compared to the previous years due to the warm winter and energy saving measures in response to the looming energy shortage. In 2023 total fuel consumption was on a similar level as in 2022.

Table 3-9 Switzerland's energy consumption by fuel type. Only those fuels are shown that are implemented in the EMIS database (no hydro or nuclear power). The numbers are based on the fuels sold principle; thus, they include gasoline, diesel and biofuels consumption from fuel tourism, as well as all jet kerosene sold for domestic and international aviation. Natural gas and gasoline losses due to fugitive emissions (reported in sector 1B) are not included.

Year	Gasoline	Jet	Jet	Diesel oil	Diesel oil	Gas oil	Residual	Refinery	Petroleum	Solid	Gaseous	Other	Biomass	National	Total
		kerosene	kerosene	(incl. fossil	used for		fuel oil	gas &	coke	fuels	fuels	fossil	(incl. Bio	Total	incl. memo
		used for	used for	fraction of	intern.			Liquefied			excl.	fuels	fuels)	as reported	items
		LTO	cruise	biodiesel)	Navigation			petroleum			losses			in NFR	
			(memo		(memo			gas						tables	
			item)		item)										
	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ	TJ
1990	155'703	8'059	40'008	46'736	821	218'510		8'890	1'400	14'901	68'426	19'074	46'826	611'865	652'695
1991	162'063	7'640	38'922	47'417	737	238'602	23'590	12'437	980	12'162	76'724	18'503	48'827	648'945	688'604
1992	168'037	7'803	41'297	45'926	780	236'809	24'170	11'492	315	8'758	80'627	18'935	47'749	650'620	692'697
1993	155'808	7'861	42'915	44'197	781	225'920	17'165	12'388	1'120	7'442	84'574	19'041	48'092	623'607	667'302
1994	155'797	7'911	44'198	46'924	824	207'141	17'860	13'455	1'470	7'632	83'402	19'051	46'054	606'696	651'719
1995	151'094	7'987	46'960	47'865	739	217'523	17'278	12'756	1'260	7'962	91'942	19'586	48'095	623'347	671'046
1996	155'033	8'017	48'736	44'946	651	226'289	15'097	13'939	1'015	5'456	99'530	20'430	51'683	641'436	690'823
1997	161'031	8'320	50'454	46'731	657	212'223	12'581	14'236	280	4'590	96'083	21'501	48'540	626'116	677'227
1998	162'315	8'540	52'728	48'684	528	222'407	15'882	15'259	455	3'960	98'890	23'575	50'160	650'128	703'384
1999	167'815	8'762	56'482	51'629	558	212'349	11'058	15'805	521	4'105	102'415	24'197	50'918	649'575	706'615
2000	168'009	9'074	58'987	55'149	531	196'137	7'923	13'649	551	6'120	101'800	26'288	50'603	635'304	694'822
2001	163'442	8'598	55'610	56'266	447	213'089	9'942	14'069	410	6'233	105'966	26'775	53'894	658'684	714'741
2002	160'276	8'128	51'278	58'392	333	196'655	6'446	15'584	679	5'565	104'007	27'624	53'436	636'793	688'404
2003	159'512	7'327	46'110	61'812	443	208'040	7'061	13'642	202	5'663	109'957	27'369	56'020	656'605	703'158
2004	156'708	6'886	43'555	66'453	446	203'370		16'429	1'819	5'420	113'459	28'495	56'993	663'593	707'594
2005	151'966	7'020	44'081	72'583	493	205'729	5'805	16'432	2'906	5'940	116'493		59'152	672'859	717'433
2006	147'344	7'291	46'280	78'621	457	195'926	6'419	18'578	3'324	6'467	113'264	30'837	62'265	670'337	717'074
2007	145'923	7'538	49'627	84'437	465	171'313	5'179	15'587	2'730	7'196	110'252	29'617	61'312	641'084	691'176
2007	142'713	7'773	53'378	92'690	400	178'833	4'581	16'288	3'616	6'562	117'451	30'394	65'500	666'401	720'252
2009	138'883	7'496	51'169	94'156	425	173'219	3'530	16'301	3'254	6'193	112'674	29'314	65'671	650'690	702'285
2010	133'953	7'699	53'921	97'792	471	182'295	2'967	15'463	3'498	6'208	125'846	30'612	70'573	676'906	731'297
2011	128'775	7'970	57'726	100'466	428	143'760	2'292	14'856	2'957	5'792	111'617	30'320	66'243	615'050	673'204
2012	124'229	8'258	59'048	106'633	385	154'448	2'780	12'247	3'148	5'269	122'398	30'648	72'135	642'194	701'627
2013	118'572	8'243	59'825	111'502	342	162'532	1'959	15'053	2'735	5'567	128'912	30'403	75'741	661'218	721'385
2014	113'820 105'540	8'282 8'414	60'259 62'374	114'422 112'888	299 342	122'694 129'349	1'581 862	14'473 9'822	3'148 1'145	5'704 5'205	111'660 119'314	30'894 31'838	70'012 73'282	596'689 597'658	657'247 660'374
2015	105 540	8414	65'584	112 888	299	129 349	378	9822	890	5 205	125'355	31 838	73 282	610'733	676'615
2010	99'112	8'581	67'352	113'952	255	123'726	378	8'770	763	4'609	125'602	33'289	82'597	601'351	668'959
2017	97'545	8'756	71'494	115'559	200	111'225	87	8'890	781	4'285	118'931	34'610	82'284	582'953	654'647
2019	96'748	8'587	72'482	115'638	197	108'625	111	8'108	777	3'842	121'941	35'264	84'682	584'324	657'003
2020	85'681	3'930	26'685	109'594	189	97'246	76	7'627	700	3'696	118'835	35'204	83'777	546'365	573'240
2021	87'541	4'203	29'756	110'738	228	107'991	139	7'522	604	3'726	129'419	34'707	90'591	577'181	607'166
2022	85'025	6'779	53'086	110'588	207	86'970	0	9'604	731	3'880	106'398	35'284	84'659	529'920	583'212
2023	87'805	7'584	63'617	108'357	200	84'286	41	9'024	763	3'065	98'606	34'597	87'069	521'198	585'015

3.1.6.2.2 Energy model – Conceptual overview

For the elaboration of the greenhouse gas and air pollutants inventories, information about energy consumption is needed at a much more detailed level than provided by the Swiss overall energy statistics (SFOE 2024). Activity data in sector 1 Energy are therefore calculated and disaggregated by the Swiss energy model, which is an integral part of the emission database EMIS. The model is developed and updated annually by the Swiss Federal Office for the Environment (FOEN). It relies on the Swiss overall energy statistics and is complemented with further data sources, e.g. Liechtenstein's liquid fuel sales (OS 2024), the Swiss renewable energy statistics (SFOE 2024a), the energy consumption statistics in the industry and services sectors (SFOE 2024d), as well as additional information from the industry. As wood energy consumption is not based on the Swiss overall energy statistics but directly on the figures from the Swiss wood energy statistics (SFOE2024b), its activity data are derived in a separate but analogous model.

The Swiss overall energy statistics are not only the main data input into the energy model, but also serve as calibration and quality control instrument: The total energy consumption given by the Swiss overall energy statistics has to be equal to the sum of the disaggregated activity data of all source categories within the energy sector (including memo items/bunker). Differences are explicitly taken into account as "statistical differences" (see chp. 3.2.6.2.2 Road transportation).

As shown in Figure 3-7 the energy model consists of several sub-models, such as the industry model, the civil aviation model, the road transportation model, the non-road transportation model, and the model of stationary engines and gas turbines. A brief overview of each of these models is given below. However, depending on the scope of these sub-models, they are either described in the corresponding source category chapter or in an overarching chapter preceding the detailed description of the individual source categories. In chapter 3.1.6.2.3, the resulting sectoral disaggregation is shown separately for each fuel type (including the disaggregation of the separate model for wood energy combustion).

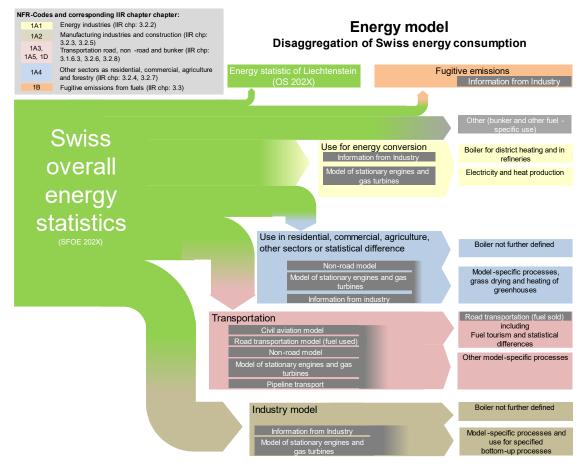


Figure 3-7 Overview of Switzerland's energy model. In the abbreviations SFOE 202X and OS 202X the "X" refers to the latest edition of the respective statistics.

Industry model (Details are given in chp. 3.2.3.2)

The industry model disaggregates the total fuel consumption in the industry sector (SFOE 2024) by source category and fuel type. It is based on the following two pillars. First, the energy consumption statistics in the industry and services sectors (SFOE 2024d) provide a comprehensive annual survey of fuel consumptions for all years since 1999 or 2002 (depending on the fuel type). These statistics are consistently extended back to 1990 based on a bottom-up industry model (Prognos 2013). Second, further disaggregation is achieved by using plant-level industry data for specific processes, as far as available.

Civil aviation model (Details are given in chp. 3.2.6.2.1)

The civil aviation model is developed and updated by the Federal Office for Civil Aviation FOCA. It aggregates single aircraft movements according to detailed movement statistics of the Swiss airports. Differentiation of domestic and international aviation is based on the information on departure and destination of each flight in the movement database.

Road transportation model (Details are given in chp. 3.2.6.2.2)

The road transportation model is a territorial model, accounting for traffic on Swiss territory only. The model is based on detailed vehicle stock data (from the vehicle registration database of the Federal Roads Office FEDRO), mileage per vehicle category differentiated into different driving patterns and specific consumption and emission factors.

Non-road transportation model (Details are given in chp. 3.2.1.1.1)

The non-road transportation model covers all remaining mobile sources, i.e. industrial vehicles, construction machinery, agricultural and forestry machinery, gardening machinery as well as railways, navigation and military vehicles (except for military aviation, which is considered separately, see chp. 3.2.8). The model combines vehicle numbers, their operation hours, engine power, and load factors to derive specific fuel consumption, emission factors and resulting emissions. Data stem from surveys among producers, various user associations, and the national database of non-road vehicles run by FEDRO.

Model of stationary engines and gas turbines

(Details are given in chp. 3.2.1.1.2)

The model of stationary engines and gas turbines in 1A Fuel combustion activities is based on an inventory of installed capacities, technologies and operating hours of engines and gas turbines throughout Switzerland (INFRAS 2022a). The inventory is based on a survey with the cantonal authorities, information from websites and annual reports from industry, as well as from direct enquiries with the operators. The fuel consumption per engine and turbine type was derived from the inventory and the emissions are calculated using corresponding emission factors from different references.

Model for wood energy combustion

(Details are given in chp. 3.2.1.1.3)

Based on the Swiss wood energy statistics (SFOE 2024b), total wood consumption is disaggregated into source categories (public electricity and heat production, industry, commercial/institutional, residential, agriculture/forestry/fisheries) and into 24 different combustion installations (ranging from open fireplaces to large-scale automatic boiler or heat and power plants). Where available, industry data on wood combustion is taken into account to allocate parts of the wood consumption as given by the Swiss wood energy statistics to a specific source category.

3.1.6.2.3 Disaggregation of the energy consumption by source category and fuel types

The energy model as outlined above disaggregates total energy consumption as provided by the Swiss overall energy statistics (SFOE 2024) into the relevant source categories 1A1-1A5 (Figure 3-8). For each fuel type, the disaggregation process of the energy model as shown schematically in Figure 3-7, the interaction between the different sub-models and additional data sources are visualized separately in Figure 3-9 to Figure 3-18.

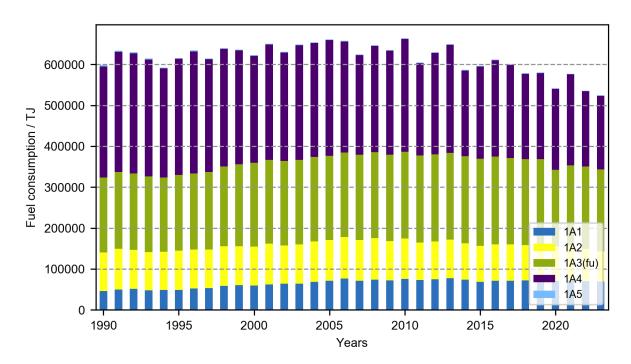


Figure 3-8 Switzerland's energy consumption in the source categories 1A1–1A5 based on the Swiss energy model ("fu" means fuel used approach). Since 1990 population has increased by about one third, industrial production by about three quarters and the motor vehicle fleet by almost three quarters (SFOE 2024, table 43a)

Starting from the total energy consumption from the Swiss overall energy statistics, for each fuel type, the energy is assigned to the relevant source categories based on the various submodels of the energy model, mentioned above in chp. 3.1.6.2.2. In addition, the following assignments are considered as well:

- For source category 1A4ci Other sectors Agriculture/forestry/fishing, specific bottom-up industry information is available for grass drying and the heating of greenhouses. The fuel consumption for grass drying is determined by the Swiss association of grass drying plants (VSTB). Further, based on annual energy consumption data from the Energy Agency of the Swiss Private Sector (EnAW) regarding agricultural greenhouses exempt from the CO₂ levy, total energy consumption of all greenhouses within Switzerland is extrapolated. The respective fuel consumption for grass drying and greenhouses is subtracted from the total fuel consumption of commercial, agriculture and statistical differences (see Figure 3-7).
- In order to report all energy consumption, the statistical differences as reported in the Swiss overall energy statistics are allocated to source category 1A4ai Other sectors – Commercial/institutional (stationary combustion) and 1A3bi-iii Road transportation.

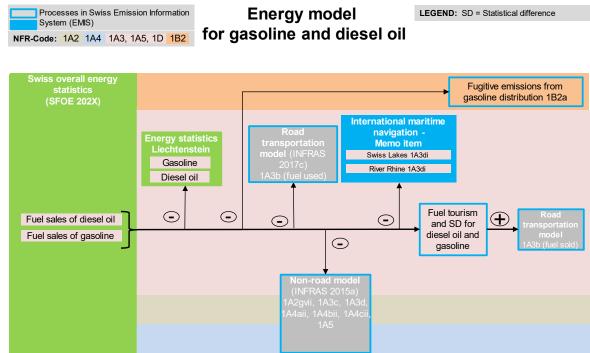


Figure 3-9 Schematic disaggregation of 1A Fuel consumption for gasoline and diesel oil. Marine bunker fuel consumption is based on the national customs statistics (see chapter 3.1.6.1 on memo items)

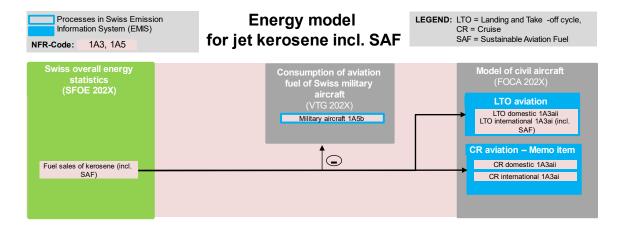


Figure 3-10 Schematic disaggregation of 1A Fuel consumption for jet kerosene. Fuel consumption for military aircraft is provided by the Swiss Air Force (part of the Swiss Armed Forces, VTG). The differentiation between domestic and international aviation as well as between CR and LTO is provided by the civil aviation model (see chp. 3.2.6.2.1)

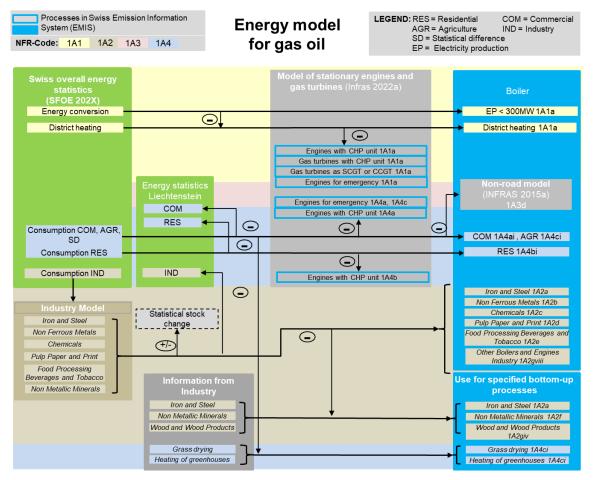


Figure 3-11 Schematic disaggregation of 1A Fuel consumption for gas oil. The Swiss overall energy statistics provide gas oil use for energy conversion and the amount thereof being used for district heating. Based on this information, gas oil use is split into 1A1ai Electricity generation and 1A1aii Heat plants. According to the non-road model, a small amount of gas oil is consumed in source category 1A3d navigation (steam-powered vessels).

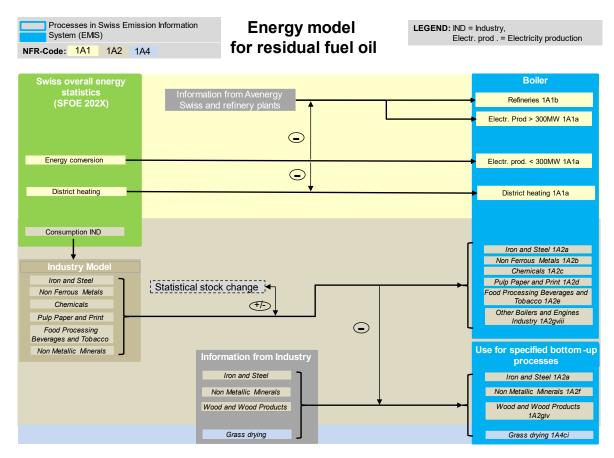


Figure 3-12 Schematic disaggregation of 1A Fuel consumption for residual fuel oil. The Swiss overall energy statistics report residual fuel oil use in energy conversion and the amount thereof consumed in electricity production (one single fossil fuel power station, operational from 1985 to 1994), district heating, and in petroleum refineries. Based on this information, residual fuel oil use in Energy industries is split into 1A1ai Electricity generation, 1A1aiii Heat plants and 1A1b Petroleum refining.

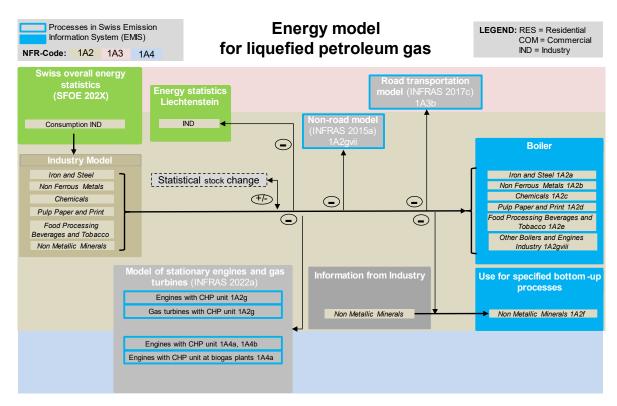


Figure 3-13 Schematic disaggregation of 1A Fuel consumption for liquefied petroleum gas.

Energy: Overview of emissions - General method and disaggregation of energy consumption

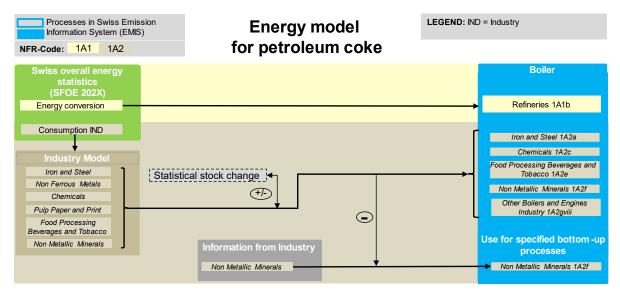


Figure 3-14 Schematic disaggregation of 1A Fuel consumption for petroleum coke.

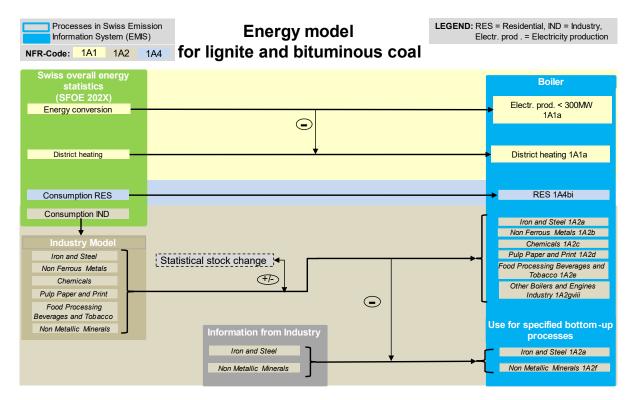


Figure 3-15 Schematic disaggregation of 1A Fuel consumption for lignite and bituminous coal. The Swiss overall energy statistics provide bituminous coal use for energy conversion and the amount thereof being used for district heating. Based on this information, use of bituminous coal in energy industries is split into 1A1ai Electricity generation and 1A1aiii Heat plants up to 1995. Coal consumption for public electricity and heat production ceased thereafter.

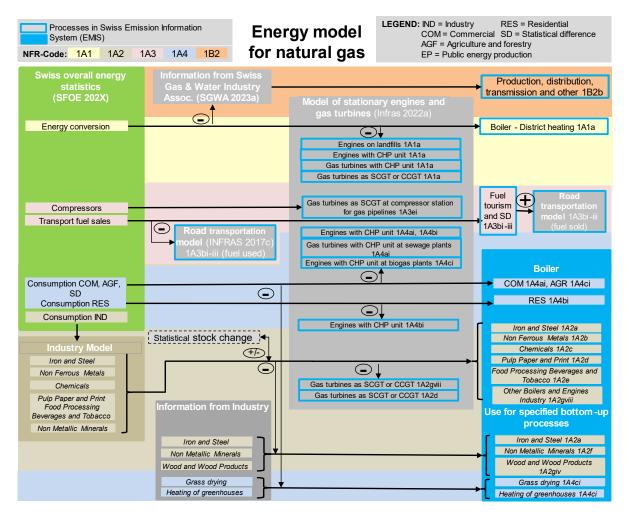


Figure 3-16 Schematic disaggregation of 1A Fuel consumption (and 1B Fugitive emissions from fuels) for natural gas. The Swiss overall energy statistics (SFOE 2024) provide gas use in the transformation sector (energy conversion and distribution losses). Distribution losses as estimated by the Swiss Gas and Water Industry Association SGWA are subtracted and reported under source category 1B2 Fugitive emissions from fuels. The remaining fuel consumption for natural gas is reported under 1A1a Public electricity and heat production.

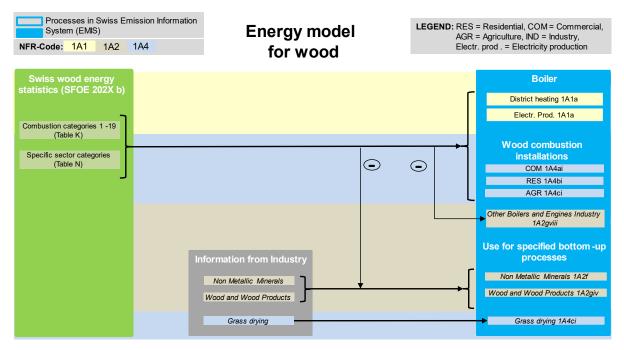


Figure 3-17 Schematic disaggregation of 1A Fuel consumption for wood. For a detailed description of the Energy model for wood combustion, see chapter 3.2.1.1.2.

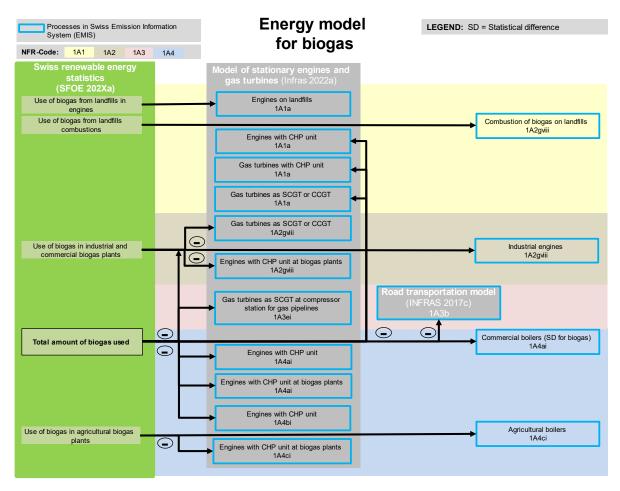


Figure 3-18 Schematic disaggregation of 1A Fuel consumption for biogas.

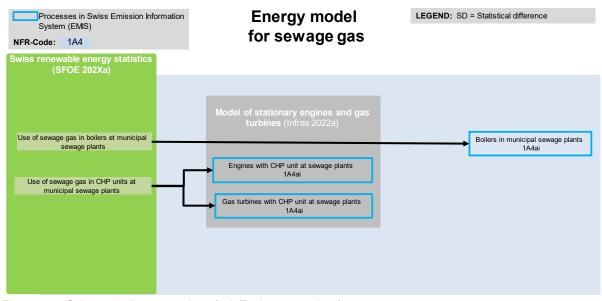


Figure 3-19 Schematic disaggregation of 1A Fuel consumption for sewage gas.

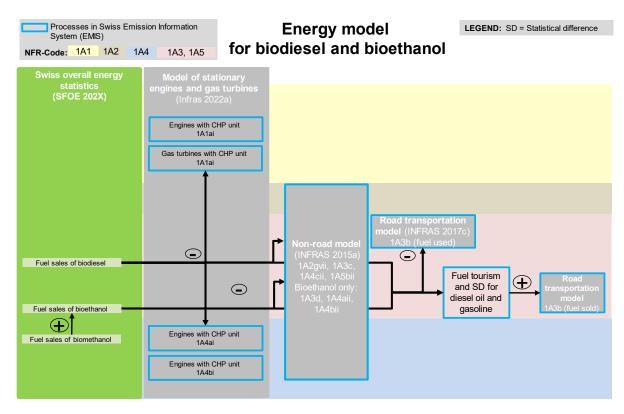


Figure 3-20 Schematic disaggregation of 1A Fuel consumption for biodiesel and bioethanol.

Statistical stock change

In a few years the quantity of a fuel sold in a year according to total energy statistics may be smaller (or larger) than the quantity effectively used in the same year as reported from bottom-up data. The reason for such deviations is due to further stocks which are not taken into consideration at the level of the Swiss energy statistics and are managed at the individual plant level. Some plants manage their own intermediate fuel stocks, which they may carry over for use in later years. To mitigate the difference between less fuel sold (according to the total energy statistics) than fuel used (according to bottom-up information)

in one year, so-called "stock shifts" are assumed in the energy model. Stockpiling can only be performed in the years in which more fuel was sold according to total energy statistics than was used based on bottom-up information. Stock which was accumulated in such years can be used in later years to level out the deviations between the total energy statistics and bottom-up data. Currently, stocks are formed in different years for residual fuel oil, petroleum coke and other bituminous coal:

- For residual fuel oil stock was build up in the years 2008-2010, 2014, 2015 and used in the years 2011, 2012, 2016-2021.
- For petroleum coke stock was build up in the years 2007, 2018 and used in the years 2008, 2019.
- For other bituminous coal stock was build up in the years 1991, 1996, 2003, 2005-2007 and used in the years 1993, 1994, 1998-2001, 2011, 2012.

3.2 Source category 1A - Fuel combustion activities

3.2.1 Country-specific issues of 1A Fuel combustion

In the following chapter, the general country-specific approach of determining activity data and emission factors is presented. Specific information about each source category is included in the respective chapters 3.2.2 to 3.2.8.

3.2.1.1 Models overlapping more than one source category

3.2.1.1.1 Non-road transportation model (excl. aviation)

Choice of method

For all source categories, for which the non-road transportation model is applied (Table 3-10), the air pollutant emissions are calculated by a Tier 3 method based on the corresponding decision trees given in EMEP/EEA guidebook (EMEP/EEA 2023). The detailed references to the related chapters of the Guidebook are shown in the chps. 3.2.5.2, 3.2.6.2, 3.2.7.2, and 3.2.8.2.

Methodology

The emissions of the non-road sector underwent an extensive revision in 2014/2015. Results are documented in FOEN (2015j). The following non-road categories are considered, all of them including several fuels, technologies, and emission standards.

Non-road categories (by Corinair)	Nomenclature NFR
Construction machinery	1A2gvii Mobile Combustion in manufacturing industries and construction
Industrial machinery	1A2gvii Mobile Combustion in manufacturing industries and construction
Railway machinery	1A3c Railways
Navigation machinery	1A3dii National navigation (shipping)
Garden-care/professional appliances	1A4aii Commercial/institutional: Mobile
Garden-care/hobby appliances	1A4bii Residential: Household and gardening (mobile)
Agricultural machinery	1A4cii Agriculture/Forestry/Fishing: Off-road vehicles and other machinery
Forestry machinery	1A4cii Agriculture/Forestry/Fishing: Off-road vehicles and other machinery
Military machinery (excl. aviation)	1A5b Other, Mobile (including military, land based)

Table 3-10 Non-road categories (FOEN 2015j) and the corresponding NFR nomenclature (reporting tables).

Within each non-road category, the non-road database (INFRAS 2015a) uses the following classification structure:

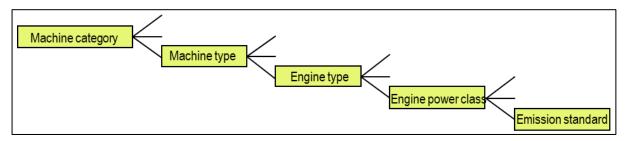


Figure 3-21 Each non-road vehicle is classified by its engine-power class, engine type, machine type, machine category, and emission standard.

The emission modelling is based on activity data and emission factors by means of the following equation, which is implemented at the most disaggregated level (Figure 3-21):

$$Em = N \cdot H \cdot P \cdot \lambda \cdot \varepsilon \cdot CF_1 \cdot CF_2 \cdot CF_3$$

with

Em	=	emission by engine type, pollutant or GHG (in g/a)
Ν	=	number of vehicles ()
Н	=	number of operation hours per year (h/a)
Р	=	engine power output (kW)
λ	=	effective load factor ()
Е	=	emission factor (g/kWh), fuel consumption factor (g/kWh)
CF_1	=	correction factor for the effective load ()
CF_2	=	correction factor for dynamical engine use ()
CF_3	=	degradation factor due to aging ()

The same equation also holds for the calculation of the fuel consumption, where ε is the consumption instead of emission factor (in g/kWh) and *Em* the consumption (in g/a). A more detailed description of the analytical details is given in the Annex of FOEN (2015j).

The total emission and consumption per non-road family is calculated by summing over all classes of the categories included in the families.

The method holds for CO, VOC, NO_x and exhaust particulate matter (PM). For the calculation of emissions of non-regulated air pollutants, the following approaches are applied:

- NMVOC is calculated as a share of VOC dependent on fuel and engine type.
- Further pollutants follow the methodology documented in IFEU (2010) and references therein.

Note that the emissions are only calculated in steps of 5 years from 1980 to 2050. Emissions for the years in between are interpolated linearly.

Emission factors

Emission factors are taken from various sources based on measurements, modelling and literature. SO_x is country-specific, see Table 3-28. For other air pollutants, the main data sources are USEPA (2010), IFEU (2010), EMEP/EEA (2019) and Integer (2013). In general, the following sources are used for the emission factors (if not stated differently in the respective chapters 3.2.5.2, 3.2.6.2, 3.2.7.2 or 3.2.8.2):

- Emission factors for NO_x, VOC/CH₄, CO and exhaust particulate matter (PM) are generally given in FOEN (2015j) and INFRAS (2015a). BC exhaust emission factors stem from Neosys (2013). Considering the measuring procedure and the maximum temperature of 52°C, it can be assumed that PM condensable are also included in the measurements. The installed technology also plays a role in this context (petrol engines with/without catalytic converter, diesel engines with/without particulate filter, etc.).
- Non-exhaust particulate matter (PM) and non-exhaust BC emission factors are based on Carbotech (2000), with some modifications by BUWAL (2001). It should be noted that "PM" in BUWAL (2001) corresponds to total PM, including particles larger than 10 µm. For all non-road mobile machinery sources except rail abrasion, PM10 amounts to 67 % of total PM according to in BUWAL (2001). For rail abrasion, PM10 amounts to 90 % to 100 % of total PM according to in BUWAL (2001). The corresponding factors have been applied in PM10 emission calculation.
- NMVOC is not modelled bottom-up; the NMVOC emissions are calculated as the difference of VOC and CH₄ emissions given in FOEN (2015j) and INFRAS (2015a).
- SO_x emission factors are based upon the sulphur content of fuels (see chp. 3.2.1.2). These are country- and fuel-specific, see implied emission factors in Table 3-28 (column diesel oil, gasoline, natural gas) and in specific tables in the non-road chapters.
- Emission factors for NH₃, priority heavy metals and POPs are generally taken from the EMEP/EEA guidebook (EMEP/EEA 2019). Pb emission factors are estimated based on the Pb content of fuels (according to EMEP/EEA 2023). PCDD/PCDF emissions are taken from Rentz et al. (2008).

Note that all emission factors (in kg/hr) of NO_x, NMVOC, PM (exhaust only; PM2.5 assumed equal to PM10 for combustion particles) and CO can be visualised and downloaded (tables in CSV format) by a query from the online non-road database INFRAS (2015a)⁴. For a detailed description of emission factors and their origin, see tables in the Annex of FOEN (2015j). They can be queried by vehicle type, fuel type, power class and emission standard either at aggregated or disaggregated levels. In Annex A2.1.1 an excerpt of a query is shown to illustrate the results that can be downloaded from the database.

Activity data

Activity data were collected by surveys among producers and several user associations in Switzerland (FOEN 2015j), and by evaluating information from the national database of non-road vehicles (IVZ, formerly MOFIS) run by the Federal Roads Office (FEDRO 2013). In addition, several publications serve as further data source:

- SBV (2013) for construction machinery
- SFSO (2013a) for agricultural machinery
- Jardin Suisse (2012) for garden care /hobby and professional appliances
- KWF (2012) for forestry machinery

104

Energy: Source category 1A - Fuel combustion activities - Country-specific issues of 1A Fuel combustion

⁴ <u>https://www.bafu.admin.ch/bafu/en/home/topics/air/state/non-road-datenbank.html</u> [06.02.2025]

- The national statistics on imports/exports of non-road vehicles was assessed by FCA (2015c)
- Off-Highway Research (2005, 2008, 2012) provided information on the number of non-road vehicles.
- Federal Department of Defence, Civil Protection and Sport: List of military machinery with vehicle stock, engine-power classes and operating hours (DDPS 2014a).

From these data sources, all necessary information like size distributions, modelling of the fleets, annual operating hours (age-dependent), load factors, year of placing on the market, and age distribution was derived. Details are documented in FOEN (2015j). All activity data (vehicle stocks, operating hours, consumption factors) can be downloaded by query from the online non-road database INFRAS (2015a), which is the data pool of FOEN (2015j). They can be queried by vehicle type, fuel type, power class and emission standard either at aggregated or disaggregated levels.

In Annex A2.1.2 (Table A - 13) the stock numbers and the operating hours of non-road vehicles are summarised for each non-road category.

For the greenhouse gas inventory under UNFCCC the fossil carbon fraction of biodiesel is estimated based on the method described in Sebos (2022). While all carbon in HVO (Hydrotreated Vegetable Oil) is of biogenic origin, FAME (Fatty Acid Methyl Esters) contains a fossil fraction due to the use of methanol from fossil sources in its production. The shares of FAME and HVO in biodiesel are available from the Swiss overall energy statistics (SFOE 2024). The fossil fraction of FAME depends on the feedstock it is derived from (e.g. rapeseed, soy, palm oil); since the feedstock shares are not captured in the Swiss energy statistics, they are based on European average values from HBEFA 4.1. The resulting overall fossil fraction of biodiesel varies over time – around 4.0 to 5.4 % of total biodiesel are reported under "fossil liquid fuels" as "biodiesel fossil". For technical reasons in our database, there is a split of the whole biodiesel amount in fossil and biogenic biodiesel and not only for the carbon fraction and CO₂.

3.2.1.1.2 Model of stationary engines and gas turbines

Choice of method

The emissions from stationary engines and gas turbines in 1A Fuel combustion activities are calculated by a Tier 2 method based on chapter 1A1 Energy industries in the EMEP/EEA guidebook (EMEP/EEA 2023).

Methodology

The model for calculating emissions from stationary engines and gas turbines underwent an extensive revision during the years 2021 to 2022 and were finally implemented for the data submission 2024. To calculate the final fuel consumption for each category of stationary engines and gas turbines an inventory of power output values, distribution of exhaust gas technologies, average load factors and operating hours was elaborated. For large installations including engines and gas turbines with combined heat and power generation (CHP) along with gas turbines in simple cycle (SCGT) and combined cycle (CCGT) configuration, the available information was compiled individually for each unit. Most of the information was obtained from the cantonal air pollution control authorities, from publicly accessible websites and annual reports from industry, as well as from direct enquiries to the operators. Further details and results are documented in INFRAS (2022a). Emissions are

calculated using the resulting fuel consumption for each category of stationary engines and gas turbines within 1A – Fuel consumption activities and multiplied with the respective emission factors.

Emission factors

Emission factors are taken from various sources based on measurements, modelling and literature and described in INFRAS (2022a). SO_x is country-specific, see chp. 3.2.1.2, Table 3-30. For other air pollutants, the main data sources are EMEP/EEA (2023), UBA (2020), Norwegian Environment Agency (2020), Ecoinvent (2021), Ebertsch 2021 and Aschmann et al. (2019). The following sources are used for the emission factors of stationary engines and gas turbines, depending on the fuel used:

- Emission factors for NO_x and CO are primarily based on measurements and given in INFRAS 2022a. Exhaust particulate matter (PM) including TSP, PM10 and PM2.5 as well as BC exhaust emission factors stem from tables 3-29, 3-30 and 3-31 (Tier 2) of chapter 1A4 Small combustion of the EMEP/EEA guidebook (EMEP/EEA 2023). Considering the measuring procedure and the recommended sample temperature of 160°C, it can be assumed that PM condensable are not included in the measurements.
- NMVOC emissions are calculated as the difference of VOC and CH₄ emissions given in INFRAS (2022a).
- VOC emission factors stem from tables 3-28, 3-29, 3-30 and 3-31 (Tier 2) of chapter 1A4 Small combustion of the EMEP/EEA guidebook (EMEP/EEA 2023).
- CH₄ emission factors originate from table 87 of the National Inventory Report for the German Greenhouse Gas Inventory 1990 2018, UBA (2020).
- SO_x emission factors are based upon the sulphur content of fuels (see chp. 3.2.1.2). These are country- and fuel-specific, see implied emission factors in Table 3-30 (column diesel oil, gas oil, natural gas) and in specific tables below.
- Emission factors for NH₃ are generally taken from Ecoinvent (2021) and the Norwegian Environment Agency (2020) for all categories, except for installations with SCR catalysts, where the corresponding limit values were taken as defined in the Federal Ordinance on Air Pollution Control OAPC (Swiss Confederation 1985).
- Emission factors for priority heavy metals, PCDD/PCDF, PAHs as well as HCB and PCB stem from tables 3-28, 3-29, 3-30 and 3-31 (Tier 2) of chapter 1A4 Small combustion of the EMEP/EEA guidebook (EMEP/EEA 2019).

Table 3-11 Emission f	actors of engines	and gas turbines in	1A1 Energy industries.

1A1 Energy industries (Engines and gas turbines)		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	СО	
			g/	g/	g/	g/	g/	g/	g/	g/	g/	
1A1a Gas turbines as SCGT or CCGT	Gas oil	GJ	83	0.18	0.84	0.10	9.5	9.5	9.5	0.32	2.6	
1A1a Gas turbines as SCGT or CCGT	Natural gas	GJ	29	1.6	0.23	NA	0.20	0.20	0.20	0.00050	14	
1A1a Gas turbines as SCGT or CCGT	Biogas	GJ	48	1.6	0.50	NA	0.20	0.20	0.20	0.00050	14	
1A1a Gas turbines with CHP unit	Gas oil	GJ	83	0.18	0.84	0.10	9.5	9.5	9.5	0.32	2.6	
1A1a Gas turbines with CHP unit	Natural gas	GJ	32	1.6	0.23	NA	0.23	0.23	0.23	0.00050	9.8	
1A1a Gas turbines with CHP unit	Biodiesel fossil	GJ	83	0.18	0.30	0.10	9.5	9.5	9.5	0.32	2.6	
1A1a Gas turbines with CHP unit	Biodiesel biogenic	GJ	83	0.18	0.30	0.10	9.5	9.5	9.5	0.32	2.6	
1A1a Gas turbines with CHP unit	Biogas	GJ	48	1.6	0.50	NA	0.23	0.23	0.23	0.00050	9.8	
1A1a Engines with CHP unit	Gas oil	GJ	137	50	0.84	8.9	30	30	30	2.3	136	
1A1a Engines with CHP unit	Natural gas	GJ	71	89	0.23	2.5	2.0	2.0	2.0	0.0041	54	
1A1a Engines with CHP unit	Biodiesel fossil	GJ	407	50	0.30	3.5	30	30	30	2.3	132	
1A1a Engines with CHP unit	Biodiesel biogenic	GJ	407	50	0.30	3.5	30	30	30	2.3	132	
1A1a Engines with CHP unit	Biogas	GJ	96	89	0.50	2.5	2.0	2.0	2.0	0.0041	86	
1A1a Engines used as emergency generators	Gas oil	GJ	942	50	0.84	0.10	26	26	26	2.3	137	
1A1a Engines on landfills	Natural gas	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	
1A1a Engines on landfills	Biogas	GJ	98	89	0.50	3.1	2.0	2.0	2.0	0.0039	125	
1A1b Gas turbines as SCGT at refineries	Refinery gas	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	
			Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
1A1 Energy industries (Engines and gas turbines)		Unit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
1A1a Gas turbines as SCGT or CCGT	Gas oil	GJ	0.012	0.0010	0.12	1.8	NA	NA	NA	NA	NA	NA
1A1a Gas turbines as SCGT or CCGT	Natural gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
1A1a Gas turbines as SCGT or CCGT	Biogas	GJ	0.0015	0.00025	0.10	0.50						
1A1a Gas turbines with CHP unit					0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
	Gas oil	GJ	0.012	0.0010	0.10	0.50	0.00056 NA	0.00084 NA	0.00084 NA	0.00084 NA	NA NA	
1A1a Gas turbines with CHP unit	Gas oil Natural gas	GJ GJ	0.012				NA					NA
1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit				0.0010	0.12	1.8	NA	NA	NA	NA	NA	NA NA
	Natural gas	GJ	0.0015	0.0010	0.12	1.8 0.50	NA 0.00056	NA 0.00084	NA 0.00084	NA 0.00084	NA NA	NA NA NA
1A1a Gas turbines with CHP unit	Natural gas Biodiesel fossil	GJ GJ	0.0015	0.0010 0.00025 0.0010	0.12 0.10 0.12	1.8 0.50 1.8	NA 0.00056 NA	NA 0.00084 NA	NA 0.00084 NA	NA 0.00084 NA	NA NA NA	NA NA NA
1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit	Natural gas Biodiesel fossil Biodiesel biogenic	GJ GJ GJ	0.0015 0.012 0.012	0.0010 0.00025 0.0010 0.0010	0.12 0.10 0.12 0.12	1.8 0.50 1.8 1.8	NA 0.00056 NA NA	NA 0.00084 NA NA	NA 0.00084 NA NA	NA 0.00084 NA NA	NA NA NA	NA NA NA NA
1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit	Natural gas Biodiesel fossil Biodiesel biogenic Biogas	GJ GJ GJ GJ	0.0015 0.012 0.012 0.0015	0.0010 0.00025 0.0010 0.0010 0.00025	0.12 0.10 0.12 0.12 0.12 0.10	1.8 0.50 1.8 1.8 0.50	NA 0.00056 NA 0.00056	NA 0.00084 NA 0.00084	NA 0.00084 NA 0.00084	NA 0.00084 NA 0.00084	NA NA NA NA	NA NA NA NA NA
1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Engines with CHP unit	Natural gas Biodiesel fossil Biodiesel biogenic Biogas Gas oil	GJ GJ GJ GJ GJ	0.0015 0.012 0.012 0.0015 0.15	0.0010 0.00025 0.0010 0.0010 0.00025 0.010	0.12 0.10 0.12 0.12 0.10 0.10	1.8 0.50 1.8 1.8 0.50 0.99	NA 0.00056 NA 0.00056 0.0019	NA 0.00084 NA 0.00084 0.015	NA 0.00084 NA 0.00084 0.00084	NA 0.00084 NA 0.00084 0.0015	NA NA NA NA 220	NA NA NA NA NA NA 0.11
1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Engines with CHP unit 1A1a Engines with CHP unit	Natural gas Biodiesel fossil Biodiesel biogenic Biogas Gas oil Natural gas	GJ GJ GJ GJ GJ GJ	0.0015 0.012 0.012 0.0015 0.15 0.040	0.0010 0.00025 0.0010 0.0010 0.00025 0.010 0.0030	0.12 0.10 0.12 0.12 0.10 0.11 0.10	1.8 0.50 1.8 1.8 0.50 0.99 0.57	NA 0.00056 NA 0.00056 0.0019 0.0012	NA 0.00084 NA 0.00084 0.015 0.0090	NA 0.00084 NA 0.00084 0.00084 0.0017 0.0017	NA 0.00084 NA 0.00084 0.0015 0.0018	NA NA NA NA 220 NA	NA NA NA NA NA 0.11 NA
1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Engines with CHP unit 1A1a Engines with CHP unit 1A1a Engines with CHP unit	Natural gas Biodiesel fossil Biodiesel biogenic Biogas Gas oil Natural gas Biodiesel fossil Biodiesel biogenic	GJ GJ GJ GJ GJ GJ	0.0015 0.012 0.012 0.0015 0.15 0.040 0.15	0.0010 0.00025 0.0010 0.0010 0.00025 0.010 0.0030 0.010	0.12 0.10 0.12 0.12 0.10 0.11 0.10 0.11	1.8 0.50 1.8 1.8 0.50 0.99 0.57 0.99	NA 0.00056 NA 0.00056 0.0019 0.0012 0.0012	NA 0.00084 NA 0.00084 0.015 0.0090 0.015	NA 0.00084 NA 0.00084 0.0017 0.0017 0.0017	NA 0.00084 NA 0.00084 0.0015 0.0018 0.0015	NA NA NA NA 220 NA 220	NA NA NA NA NA 0.11 NA 0.11
1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Engines with CHP unit	Natural gas Biodiesel fossil Biodiesel biogenic Biogas Gas oil Natural gas Biodiesel fossil	GJ GJ GJ GJ GJ GJ GJ GJ	0.0015 0.012 0.012 0.0015 0.15 0.040 0.15 0.15	0.0010 0.00025 0.0010 0.00025 0.010 0.00025 0.010 0.0030 0.010	0.12 0.10 0.12 0.12 0.10 0.11 0.10 0.11 0.11	1.8 0.50 1.8 0.50 0.99 0.57 0.99 0.99	NA 0.00056 NA 0.00056 0.0019 0.0012 0.0019 0.0019	NA 0.00084 NA 0.00084 0.015 0.0090 0.015 0.015	NA 0.00084 NA 0.00084 0.0017 0.0017 0.0017 0.0017	NA 0.00084 NA 0.00084 0.0015 0.0018 0.0015 0.0015	NA NA NA NA 220 NA 220 220	NA NA NA NA 0.11 NA 0.11 0.11
1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Engines with CHP unit 1A1a Engines with CHP unit 1A1a Engines with CHP unit 1A1a Engines with CHP unit	Natural gas Biodiesel fossil Biodiesel biogenic Biogas Gas oil Natural gas Biodiesel fossil Biodiesel biogenic Biogas	GJ GJ GJ GJ GJ GJ GJ GJ GJ GJ GJ	0.0015 0.012 0.015 0.15 0.040 0.15 0.15 0.15 0.040	0.0010 0.00025 0.0010 0.00025 0.010 0.0030 0.010 0.010 0.010 0.0030	0.12 0.10 0.12 0.10 0.11 0.10 0.11 0.11	1.8 0.50 1.8 0.50 0.99 0.57 0.99 0.99 0.57	NA 0.00056 NA 0.00056 0.0019 0.0012 0.0019 0.0019 0.0019	NA 0.00084 NA 0.00084 0.015 0.0090 0.015 0.015 0.015 0.0090	NA 0.00084 NA 0.00084 0.0017 0.0017 0.0017 0.0017 0.0017	NA 0.00084 NA 0.00084 0.0015 0.0015 0.0015 0.0015 0.0015	NA NA NA 220 NA 220 220 220	NA NA NA NA 0.11 NA 0.11 0.11 NA
1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Gas turbines with CHP unit 1A1a Engines with CHP unit	Natural gas Biodiesel fossil Biogas Gas oil Natural gas Biodiesel fossil Biodiesel biogenic Biogas Gas oil	GJ GJ GJ GJ GJ GJ GJ GJ GJ GJ	0.0015 0.012 0.015 0.15 0.040 0.15 0.15 0.15 0.040 0.15	0.0010 0.00025 0.0010 0.00025 0.010 0.0030 0.010 0.010 0.0030 0.010	0.12 0.10 0.12 0.10 0.11 0.10 0.11 0.11	1.8 0.50 1.8 1.8 0.50 0.99 0.57 0.99 0.57 0.99	NA 0.00056 NA 0.00056 0.0019 0.0012 0.0019 0.0019 0.0012 0.0019	NA 0.00084 NA 0.00084 0.015 0.0090 0.015 0.015 0.0090 0.015	NA 0.00084 NA 0.00084 0.0017 0.0017 0.0017 0.0017 0.0017	NA 0.00084 NA 0.00084 0.0015 0.0015 0.0015 0.0015 0.0015	NA NA NA 220 NA 220 220 NA 220	NA NA NA NA 0.11 NA 0.11 0.11 NA 0.11

Table 3-12 Emission factors of engines and gas turbines in 1A2 Manufacturing industry and construction.

1A2 Manufacturing industries and construction (Engines and gas turbines)		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	СО	
			g/	g/	g/	g/	g/	g/	g/	g/	g/	
1A2d Gas turbines as SCGT or CCGT	Natural gas	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	
1A2gviii Gas turbines as SCGT or CCGT	Natural gas	GJ	85	1.6	0.23	NA	0.20	0.20	0.20	0.00050	11	
1A2gviii Gas turbines as SCGT or CCGT	Biogas	GJ	48	1.6	0.50	NA	0.20	0.20	0.20	0.00050	11	
1A2gviii Gas turbines with CHP unit	Liquefied petroleum gas	GJ	48	1.6	0.50	NA	0.20	0.20	0.20	0.00050	4.8	
1A2gviii Engines with CHP unit	Liquefied petroleum gas	GJ	135	89	0.50	NA	2.0	2.0	2.0	0.0050	56	
1A2gviii Engines with CHP unit at biogas plants	Biogas	GJ	99	89	0.50	3.8	2.0	2.0	2.0	0.0039	132	
1A2 Manufacturing industries and construction (Engir			Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
	les and gas turbines)	Unit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
1A2d Gas turbines as SCGT or CCGT	Natural gas	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1A2gviii Gas turbines as SCGT or CCGT	Natural gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
1A2gviii Gas turbines as SCGT or CCGT	Biogas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
1A2gviii Gas turbines with CHP unit	Liquefied petroleum gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
1A2gviii Engines with CHP unit	Liquefied petroleum gas	GJ	0.040	0.0030	0.10	0.57	0.0013	0.0090	0.0017	0.0018	NA	NA
1A2gviii Engines with CHP unit at biogas plants	Biogas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA

Table 3-13 Emission factors of engines and gas turbines in 1A3 Transport.

1A3(fu) Transport (Engines and gas turbines)		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	со	
			g/	g/	g/	g/	g/	g/	g/	g/	g/	
1A3ei Gas turbines at compressor stations for gas pipelines	Natural gas	GJ	30	1.6	0.23	NA	0.20	0.20	0.20	0.00050	11	
1A3ei Gas turbines at compressor stations for gas pipelines	Biogas	GJ	48	1.6	0.50	NA	0.20	0.20	0.20	0.00050	11	
1A3(fu) Transport (Engines and gas turbines)		Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
			mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
1A3ei Gas turbines at compressor stations for gas pipelines	Natural gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
1A3ei Gas turbines at compressor stations for gas pipelines	Biogas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA

Table 3-14 Emission factors of engines and gas turbines in 1A4ai Other sectors: commercial/institutional.
Table 3-14 Emission factors of engines and gas turbines in TA4ar Other Sectors, commercial/institutional.

1A4ai Commercial/Institutional Stationary (Engines and gas turbines)		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	со	
			g/	g/	g/	g/	g/	g/	g/	g/	g/	
1A4ai Engines with CHP unit	Gas oil	GJ	137	50	0.84	8.9	30	30	30	2.3	136	
1A4ai Engines with CHP unit	Liquefied petroleum gas	GJ	135	89	0.50	NA	2.0	2.0	2.0	0.0050	56	
1A4ai Engines with CHP unit	Natural gas	GJ	71	89	0.23	2.5	2.0	2.0	2.0	0.0041	54	
1A4ai Engines with CHP unit	Biodiesel fossil	GJ	407	50	0.30	3.5	30	30	30	2.3	132	
1A4ai Engines with CHP unit	Biodiesel biogenic	GJ	407	50	0.30	3.5	30	30	30	2.3	132	
1A4ai Engines with CHP unit	Biogas	GJ	96	89	0.50	2.5	2.0	2.0	2.0	0.0041	86	
1A4ai Engines with CHP unit at biogas plants	Liquefied petroleum gas	GJ	NO	NO	NO	NO	NO			NO	NO	
1A4ai Engines with CHP unit at biogas plants	Biodiesel fossil	GJ	157	50	0.30	8.7	30		30	2.3	136	
1A4ai Engines with CHP unit at biogas plants	Biodiesel biogenic	GJ	157	50	0.30	8.7	30	30	30	2.3	136	
1A4ai Engines with CHP unit at biogas plants	Biogas	GJ	99	89	0.50	3.8	2.0	2.0	2.0	0.0039	132	
1A4ai Engines used as emergency generators	Gas oil	GJ	909	50	0.84	0.47	14	14	14	2.3	137	
1A4ai Gas turbines at sewage plants	Natural gas	GJ	53	1.6	0.23	NA	0.20	0.20	0.20	0.00050	25	
1A4ai Gas turbines at sewage plants	Sewage gas	GJ	48	1.6	0.50	NA	0.23	0.23	0.23	0.00050	10.0	
1A4ai Engines with CHP unit at sewage plants	Natural gas	GJ	310	89	0.23	NA	2.0	2.0	2.0	0.0050	76	
1A4ai Engines with CHP unit at sewage plants	Sewage gas	GJ	101	89	0.50	2.0	2.0	2.0	2.0	0.0042	141	
1A4ai Commercial/Institutional Stationary (Engines a	and ass turbines)	Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
	ind gas turbines/	Onit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
1A4ai Engines with CHP unit	Gas oil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
1A4ai Engines with CHP unit	Liquefied petroleum gas	GJ	0.040	0.0030	0.10	0.57	0.0013	0.0090	0.0017	0.0018	NA	NA
1A4ai Engines with CHP unit	Natural gas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA
1A4ai Engines with CHP unit	Biodiesel fossil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
1A4ai Engines with CHP unit	Biodiesel biogenic	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
1A4ai Engines with CHP unit	Biogas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA
1A4ai Engines with CHP unit at biogas plants	Liquefied petroleum	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC
	gas											
1A4ai Engines with CHP unit at biogas plants	gas Biodiesel fossil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
		GJ	0.15 0.15	0.010	0.11 0.11	0.99 0.99	0.0019		0.0017	0.0015	220 220	0.11
1A4ai Engines with CHP unit at biogas plants	Biodiesel fossil							0.015	0.0017			0.11
1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants	Biodiesel fossil Biodiesel biogenic	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11 NA
1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants	Biodiesel fossil Biodiesel biogenic Biogas	GJ GJ	0.15 0.040	0.010 0.0030 0.010	0.11 0.10	0.99 0.57	0.0019	0.015 0.0090 0.015	0.0017 0.0017 0.0017	0.0015	220 NA	0.11 NA 0.11
1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines used as emergency generators	Biodiesel fossil Biodiesel biogenic Biogas Gas oil	GJ GJ GJ	0.15 0.040 0.15	0.010 0.0030 0.010	0.11 0.10 0.11	0.99 0.57 0.99	0.0019 0.0012 0.0019	0.015 0.0090 0.015 0.00084	0.0017 0.0017 0.0017	0.0015 0.0018 0.0015	220 NA 220	0.11 NA 0.11 NA
1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines used as emergency generators 1A4ai as turbines at sewage plants	Biodiesel fossil Biodiesel biogenic Biogas Gas oil Natural gas	GJ GJ GJ	0.15 0.040 0.15 0.0015	0.010 0.0030 0.010 0.00025	0.11 0.10 0.11 0.10	0.99 0.57 0.99 0.50	0.0019 0.0012 0.0019 0.00056	0.015 0.0090 0.015 0.00084 0.00084	0.0017 0.0017 0.0017 0.00084	0.0015 0.0018 0.0015 0.00084	220 NA 220 NA	0.11 0.11 0.11 0.11 NA NA NA

Table 3-15 Emission factors of engines and gas turbines in 1A4bi Other sectors: residential.

1A4bi Residential Stationary (Engines and gas turbines)		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	СО	
			g/	g/	g/	g/	g/	g/	g/	g/	g/	
1A4bi Engines with CHP unit	Gas oil	GJ	137	50	0.84	8.9	30	30	30	2.3	136	
1A4bi Engines with CHP unit	Liquefied petroleum gas	GJ	135	89	0.50	NA	2.0	2.0	2.0	0.0050	56	
1A4bi Engines with CHP unit	Natural gas	GJ	71	89	0.23	2.5	2.0	2.0	2.0	0.0041	54	
1A4bi Engines with CHP unit	Biodiesel fossil	GJ	407	50	0.30	3.5	30	30	30	2.3	132	
1A4bi Engines with CHP unit	Biodiesel biogenic	GJ	407	50	0.30	3.5	30	30	30	2.3	132	
1A4bi Engines with CHP unit	Biogas	GJ	96	89	0.50	2.5	2.0	2.0	2.0	0.0041	86	
1A4bi Residential Stationary (Engines and gas turbines)			Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
		Unit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
1A4bi Engines with CHP unit	Gas oil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
1A4bi Engines with CHP unit	Liquefied petroleum gas	GJ	0.040	0.0030	0.10	0.57	0.0013	0.0090	0.0017	0.0018	NA	NA
1A4bi Engines with CHP unit	Natural gas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA
1A4bi Engines with CHP unit	Biodiesel fossil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
1A4bi Engines with CHP unit	Biodiesel biogenic	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
1A4bi Engines with CHP unit	Biogas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA

Table 3-16 Emission fa	actors of engines and o	aas turbines in 1A4ci O	Other sectors: agriculture/	orestrv/fishina.

1A4ci Agriculture/Forestry/Fishing Stationary (Engines and gas turbines)		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	со	
			g/	g/	g/	g/	g/	g/	g/	g/	g/	
1A4ci Engines used as emergency generators	Gas oil	GJ	942	50	0.84	0.10	27	27	27	2.3	137	
1A4ci Engines with CHP unit at biogas plants	Natural gas	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	
1A4ci Engines with CHP unit at biogas plants	Biogas	GJ	97	89	0.50	3.2	2.0	2.0	2.0	0.0038	108	
1A4ci Agriculture/Forestry/Fishing Stationary (Engines and gas turbines)		Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
		Onit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
1A4ci Engines used as emergency generators	Gas oil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
1A4ci Engines with CHP unit at biogas plants	Natural gas	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1A4ci Engines with CHP unit at biogas plants	Biogas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA

Activity data

Activity data were collected by surveys among the cantonal air pollution control authorities. For engines used as emergency generators, their proof of gas oil use, which is deposited with the Federal Office for Customs and Border Security (FOCBS), were the most important source of data. Furthermore, the statistics by the SFOE about the thermal electricity production including combined heat and power generation (CHP) in Switzerland (SFOE 2021c) served as the basis for activity data modelling. For large installations including engines as well as simple cycle gas turbines (SCGT) and combined cycle gas turbines (CCGT), the websites and annual reports of the operators provided informative information on technical data, operating hours or fuel consumption. From these data sources, all necessary information like modelling of the quantity of installations, annual operating hours, load factors and rated thermal input were derived. Details are documented in INFRAS (2022a).

The activity data of engines using landfill gas in 1A1a Public electricity and heat production, engines using biogas in 1A2gviii Other - Manufacturing industries, 1A4ai Other – Commercial/institutional and 1A4ci Other – Agriculture/forestry /fishing, as well as gas turbines at the compressor station in 1A3ei Pipeline transport using natural gas are updated annually with newest available information concerning fuel consumption from SFOE 2024a and SFOE 2024, respectively.

For the greenhouse gas inventory under UNFCCC the fossil carbon fraction of biodiesel is estimated based on the method described in Sebos (2022). While all carbon in HVO (Hydrotreated Vegetable Oil) is of biogenic origin, FAME (Fatty Acid Methyl Esters) contains a fossil fraction due to the use of methanol from fossil sources in its production. The shares of FAME and HVO in biodiesel are available from the Swiss overall energy statistics (SFOE 2024). The fossil fraction of FAME depends on the feedstock it is derived from (e.g. rapeseed, soy, palm oil); since the feedstock shares are not captured in the Swiss energy statistics, they are based on European average values from HBEFA 4.1. The resulting overall fossil fraction of biodiesel varies over time – around 4.0 to 5.4 % of total biodiesel are reported under "fossil liquid fuels" as "biodiesel fossil". For technical reasons in our database, there is a split of the whole biodiesel amount in fossil and biogenic biodiesel and not only for the carbon fraction and CO₂.

Natural gas also includes the consumed amount of liquefied natural gas (LNG) as supplied by the Swiss overall energy statistics (SFOE 2024).

1A1 Energy industries (Engines and gas turbines)		Unit	1990	1995	2000	2005	2010				
Total fuel consumption		TJ	421	1'907	4'851	4'647	5'088				
1A1a Gas turbines as SCGT or CCGT	Gas oil	ТJ	24	33	33	33	33				
1A1a Gas turbines as SCGT or CCGT	Natural gas	ТJ	3.5	779	840	1'110	2'410				
1A1a Gas turbines as SCGT or CCGT	Biogas	TJ	NO	NO	NO	NO	NO				
1A1a Gas turbines with CHP unit	Gas oil	TJ	6.7	3.6	NO	8.1	3.6				
1A1a Gas turbines with CHP unit	Natural gas	ТJ	66	31	NO	39	42				
1A1a Gas turbines with CHP unit	Biodiesel fossil	TJ	NO	NO	NO	0.0049	0.028				
1A1a Gas turbines with CHP unit	Biodiesel biogenic	TJ	NO	NO	NO	0.096	0.61				
1A1a Gas turbines with CHP unit	Biogas	TJ	NO	NO	NO	NO	NO				
1A1a Engines with CHP unit	Gas oil	TJ	7.5	47	179	167	55				
1A1a Engines with CHP unit	Natural gas	TJ	73	405	655	799	661				
1A1a Engines with CHP unit	Biodiesel fossil	TJ	NO	NO	NO	0.10	0.44				
1A1a Engines with CHP unit	Biodiesel biogenic	TJ	NO	NO	NO	2.0	9.5				
1A1a Engines with CHP unit	Biogas	TJ	NO	NO	NO	NO	NO				
1A1a Engines used as emergency generators	Gas oil	TJ	1.4	1.4	1.5	1.5	1.6				
1A1a Engines on landfills	Natural gas	TJ	NO	NO	NO	14	14				
1A1a Engines on landfills	Biogas	TJ	238	609	568	204	49				
1A1b Gas turbines as SCGT at refineries	Refinery gas	TJ	NO	NO	2'575	2'270	1'808				
1A1 Energy industries (Engines and gas turbines)		Unit	2014	2015	2016	2017	2018	2019	2020	2021	_
Total fuel consumption		TJ	3'621	3'213	4'709	3'748	3'643	3'649	3'566	3'668	
1A1a Gas turbines as SCGT or CCGT	Gas oil	TJ	33	33	33	33	33	33	7.2	7.4	
1A1a Gas turbines as SCGT or CCGT	Natural gas	TJ	1'082	2'306	4'154	3'245	3'208	3'260	3'208	3'192	
1A1a Gas turbines as SCGT or CCGT	Biogas	ТJ	NO	110							
1A1a Gas turbines with CHP unit	Gas oil	TJ	0.69	0.59	0.29	0.20	0.12	0.16	0.16	0.16	
1A1a Gas turbines with CHP unit	Natural gas	TJ	13	12	6.5	3.5	3.2	2.8	2.7	2.8	
1A1a Gas turbines with CHP unit	Biodiesel fossil	ТJ	0.012	0.010	0.0048	0.0028	0.0024	0.0025	0.0026	0.0029	0
1A1a Gas turbines with CHP unit	Biodiesel biogenic	TJ	0.21	0.18	0.100	0.062	0.055	0.054	0.053	0.053	
1A1a Gas turbines with CHP unit	Biogas	TJ	NO	NO	NO	NO	NO	NO	0.089	0.096	
1A1a Engines with CHP unit	Gas oil	TJ	27	25	21	24	14	18	18	18	
	Natural gas	TJ	532	513	473	426	370	319	307	315	-
1A1a Engines with CHP unit	Biodiesel fossil	TJ	0.46	0.42	0.35	0.35	0.28	0.28	0.29	0.32	
	BIODIESEI TOSSII		8.4	7.5	7.3	7.6	6.4	6.1	6.0	6.0	
1A1a Engines with CHP unit	Biodiesel biogenic	ТJ	0.4	7.5							
1A1a Engines with CHP unit 1A1a Engines with CHP unit		TJ TJ	0.4 NO	NO	NO	NO	NO	NO	10	11	
1A1a Engines with CHP unit 1A1a Engines with CHP unit 1A1a Engines with CHP unit	Biodiesel biogenic					NO 1.7	NO 1.8	NO 1.8	10 1.7	11 1.8	
1A1a Engines with CHP unit 1A1a Engines und as emergency generators 1A1a Engines on landfills	Biodiesel biogenic Biogas Gas oil	TJ	NO	NO	NO	-	-	-	-		_
1A1a Engines with CHP unit 1A1a Engines with CHP unit 1A1a Engines with CHP unit 1A1a Engines used as emergency generators	Biodiesel biogenic Biogas	TJ TJ	NO 1.7	NO 1.7	NO 1.7	1.7	1.8	1.8	1.7	1.8	

Table 3-17 Activity data of engines and gas turbines in 1A1 Energy industries.

Table 3-18 Activity data of engines and gas turbines in 1A2 Manufacturing industry and construction.

1A2 Manufacturing industries and construction (Engine	es and gas turbines)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption		TJ	655	1'775	2'585	1'723	2'010					
1A2d Gas turbines as SCGT or CCGT	Natural gas	TJ	NO	955	1'616	490	422					
1A2gviii Gas turbines as SCGT or CCGT	Natural gas	TJ	613	721	810	1'073	1'355					
1A2gviii Gas turbines as SCGT or CCGT	Biogas	TJ	NO	NO	NO	NO	NO					
1A2gviii Gas turbines with CHP unit	Liquefied petroleum gas	ТJ	0.68	0.87	NO	1.5	2.3					
1A2gviii Engines with CHP unit	Liquefied petroleum gas	ТJ	0.75	11	33	30	35					
1A2gviii Engines with CHP unit at biogas plants	Biogas	TJ	41	87	126	128	195					
1A2 Manufacturing industries and construction (Engine	es and gas turbines)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption		TJ	1'156	1'111	451	415	353	354	346	363	398	372
1A2d Gas turbines as SCGT or CCGT	Natural gas	TJ	608	682	NO							
1A2gviii Gas turbines as SCGT or CCGT	Natural gas	TJ	238	145	145	145	145	145	145	144	150	151
1A2gviii Gas turbines as SCGT or CCGT	Biogas	TJ	NO	5.0	5.5	5.9						
1A2gviii Gas turbines with CHP unit	Liquefied petroleum gas	ТJ	0.79	0.66	0.54	0.12	0.081	0.066	0.064	0.063	0.064	0.064
1A2gviii Engines with CHP unit	Liquefied petroleum gas	ТJ	31	28	39	14	9.4	7.4	7.3	7.3	7.5	7.3

Table 3-19 Activity data of engines and gas turbines in 1A3 Transport.

1A3(fu) Transport (Engines and gas turbines)		Unit	1990	1995	2000	2005	2010					
Total fuel consumption		TJ	560	310	340	1'070	830					
1A3ei Gas turbines at compressor stations for gas pipelines	Natural gas	ТJ	560	310	340	1'070	830					
1A3ei Gas turbines at compressor stations for gas pipelines	Biogas	ТJ	NO	NO	NO	NO	NO					
1A3(fu) Transport (Engines and gas turbines)		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption		ΤJ	830	760	340	470	490	600	540	138	420	192
1A3ei Gas turbines at compressor stations for gas	Natural gas	тJ	830	760	340	470	490	600	540	120	400	170
pipelines		-										

2023 3'846

130

0.053 0.11

17

325 0.33

5.9 13

1.8 NO 4.4

NO

18

327 0.34

6.1 12

1.8 NO 5.0 NO

Table 3-20 Activity data	of engines and	aas turbines in	1A4a Other sector	s: commercial/institutional.

1A4ai Commercial/Institutional Stationary (Engines and	l gas turbines)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption		TJ	1'572	2'973	4'524	5'062	4'603					
1A4ai Engines with CHP unit	Gas oil	TJ	44	171	580	539	178					
1A4ai Engines with CHP unit	Liquefied petroleum gas	ТJ	2.4	36	103	95	109					
1A4ai Engines with CHP unit	Natural gas	TJ	355	1'407	2'169	2'596	2'089					
1A4ai Engines with CHP unit	Biodiesel fossil	TJ	NO	NO	NO	0.32	1.4					
1A4ai Engines with CHP unit	Biodiesel biogenic	TJ	NO	NO	NO	6.2	30					
1A4ai Engines with CHP unit	Biogas	TJ	NO	NO	NO	NO	NO					
1A4ai Engines with CHP unit at biogas plants	Liquefied petroleum gas	ТJ	NO	2.9	5.6	NO	NO					
1A4ai Engines with CHP unit at biogas plants	Biodiesel fossil	TJ	NO	NO	1.3	0.068	1.1					
1A4ai Engines with CHP unit at biogas plants	Biodiesel biogenic	TJ	NO	NO	25	1.3	24					
1A4ai Engines with CHP unit at biogas plants	Biogas	TJ	NO	29	82	143	394					
1A4ai Engines used as emergency generators	Gas oil	TJ	383	383	391	396	405					
1A4ai Gas turbines at sewage plants	Natural gas	TJ	NO	0.23	0.073	NO	0.019					
1A4ai Gas turbines at sewage plants	Sewage gas	TJ	179	169	66	NO	18					
1A4ai Engines with CHP unit at sewage plants	Natural gas	TJ	NO	1.0	1.2	1.4	1.4					
1A4ai Engines with CHP unit at sewage plants	Sewage gas	TJ	610	775	1'100	1'284	1'351					
1A4ai Commercial/Institutional Stationary (Engines and	l gas turbines)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption		TJ	4'349	4'260	4'181	4'008	3'813	3'643	3'639	3'648	3'751	3'741
1A4ai Engines with CHP unit	Gas oil	TJ	88	77	66	76	44	57	55	55	56	54
1A4ai Engines with CHP unit	Liquefied petroleum gas	ТJ	97	87	121	44	29	23	23	23	23	23
1A4ai Engines with CHP unit	Natural gas	T 1										
	inatural gas	TJ	1'668	1'596	1'469	1'325	1'151	991	956	979	1'018	1'010
1A4ai Engines with CHP unit	Biodiesel fossil	TJ	1.4	1.3	1.1	1.1	1'151 0.88	0.88	956 0.91	1.0	1.1	1.0
1A4ai Engines with CHP unit 1A4ai Engines with CHP unit		TJ TJ	1.4 26	1.3 23	1.1 23	1.1 24	0.88 20	0.88 19	0.91 19	1.0 19	1.1 19	1.0 18
	Biodiesel fossil	TJ	1.4	1.3	1.1	1.1	0.88	0.88	0.91	1.0	1.1	1.0
1A4ai Engines with CHP unit	Biodiesel fossil Biodiesel biogenic	TJ TJ	1.4 26	1.3 23	1.1 23	1.1 24	0.88 20	0.88 19	0.91 19	1.0 19	1.1 19	1.0 18
1A4ai Engines with CHP unit 1A4ai Engines with CHP unit	Biodiesel fossil Biodiesel biogenic Biogas Liquefied petroleum	TJ TJ TJ	1.4 26 NO	1.3 23 NO	1.1 23 NO	1.1 24 NO	0.88 20 NO	0.88 19 NO	0.91 19 31	1.0 19 34	1.1 19 37	1.0 18 39
1A4ai Engines with CHP unit 1A4ai Engines with CHP unit 1A4ai Engines with CHP unit at biogas plants	Biodiesel fossil Biodiesel biogenic Biogas Liquefied petroleum gas	TJ TJ TJ TJ	1.4 26 NO NO	1.3 23 NO NO	1.1 23 NO NO	1.1 24 NO NO	0.88 20 NO NO	0.88 19 NO NO	0.91 19 31 NO	1.0 19 34 NO	1.1 19 37 NO	1.0 18 39 NO
1A4ai Engines with CHP unit 1A4ai Engines with CHP unit 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants	Biodiesel fossil Biodiesel biogenic Biogas Liquefied petroleum gas Biodiesel fossil	TJ TJ TJ TJ TJ TJ TJ TJ	1.4 26 NO NO 1.2	1.3 23 NO NO 1.3 23 738	1.1 23 NO NO 1.2	1.1 24 NO 0.88 19 807	0.88 20 NO NO 1.0 23 818	0.88 19 NO NO 0.75 16 813	0.91 19 31 NO 0.78 16 807	1.0 19 34 NO 0.84 16 787	1.1 19 37 NO 0.85	1.0 18 39 NO 0.83 15 908
1A4ai Engines with CHP unit 1A4ai Engines with CHP unit 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants	Biodiesel fossil Biodiesel biogenic Biogas Liquefied petroleum gas Biodiesel fossil Biodiesel biogenic	TJ TJ TJ TJ TJ TJ TJ	1.4 26 NO NO 1.2 22	1.3 23 NO NO 1.3 23 738 413	1.1 23 NO NO 1.2 24 780 415	1.1 24 NO 0.88 19 807 417	0.88 20 NO NO 1.0 23 818 420	0.88 19 NO 0.75 16 813 421	0.91 19 31 NO 0.78 16 807 413	1.0 19 34 NO 0.84 16 787 411	1.1 19 37 NO 0.85 15	1.0 18 39 NO 0.83 15 908 405
1A4ai Engines with CHP unit 1A4ai Engines with CHP unit 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines with CHP unit at biogas plants	Biodiesel fossil Biodiesel biogenic Biogas Liquefied petroleum gas Biodiesel fossil Biodiesel biogenic Biogas	TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	1.4 26 NO 1.2 22 701 412 0.027	1.3 23 NO NO 1.3 23 738 413 0.029	1.1 23 NO NO 1.2 24 780 415 0.25	1.1 24 NO 0.88 19 807 417 0.23	0.88 20 NO 1.0 23 818 420 0.24	0.88 19 NO 0.75 16 813 421 0.23	0.91 19 31 NO 0.78 16 807 413 0.21	1.0 19 34 NO 0.84 16 787 411 0.20	1.1 19 37 NO 0.85 15 897 409 0.20	1.0 18 39 NO 0.83 15 908 405 0.19
1A4ai Engines with CHP unit 1A4ai Engines with CHP unit 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines used as emergency generators	Biodiesel fossil Biodiesel biogenic Biogas Liquefied petroleum gas Biodiesel fossil Biodiesel biogenic Biogas Gas oil	TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	1.4 26 NO 1.2 22 701 412 0.027 25	1.3 23 NO 1.3 23 738 413 0.029 25	1.1 23 NO NO 1.2 24 780 415 0.25 26	1.1 24 NO 0.88 19 807 417 0.23 26	0.88 20 NO 1.0 23 818 420 0.24 34	0.88 19 NO 0.75 16 813 421 0.23 33	0.91 19 31 NO 0.78 16 807 413 0.21 34	1.0 19 34 NO 0.84 16 787 411 0.20 34	1.1 19 37 NO 0.85 15 897 409 0.20 33	1.0 18 39 NO 0.83 15 908 405 0.19 32
1A4ai Engines with CHP unit 1A4ai Engines with CHP unit 1A4ai Engines with CHP unit at biogas plants 1A4ai Engines used as emergency generators 1A4ai Gas turbines at sewage plants	Biodiesel fossil Biodaesel fossil Biogas Liquefied petroleum gas Biodiesel fossil Biodiesel biogenic Biogas Gas oil Natural gas	TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	1.4 26 NO 1.2 22 701 412 0.027	1.3 23 NO NO 1.3 23 738 413 0.029	1.1 23 NO NO 1.2 24 780 415 0.25	1.1 24 NO 0.88 19 807 417 0.23	0.88 20 NO 1.0 23 818 420 0.24	0.88 19 NO 0.75 16 813 421 0.23	0.91 19 31 NO 0.78 16 807 413 0.21	1.0 19 34 NO 0.84 16 787 411 0.20	1.1 19 37 NO 0.85 15 897 409 0.20	1.0 18 39 NO 0.83 15 908 405 0.19

Table 3-21 Activity data of engines and gas turbines in 1A4b Other sectors: residential.

1A4bi Residential Stationary (Engines and gas turbines)		Unit	1990	1995	2000	2005	2010					
Total fuel consumption		TJ	45	179	317	360	267					
1A4bi Engines with CHP unit	Gas oil	TJ	4.9	19	64	60	20					
1A4bi Engines with CHP unit	Liquefied petroleum gas	ТJ	0.26	4.0	11	11	12					
1A4bi Engines with CHP unit	Natural gas	TJ	39	156	241	288	232					
1A4bi Engines with CHP unit	Biodiesel fossil	TJ	NO	NO	NO	0.035	0.15					
1A4bi Engines with CHP unit	Biodiesel biogenic	TJ	NO	NO	NO	0.69	3.3					
1A4bi Engines with CHP unit	Biogas	ТJ	NO	NO	NO	NO	NO					
1A4bi Residential Stationary (Engines and gas turbines)		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption		TJ	209	198	187	163	138	121	121	123	128	127
1A4bi Engines with CHP unit	Gas oil	TJ	9.7	8.5	7.4	8.4	4.8	6.4	6.2	6.1	6.2	6.0
1A4bi Engines with CHP unit	Liquefied petroleum gas	ТJ	11	9.6	14	4.9	3.3	2.6	2.5	2.5	2.6	2.5
1A4bi Engines with CHP unit	Natural gas	TJ	185	177	163	147	128	110	106	109	113	112
1A4bi Engines with CHP unit	Biodiesel fossil	TJ	0.16	0.15	0.12	0.12	0.097	0.098	0.10	0.11	0.12	0.11
1A4bi Engines with CHP unit	Biodiesel biogenic	TJ	2.9	2.6	2.5	2.6	2.2	2.1	2.1	2.1	2.1	2.1
1A4bi Engines with CHP unit	Biogas	TJ	NO	NO	NO	NO	NO	NO	3.5	3.7	4.1	4.4

Table 3-22 Activity data of engines and gas turbines in 1A4c Other sectors: agriculture/forestry/fishing.

1A4ci Agriculture/Forestry/Fishing Stationary (Engin	es and gas turbines)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption		TJ	64	53	67	133	499					
1A4ci Engines used as emergency generators	Gas oil	ТJ	2.1	2.1	2.1	2.1	2.1					
1A4ci Engines with CHP unit at biogas plants	Natural gas	ТJ	2.7	1.3	2.5	2.3	NO					
1A4ci Engines with CHP unit at biogas plants	Biogas	ТJ	59	49	62	128	497					
1A4ci Agriculture/Forestry/Fishing Stationary (Engin	es and gas turbines)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption		ΤJ	930	1'043	1'194	1'274	1'405	1'614	1'764	1'911	1'948	2'005
1A4ci Engines used as emergency generators	Gas oil	ТJ	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
	Matural area	TJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1A4ci Engines with CHP unit at biogas plants	Natural gas	IJ	NU	NO	NU							

3.2.1.1.3 Model for wood energy combustion

Choice of method

The emissions from wood combustion in 1A Fuel combustion activities are calculated by a Tier 2 method based on chapter 1A4 Small combustion in the EMEP/EEA guidebook (EMEP/EEA 2023).

Methodology

The Swiss wood energy statistics (SFOE 2024b) distinguish 24 wood combustion installation types (exclusive municipal solid waste plants) that are fired with logwood, pellets, chips or so-called renewable waste from wood products and provide both the annual wood consumption for the individual categories of combustion installation types (table 4.1, categories 1-19) and the allocations of the installation types to the sectoral consumer categories (table 6.1, household, agriculture/forestry, industry, services, electricity and district heating). This allows for assigning the annual wood consumption at the level of combustion installation categories (Table 3-23) to the source categories 1A1a Public Electricity and Heat Production, 1A2gviii Other, 1A4ai Commercial/Institutional, 1A4bi Residential and 1A4ci Agriculture/Forestry/Fishing. Installation types of the wood energy statistics with the same emission behaviour are grouped into one category in Table 3-23.

The combustion of any household waste in wood-burning fireplaces and stoves is prohibited in Switzerland since 1992 (Ordinance on Air Pollution Control, Swiss Confederation 1985). Emissions from illegal domestic incineration of municipal solid waste are reported in source category 5C1a Municipal waste incineration (see chp. 6.4.2)

Cate	gories of wood combustion installations	
Swis	ss wood energy statistics	Emission factor model
1	Open fireplaces	Open fireplaces
2	Closed fireplaces	
3	Log wood stoves	Closed fireplaces, log wood stoves
4a	Heating stoves (living area)	
4b	Pellet stoves	Pellet stoves
5	Tiled stoves	Closed fireplaces, log wood stoves
6	Log wood hearths	Log wood hearths
7	Central heating hearths	Log wood hearths
8	Log wood boilers <50 kW	Log wood boilers
9	Log wood boilers >50 kW	
	Log wood dual chamber boilers	Log wood dual chamber boilers
	Automatic chip boilers < 50 kW	Automatic chip boilers < 50 kW
	Automatic pellet boilers < 50 kW	Automatic pellet boilers < 50 kW
12a	Automatic chip boilers 50–300 kW w/o wood	Automatic chip boilers 50–300 kW w/o wood
	processing companies	processing companies
12b	Automatic pellet boilers 50–300 kW	Automatic pellet boilers 50–300 kW
13	Automatic chip boilers 50–300 kW within wood	Automatic chip boilers 50–300 kW within wood
	processing companies	processing companies
14a	Automatic chip boilers 300–500 kW w/o wood	Automatic chip boilers 300–500 kW w/o wood
	processing companies	processing companies
	Automatic pellet boilers 300–500 kW	Automatic pellet boilers 300–500 kW
15	Automatic chip boilers 300–500 kW within wood	Automatic chip boilers 300–500 kW within wood
	processing companies	processing companies
16a	Automatic chip boilers > 500 kW w/o wood	Automatic chip boilers > 500 kW w/o wood
	processing companies	processing companies
16b	Automatic pellet boilers > 500 kW	Automatic pellet boilers > 500 kW
17	Automatic chip boilers > 500 kW within wood	Automatic chip boilers > 500 kW within wood
	processing companies	processing companies
18	Combined chip heat and power plants	Combined chip heat and power plants
19	Plants for renewable waste from wood products	Plants for renewable waste from wood products

Table 3-23 Assignment of the categories of wood combustion installations from the Swiss wood energy statistics (SFOE 2024b) to the categories of the emission factor model (Zotter and Nussbaumer 2022).

Emission factors

All emission factors are based on a country-specific emission factor model for wood energy that has been completely revised for the entire time series (including projections) by Zotter

and Nussbaumer (2022). Emission factor values are modelled for the years 1990, 2008, 2014, 2020 and 2035, i.e. 2008 and 2014 being the update years of the previous models. Years in between are linearly interpolated.

The model is based on a large number of air pollution control measurements, laboratory and field measurements, literature data (e.g. beReal, emission factors in the Nordic countries) and the EMEP/EEA guidebook (EMEP/EEA 2019) and takes into account both various technology standards of combustion installations and operating influences.

For single-room furnaces, i.e. open/closed fireplaces and log wood stoves (categories 1-4a, 5) the emission factors of NO_x, VOC, PM exhaust (filterable fraction) and CO are modelled based on literature emission data covering the entire combustion process including the startup phase and burn-out. A distinction was made between furnaces of conventional and modern technology. In a first step, average emission factors were derived under optimal operating conditions. Optimal operation means that no wet wood is used, the wood is lit from above and the combustion process is not negatively influenced by non-optimal operation. However, in order to be able to represent the emissions as realistically as possible, user impacts such as lighting from below, lighting with newspaper, using wet wood, overloading the combustion chamber as well as reducing the air supply were taken into account by factors. Also based on literature data, factors for the ratio of the emission factors of each disadvantageous operation mode compared to optimal operation were determined. As no literature data on the shares of the respective (disadvantageous) operating modes could be found they were estimated. Shares of 35 % optimal operation, 25 % lighting from below, 10 % lighting with newspaper, 10 % wet wood, 10 % overloaded combustion chamber and 10 % reduced air supply were assumed for a representative mean furnace operation in 2020. By varying these operation shares (user impacts) and the shares of furnace technology (conventional, modern), the emission factors for the past (1990, 2008, 2014) and the future (2035) were modelled as well. As there is no information on the technology of the appliances in the Swiss wood energy statistics (SFOE 2024b), assumptions had to be made. Only a classification into so-called conventional and modern furnaces was made. Conventional includes furnaces with single-stage combustion and those described as old in the literature. while modern comprises multi-stage furnaces and those designated as new or with the ecolabel. Assumptions on technology distribution were made for three commissioning periods (1990-1998: 100 % conventional, 1999-2008. 50 % conventional/50 % modern, 2009-2019: 25 % conventional/75 % modern) yielding a fleet of 56 % conventional and 44 % modern single-room furnaces in 2020. Compared to other countries (Austria, Denmark, Germany, Norway and Sweden) with values in the range of 20 % to 50 % this share of conventional furnaces is rather high.

For log boilers (<50 kW, >50 kW, categories 8-9), limited literature data were available for the derivation of emission factors. Only studies that reflect real operation as far as possible were considered, i.e. that cover the entire combustion process or large parts of it (at least including start or burn-out), and for which data on full and partial load were available. It was also not possible to differentiate between different technologies (conventional, modern).

For automatic boilers >50 kW (categories 12-17), combined heat and power plants (category 18) and plants for renewable waste from wood products (category 19), the emission factors of NO_x, VOC, PM exhaust and CO are derived based on the factors of the different operating phases (start, stop, full load, partial load and stand-by) and their effective combustion heat output, taking into account typical shares of the respective phases.

Besides the emission factors for PM exhaust, those for PM condensable were also derived, see Table 3-25. The condensable PM fractions were estimated using the ratio of PM (total particles)/PM exhaust based on literature data, including measurements by Zotter and Nussbaumer (2022) on some installation types relevant for Switzerland. The model differentiates between manually operated single room stoves / central heating boilers and (larger) automatic combustion installations, see Table 3-26. The latest submission of Switzerland's air pollution emission inventory now also includes the emissions of PM condensable.

A mean constant NMVOC to VOC ratio over time of 0.7 is used for all combustion installation types, based on literature emission data for single-room furnaces and central heating systems of different technology, operating conditions and phases. The shares of PM2.5 in TSP and PM10 in TSP are assumed to be 90 % and 95 %, respectively, for all installation types and the entire time series.

For the temporal development of the emission factors of the priority heavy metals Pb and Cd the same relative development was assumed as for PM and for those of the POPs (PCDD/PCDF, PAHs, HCB and PCBs) as for CO. The emission factors of Hg were assumed to be constant over the entire period.

Table 3-24 Emission factors 2023 of pollutants due to wood combustion from source categories 1A1-1A4 ("w/o wood proc. companies." stands for "without wood processing companies"). PM2.5, PM10 and TSP correspond to PM total particles, which include both the exhaust (filterable) and condensable fractions.

1A Combustion (Wood combustion)	Unit of activity	NOx	NMVOC	SOx	NH3	PM2.5	PM10	TSP	BC ex	CO	
TA Combustion (Wood combustion)	data	g/	g/	g/	g/	g/	g/	g/	g/	g/	
Open fireplaces	GJ wood	80	251	10	4.8	173	182	192	58	2'900	
Closed fireplaces	GJ wood	85	229	10	4.8	146	155	162	52	2'680	
Log wood stoves	GJ wood	85	229	10	4.8	146	155	162	52	2'680	
Heating stoves (living area)	GJ wood	85	229	10	4.8	146	155	162	52	2'680	
Pellet stoves	GJ wood	85	13	10	1.9	65	68	72	13	372	
Tiled stoves	GJ wood	85	229	10	4.8	146	155	162	52	2'680	
Log wood hearths	GJ wood	70	325	10	4.8	342	361	380	122	3'840	
Central heating hearths	GJ wood	70	325	10	4.8	342	361	380	122	3'840	
Log wood boilers <50 kW	GJ wood	100	64	10	1.9	97	103	108	15	1'580	
Log wood boilers >50 kW	GJ wood	100	64	10	1.9	97	103	108	15	1'580	
Log wood dual chamber boilers	GJ wood	70	336	10	4.8	342	361	380	130	4'000	
Automatic chip boilers < 50 kW	GJ wood	120	38	10	1.9	151	160	168	16	840	
Automatic pellet boilers < 50 kW	GJ wood	70	12	10	1.9	29	31	32	6.6	306	
Automatic chip boilers 50-300 kW w/o wood proc. companies	GJ wood	128	19	3.0	1.9	51	55	57	2.6	424	
Automatic pellet boilers 50-300 kW	GJ wood	75	6.8	3.0	1.9	28	30	31	0.98	158	
Automatic chip boilers 50-300 kW within wood proc.											
companies	GJ wood	138	19	3.0	1.9	52	56	58	2.6	434	
Automatic chip boilers 300-500 kW w/o wood proc. companies	GJ wood	128	19	3.0	1.9	51	55	57	2.6	424	
Automatic pellet boilers 300-500 kW	GJ wood	75	6.8	3.0	1.9	28	30	31	0.98	158	
Automatic chip boilers 300-500 kW within wood proc. companies	GJ wood	138	19	3.0	1.9	52	56	58	2.6	434	
Automatic chip boilers > 500 kW w/o wood proc.	GJ wood	118	6.6	3.0	2.0	9.0	9.9	9.9	0.18	132	
companies Automatic pellet boilers > 500 kW	GJ wood	72	2.0	3.0	2.0	5.1	5.1	5.1	0.10	48	
Automatic chip boilers > 500 kW within wood proc. companies	GJ wood	118	6.8	3.0	2.0	19	20	21	0.44	144	
Combined chip heat and power plants	GJ wood	39	0.28	1.0	2.0	0.33	0.33	0.33	0.0030	9.2	
Plants for renewable waste from wood products	GJ wood waste	128	1.1	1.0	5.0	1.4	1.4	1.5	0.030	56	
				10				110	0.000	00	
1A Combustion (Wood combustion)	Unit of activity	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
	data	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
Open fireplaces	GJ wood	19	1.0	2.0	480	48	48	28	28	4'800	5
Closed fireplaces	GJ wood	19	1.0	2.0	480	48	48	28	28	4'800	5
Log wood stoves	GJ wood	19	1.0	2.0	480	48	48	28	28	4'800	5
Heating stoves (living area)	GJ wood	19	1.0	2.0	480	48	48	28	28	4'800	5
Pellet stoves	GJ wood	19	1.0						-		1
Tiled stoves	GJ wood	19		2.0	48	9.4	9.4	3.8	3.8	4'800	
Log wood hearths			1.0	2.0	480	48	48	28	3.8 28	4'800	5
	GJ wood	19	1.0 1.0	2.0 2.0	480 480	48 48	48 48	28 28	3.8 28 28	4'800 4'800	5 5
Central heating hearths	GJ wood	19 19	1.0 1.0 1.0	2.0 2.0 2.0	480 480 480	48 48 48	48 48 48	28 28 28	3.8 28 28 28	4'800 4'800 4'800	5 5 5
Log wood boilers <50 kW	GJ wood GJ wood	19 19 19	1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0	480 480 480 240	48 48 48 28	48 48 48 28	28 28 28 14	3.8 28 28 28 28 14	4'800 4'800 4'800 4'800	5 5 5 1
Log wood boilers <50 kW Log wood boilers >50 kW	GJ wood GJ wood GJ wood	19 19 19 19	1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0	480 480 480 240 240	48 48 48 28 28	48 48 48 28 28	28 28 28 14 14	3.8 28 28 28 28 14 14	4'800 4'800 4'800 4'800 4'800	5 5 5 1 1
Log wood boilers <50 kW Log wood boilers >50 kW Log wood dual chamber boilers	GJ wood GJ wood GJ wood GJ wood	19 19 19 19 20	1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500	48 48 48 28 28 28 100	48 48 48 28 28 28 100	28 28 28 14 14 60	3.8 28 28 28 14 14 60	4'800 4'800 4'800 4'800 4'800 5'000	5 5 5 1 1 6
Log wood boilers <50 kW Log wood boilers >50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW	GJ wood GJ wood GJ wood GJ wood GJ wood	19 19 19 19 20 19	1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 94	48 48 28 28 100 9.4	48 48 28 28 100 9.4	28 28 28 14 14 60 3.8	3.8 28 28 28 14 14 60 3.8	4'800 4'800 4'800 4'800 4'800 5'000 4'800	5 5 5 1 1 6 6
Log wood boilers <50 kW Log wood boilers >50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW Automatic pellet boilers < 50 kW	GJ wood GJ wood GJ wood GJ wood	19 19 19 19 20	1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500	48 48 48 28 28 28 100	48 48 48 28 28 28 100	28 28 28 14 14 60	3.8 28 28 28 14 14 60	4'800 4'800 4'800 4'800 4'800 5'000	5 5 5 1 1 6 6
Log wood boilers <50 kW Log wood boilers >50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW	GJ wood GJ wood GJ wood GJ wood GJ wood	19 19 19 19 20 19	1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 94	48 48 28 28 100 9.4	48 48 28 28 100 9.4	28 28 28 14 14 60 3.8	3.8 28 28 28 14 14 60 3.8	4'800 4'800 4'800 4'800 4'800 5'000 4'800	5 5 5 1 1 1 6 1 1
Log wood boilers <50 kW Log wood boilers >50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW Automatic pellet boilers < 50 kW Automatic chip boilers 50-300 kW w/o wood proc.	GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood	19 19 19 20 19 19	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 94 46	48 48 28 28 100 9.4 9.4	48 48 28 28 100 9.4 9.4	28 28 28 14 14 60 3.8 3.8	3.8 28 28 28 14 14 60 3.8 3.8	4'800 4'800 4'800 4'800 4'800 5'000 4'800 4'800	5 5 1 1 6 1 1 1 1
Log wood boilers <50 kW Log wood boilers <50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW Automatic pellet boilers <50 kW Automatic chip boilers 50-300 kW w/o wood proc. companies Automatic pellet boilers 50-300 kW Automatic philers 50-300 kW	GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood	19 19 19 20 19 19 19 19 19	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 94 46 48	48 48 28 28 100 9.4 9.4 4.6	48 48 28 28 100 9.4 9.4 4.6	28 28 14 14 60 3.8 3.8 2.4	3.8 28 28 28 14 14 60 3.8 3.8 2.4	4'800 4'800 4'800 4'800 5'000 4'800 4'800 4'800 4'600	5 5 5 1 1 1 6 1 1 1 1 1
Log wood boilers <50 kW Log wood boilers <50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW Automatic chip boilers <50 kW Automatic chip boilers <50 kW Automatic chip boilers 50-300 kW w/o wood proc. companies Automatic chip boilers 50-300 kW within wood proc. companies Automatic chip boilers 300-500 kW w/o wood proc.	GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood	19 19 19 20 19 19 19 19 13 13 13	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 94 46 48 48 48 96	48 48 28 28 100 9.4 9.4 4.6 4.6 4.6	48 48 28 28 100 9.4 9.4 4.6 4.6 4.6	28 28 28 14 14 60 3.8 3.8 2.4 2.4 2.4 2.4	3.8 28 28 28 14 14 60 3.8 3.8 2.4 2.4 2.4	4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'600 4'600 4'600	5 5 5 1 1 1 6 1 1 1 1 1 1
Log wood boilers <50 kW Log wood boilers <50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW Automatic chip boilers < 50 kW Automatic chip boilers 50-300 kW w/o wood proc. companies Automatic chip boilers 50-300 kW Automatic chip boilers 50-300 kW Automatic chip boilers 50-300 kW within wood proc. companies	GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood	19 19 19 200 19 19 13 13 13 13 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 944 46 48 48 48 48	48 48 28 28 100 9.4 4.6 4.6 4.6 0.94	48 48 48 28 28 100 9.4 9.4 4.6 4.6 4.6 0.94	28 28 28 14 14 60 3.8 3.8 2.4 2.4 2.4 2.4 0.94	3.8 28 28 28 28 14 4 60 3.8 3.8 2.4 2.4 2.4 2.4 0.94	4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'600 4'600 4'600	55 55 1 1 1 6 6 1 1 1 1 1 1 1
Log wood boilers <50 kW Log wood boilers <50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW Automatic chip boilers < 50 kW Automatic chip boilers 50-300 kW w/o wood proc. companies Automatic chip boilers 50-300 kW Automatic chip boilers 50-300 kW within wood proc. companies Automatic chip boilers 300-500 kW w/o wood proc. companies Automatic pellet boilers 300-500 kW Automatic pellet boilers 300-500 kW Automatic chip boilers 300-500 kW	GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood GJ wood	19 19 19 20 19 19 19 19 13 13 13	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 94 46 48 48 48 96	48 48 28 28 100 9.4 9.4 4.6 4.6 4.6	48 48 28 28 100 9.4 9.4 4.6 4.6 4.6	28 28 28 14 14 60 3.8 3.8 2.4 2.4 2.4 2.4	3.8 28 28 28 14 14 60 3.8 3.8 2.4 2.4 2.4	4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'600 4'600 4'600	5 5 5 1 1 1 6 1 1 1 1 1 1 1 1 1
Log wood boilers <50 kW Log wood boilers <50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW Automatic chip boilers <50 kW Automatic chip boilers 50-300 kW w/o wood proc. companies Automatic chip boilers 50-300 kW Automatic chip boilers 50-300 kW within wood proc. companies Automatic chip boilers 300-500 kW w/o wood proc. companies Automatic pellet boilers 300-500 kW	GJ wood GJ wood	19 19 19 200 19 19 13 13 13 13 9.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 94 46 48 48 48 48 48 96	48 48 48 28 28 100 9.4 4.6 4.6 4.6 4.6 0.94 0.94 0.94	48 48 48 28 28 28 100 9.4 4.6 4.6 4.6 4.6 4.6 0.94 0.94 0.94	28 28 28 14 60 3.8 3.8 2.4 2.4 2.4 0.94 0.94	3.8 28 28 28 14 14 60 3.8 3.8 3.8 2.4 2.4 2.4 2.4 0.94 0.94	4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'600 4'600 4'600 4'600 4'600	5 5 5 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1
Log wood bollers <50 kW Log wood bollers <50 kW Log wood dual chamber bollers Automatic chip boilers < 50 kW Automatic chip boilers < 50 kW Automatic chip boilers 50-300 kW w/o wood proc. companies Automatic chip boilers 50-300 kW Automatic chip boilers 50-300 kW within wood proc. companies Automatic chip boilers 300-500 kW w/o wood proc. companies Automatic chip boilers 300-500 kW Automatic chip boilers 300-500 kW Automatic chip boilers 300-500 kW Automatic chip boilers > 500 kW w/o wood proc. companies	GJ wood GJ wood	19 19 19 20 19 20 19 19 13 13 13 13 9.0 9.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 94 46 48 48 48 48 48 48 48 48 48 48 48	48 48 48 28 28 100 9.4 4.6 4.6 4.6 4.6 0.94 0.94 0.94	48 48 48 28 28 28 100 9.4 4.6 4.6 4.6 4.6 0.94 0.94 0.94	28 28 28 14 60 3.8 3.8 2.4 2.4 2.4 0.94 0.94 0.94	3.8 28 28 28 14 14 14 60 3.8 3.8 2.4 2.4 2.4 2.4 0.94 0.94 0.94	4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'600 4'600 4'600 4'600 4'600 4'600	5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Log wood boilers <50 kW Log wood boilers <50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW Automatic chip boilers < 50 kW Automatic chip boilers <50 kW Automatic chip boilers 50-300 kW w/o wood proc. companies Automatic chip boilers 50-300 kW within wood proc. companies Automatic chip boilers 300-500 kW w/o wood proc. companies Automatic chip boilers 300-500 kW Automatic chip boilers 300-500 kW Automatic chip boilers 300-500 kW Automatic chip boilers 300-500 kW Automatic chip boilers 300-500 kW within wood proc. companies Automatic chip boilers 300-500 kW w/o wood proc. companies Automatic pellet boilers > 500 kW w/o wood proc.	GJ wood GJ wood	19 19 19 200 19 19 13 13 13 13 9.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 500 94 46 48 48 48 48 48 96	48 48 48 28 28 100 9.4 4.6 4.6 4.6 4.6 0.94 0.94 0.94	48 48 48 28 28 28 100 9.4 4.6 4.6 4.6 4.6 4.6 0.94 0.94 0.94	28 28 28 14 60 3.8 3.8 2.4 2.4 2.4 0.94 0.94	3.8 28 28 28 14 14 60 3.8 3.8 3.8 2.4 2.4 2.4 2.4 0.94 0.94	4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'600 4'600 4'600 4'600 4'600	1 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1
Log wood bollers <50 kW Log wood bollers <50 kW Log wood dual chamber bollers Automatic chip boilers < 50 kW Automatic chip boilers < 50 kW Automatic chip boilers 50-300 kW w/o wood proc. companies Automatic chip boilers 50-300 kW Automatic chip boilers 50-300 kW within wood proc. companies Automatic chip boilers 300-500 kW w/o wood proc. companies Automatic chip boilers 300-500 kW Automatic chip boilers 300-500 kW Automatic chip boilers 300-500 kW Automatic chip boilers > 500 kW w/o wood proc. companies	GJ wood GJ wood	19 19 19 20 19 20 19 13 13 9.0 9.0 9.0 9.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 94 46 48 48 96 48 48 48 48 48 96 48	48 48 48 28 28 100 9.4 4.6 4.6 4.6 4.6 4.6 0.94 0.94 0.94 0.94 0.94	48 48 48 28 28 28 100 9.4 9.4 4.6 4.6 4.6 4.6 0.94 0.94 0.94 0.94 0.94	28 28 28 14 60 3.8 3.8 3.8 2.4 2.4 2.4 2.4 0.94 0.94 0.94 0.94 0.94	3.8 28 28 28 14 14 60 3.8 3.8 2.4 2.4 2.4 2.4 0.94 0.94 0.94 0.94 0.94	4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'600 4'600 4'600 4'600 4'600 4'600 940 940 940	55 55 11 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1
Log wood boilers <50 kW Log wood boilers <50 kW Log wood dual chamber boilers Automatic chip boilers < 50 kW Automatic chip boilers < 50 kW Automatic chip boilers 50-300 kW w/o wood proc. companies Automatic chip boilers 50-300 kW within wood proc. companies Automatic chip boilers 300-500 kW w/o wood proc. companies Automatic chip boilers 300-500 kW within wood proc. companies Automatic chip boilers 300-500 kW within wood proc. companies Automatic chip boilers 300-500 kW within wood proc. companies Automatic chip boilers > 500 kW w/o wood proc. companies Automatic pellet boilers > 500 kW w/o wood proc. Companies	GJ wood GJ wood	19 19 19 20 19 20 19 13 13 9.0 9.0 9.0 9.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	480 480 240 240 94 46 48 48 96 48 48 48 48 48 48	48 48 48 28 28 28 100 9.4 4.6 4.6 4.6 4.6 0.94 0.94 0.94 0.94 0.94 0.94	48 48 48 28 28 100 9.4 9.4 4.6 4.6 4.6 4.6 0.94 0.94 0.94 0.94	28 28 28 14 60 3.8 3.8 2.4 2.4 2.4 2.4 0.94 0.94 0.94 0.94	3.8 28 28 28 14 14 60 3.8 3.8 2.4 2.4 2.4 2.4 0.94 0.94 0.94	4'800 4'800 4'800 4'800 4'800 4'800 4'800 4'600 4'600 4'600 4'600 4'600 4'600 940 940	55 55 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Г

1A Combustion (Wood combustion)	Unit of activity	ex	cond	PM10 ex	cond	TSP ex	cond
	data	g/	g/	g/	g/	g/	g/
Open fireplaces	GJ wood	86	86	91	91	96	96
Closed fireplaces	GJ wood	76	70	80	75	84	78
Log wood stoves	GJ wood	76	70	80	75	84	78
Heating stoves (living area)	GJ wood	76	70	80	75	84	78
Pellet stoves	GJ wood	34	30	36	32	38	34
Tiled stoves	GJ wood	76	70	80	75	84	78
Log wood hearths	GJ wood	171	171	181	181	190	190
Central heating hearths	GJ wood	171	171	181	181	190	190
Log wood boilers <50 kW	GJ wood	50	47	53	49	56	52
Log wood boilers >50 kW	GJ wood	50	47	53	49	56	52
Log wood dual chamber boilers	GJ wood	180	162	190	171	200	180
Automatic chip boilers < 50 kW	GJ wood	79	72	84	76	88	80
Automatic pellet boilers < 50 kW	GJ wood	26	2.8	28	2.8	29	2.9
Automatic chip boilers 50-300 kW w/o wood proc. companies	GJ wood	47	4.4	49	5.2	52	5.2
Automatic pellet boilers 50-300 kW	GJ wood	25	2.8	27	2.8	28	2.8
Automatic chip boilers 50-300 kW within wood proc. companies	GJ wood	48	4.4	50	5.2	53	5.3
Automatic chip boilers 300-500 kW w/o wood proc. companies	GJ wood	47	4.4	49	5.2	52	5.2
Automatic pellet boilers 300-500 kW	GJ wood	25	2.8	27	2.8	28	2.8
Automatic chip boilers 300-500 kW within wood proc. companies	GJ wood	48	4.4	50	5.2	53	5.3
Automatic chip boilers > 500 kW w/o wood proc. companies	GJ wood	8.2	0.82	9.0	0.90	9.0	0.90
Automatic pellet boilers > 500 kW	GJ wood	4.6	0.46	4.6	0.46	4.6	0.46
Automatic chip boilers > 500 kW within wood proc. companies	GJ wood	16	2.6	17	2.6	18	2.6
Combined chip heat and power plants	GJ wood	0.30	0.030	0.30	0.030	0.30	0.030
Plants for renewable waste from wood products	GJ wood waste	1.3	0.13	1.3	0.13	1.4	0.14

Table 3-26 Ratios of PM(total particles)/PMexhaust for wood combustion installations (model values, Zotter and Nussbaumer (2022))

1A Wood combustion	1990	2008	2014	2020	2035
		PM(total pa	articles)/PMe	exhaust	
Open fireplaces					2
Closed fireplaces, log wood stoves					1.5
Pellet stoves					1.3
Log wood hearths	3		2		2
Log wood boilers					1.5
Log wood dual chamber boilers					2
Automatic chip boilers < 50 kW					1.5
Automatic pellet boilers < 50 kW					
Automatic chip boilers 50–300 kW w/o wood proc. companies					
Automatic pellet boilers 50–300 kW					
Automatic chip boilers 50–300 kW within wood proc. companies					
Automatic chip boilers 300–500 kW w/o wood proc. companies					
Automatic pellet boilers 300–500 kW	1.5		1.1		
Automatic chip boilers 300–500 kW within wood proc. companies	1.5		1.1		
Automatic chip boilers > 500 kW w/o wood proc. companies					
Automatic pellet boilers > 500 kW					
Automatic chip boilers > 500 kW within wood proc. companies	1				
Combined chip heat and power plants					
Plants for renewable waste from wood products					

Activity data

Categories of wood combustion installations and their respective wood energy consumption (see Table 3-27) are based on the Swiss wood energy statistics (SFOE 2024b, table 4.1) as well as the disaggregation into the individual source categories 1A1a Public electricity and heat production, 1A2gviii Manufacturing industries: Other, 1A4ai Commercia/Institutional, 1A4bi Residential and 1A4ci Agriculture/Forestry/Fishing (SFOE 2024b, table 6.1).

In the statistics, the wood energy consumption of single-room furnaces and central heating systems (fireplaces, stoves and boilers <50 kW, categories 1-11b) is not based on sales figures (and estimated amounts of collected wood) but modelled based on the stock of appliances of the individual installation types and their average type-specific wood consumption. The number of new appliances that are annually commissioned are collected based on sales statistics of the associations of manufacturers and importers of wood furnaces and large DIY markets. The stock of appliances is calculated based on the annual number of new appliances commissioned and their respective average service life assuming that they are all decommissioned when they reach the average service life. The average service life is installation type-specific and varies between 15 years for pellets stoves and automatic boilers and 30 years for tiled stoves. The installation-specific wood consumption is derived from the average rated thermal input and the average number of operating hours, also taking into account whether the installations are operated only to a small extent or not at all since the main heating of the building is provided by another heating system (e.g. gas oil, natural gas). The wood energy consumption of automatic boilers >50 kW (categories 12-17) is based on the actual number of these boilers, which is updated annually based on information from the cantons and manufacturing companies, and their installed capacities. The fuel consumption of combined heat and power plants (category 18) and plants for renewable waste from wood products (category 19) are collected individually due to their small number and large outputs.

As additional data source, specific bottom-up information from the industry is used in order to allocate wood combustion emissions directly. Thus, activity data of wood combustion of 1A2f, 1A2gviii and 1A4ci are allocated on the basis of industry information. The information on the specific processes is documented in the respective EMIS database (EMIS 2025/1A Holzfeuerungen). Note that this specific industry data is subtracted from the activity data of the respective combustion installation category in order to avoid double counting within source category 1A2 and 1A4 (see Figure 3-17):

- 1A2: The wood energy consumption of 1A2f Brick and tile production (2000-2012) was subtracted from the activity data of 1A2gviii Automatic chip boiler >500 kW without wood processing companies, while that of wood waste in 1A2f Cement production (1994-1997 and from 2009 onwards) and 1A2gviii Fibreboard is subtracted from the activity data of 1A2gviii Plants for renewable waste from wood products.
- 1A4: From 2013 onwards, also the wood energy consumption in 1A4ci Grass drying has been subtracted from the activity data in 1A4ci Automatic chip boiler >500 kW without wood processing companies.

1A Combustion (Wood combustion) 1990 Unit 1995 2000 2005 2010 Total fuel consumption 28'219 29'649 27'426 31'413 40'135 124 1'211 Open fireplaces Closed fireplaces TJ wood 226 195 181 270 54 25 766 95 TJ wood TJ wood 1'144 1'76 2'148 2'78 3'879 Log wood stove Heating stoves (living area) TJ wood 1'830 1'55 1'012 584 254 Pellet stoves N N 151 FJ wood 7.0 Tiled stoves T.I wood 4'041 2'56' 2'71(3'175 3'30 1'427 Log wood hearths TJ wood 3'877 2'840 1'611 854 4'643 4'17 3'126 1'494 Central heating hearths TJ wood 2'59 Log wood boilers <50 kW 5'21 5'39 4'86 4'99 4'488 Doow LT 244 Log wood boilers >50 kW TJ wood 88 17 362 421 Log wood dual chamber boilers TJ wood 1'964 1'77 977 48 273 Automatic chip boilers < 50 kW TJ wood 43 550 753 1'008 239 NO NC 56 804 2'106 Automatic pellet boilers < 50 kW TJ wood Automatic chip boilers 50-300 kW w/o wood proc. companies TJ wood 464 858 NC 1'16' 1'86 2'73 NC Automatic pellet boilers 50-300 kW TJ wood 3.0 114 601 Automatic chip boilers 50-300 kW within wood proc TJ wood 895 1'186 1'216 1'365 1'53 companies 237 52 713 1'000 1'503 Automatic chip boilers 300-500 kW w/o wood proc. companies TJ wood Automatic pellet boilers 300-500 kW NC NC NO 195 TJ wood 19 Automatic chip boilers 300-500 kW within wood proc TJ wood 412 570 588 632 674 companies Automatic chip boilers > 500 kW w/o wood proc. companies TJ wood 314 1'096 1'732 2'400 4'48? Automatic pellet boilers > 500 kW TJ wood NO NO NO 9.0 186 Automatic chip boilers > 500 kW within wood proc. companies TJ wood 1'389 2'128 2'368 2'76 2'96(Combined chip heat and power plants TJ wood NC 3. 186 12 2'756 Plants for renewable waste from wood products TJ wood waste 979 1'060 1'345 2'439 3'070 1A Combustion (Wood combustion) Unit 2016 2017 2018 2014 2015 2019 2020 2021 2022 2023 37'314 41'149 43'33 42'66 49'787 44'91 46'931 Total fuel consumption ΤJ 38'92 42'57 43'57 TJ wood Open fireplaces 6 6 68 1 40 Closed fireplaces TJ wood 887 933 941 865 759 735 649 721 582 569 3'09 3'37 3'572 3'42 3'13 3'10 2'82 3'170 2'59 2'551 FJ wood Log wood stoves T.I wood Heating stoves (living area) 120 113 103 81 7. 6 72 175 170 Pellet stoves TJ wood 181 199 196 186 187 198 166 2'72 3'246 3'165 2'962 3'031 2'833 3'315 2'918 Tiled stoves FJ wood 3'03 2'81 Log wood hearths 52 46 38 293 Doow LT 51 40 34 31 473 472 384 37 461 33 296 TJ wood 432 365 30 Central heating hearths 1'822 Log wood boilers <50 kW TJ wood 2'499 2'63 2'69 2'53 2'300 2'30 2'06 2'25 1'82 Log wood boilers >50 kW TJ wood 321 337 320 297 270 213 333 29 26 216 125 119 112 67 5 21 Log wood dual chamber boiler 88 27 TJ wood 798 2'610 74 667 2'538 559 2'489 450 Automatic chip boilers < 50 kW TJ wood 78 64 582 45 2'099 2'719 2'825 Automatic pellet boilers < 50 kW TJ wood 2'619 2'67 2'909 Automatic chip boilers 50-300 kW w/o wood proc. companies TJ wood 2'64 3'03 3'350 3'37 3'252 3'37 3'23 3'836 3'30 3'456 Automatic pellet boilers 50-300 kW 857 1'09 1'31(1'451 1'498 1'64 1'676 1'97 2'127 Doow LT 2'136 Automatic chip boilers 50-300 kW within wood proc. 1'282 1'400 1'489 1'486 1'426 1'42 1'37 1'530 1'333 1'379 TJ wood companies 1'853 Automatic chip boilers 300-500 kW w/o wood proc. companies TJ wood 1'436 1'644 1'816 1'820 1'742 1'81 1'746 2'039 1'759 Automatic pellet boilers 300-500 kW 419 TJ wood 239 279 337 355 352 365 352 449 391 Automatic chip boilers 300-500 kW within wood proc 570 600 632 623 617 58 569 623 540 558 TJ wood companies Automatic chip boilers > 500 kW w/o wood proc. companies 5'015 6'575 6'778 7'032 7'134 7'638 TJ wood 5'843 6'52 6'927 8'312

Table 3-27 Wood energy consumption in 1A Fuel combustion ("w/o wood proc. companies." stands for "without wood processing companies").

3.2.1.2 Country-specific and fuel-specific default emission factors for 1A Fuel combustion

281

2'407

5'32

3'450

TJ wood

TJ wood

TJ wood

TJ wood waste

317

2'568

3'830

3'367

364

2'653

3'970

4'404

362

2'546

4'887

4'887

346

2'397

4'696

4'463

37

2'460

5'92

4'513

37

2'387

6'319

4'906

445

2'632

6'795

6'653

39

2'293

7'294

428

2'413

7'727

6'692

Methodology

Automatic pellet boilers > 500 kW

Combined chip heat and power plants

Plants for renewable waste from wood products

Automatic chip boilers > 500 kW within wood proc. companies

For fossil standard fuels in source category 1A Fuel combustion, we use country-specific and fuel-specific default emission factors, whose values are applicable to several source categories, for SO₂ only. This is appropriate for SO₂ because in many cases, the amount of SO₂ emitted per amount of fuel burned directly depends on the sulphur content of the fuel. For a given fuel, the sulphur content for the whole country is considered homogenous. For other pollutants, the emission factors depend on the combustion process as well and are reported in their specific chapters.

The country-specific default emission factors for SO_2 are estimated as follow:

• Where available, we use sulphur content measured annually in fuels in Switzerland, usually expressed as a mass of sulphur per mass of fuel. For liquid fuels, due to

yearly fluctuating average values probably caused by a low number of samples per year, we use as annual sulphur content the average value from all samples available from the given year as well as the previous and subsequent year. In case no data are available for a given year, we use a linear interpolation between existing 3-yearaverage data points. An overview of the available measured data is presented in Table 3-29. These data are available for diesel oil, gasoline, gas oil and residual fuel oil.

 In case no measurement is available, we assume that the legal emission limits are respected and use these legal limits as emission factors. An overview of applicable maximal emission limits as defined in the Federal Ordinance on Air Pollution Control OAPC (Swiss Confederation 1985) is given in Table 3-28. This approach is used in particular for bituminous coal and lignite.

The SO_2 emission factor expressed as mass per energy amount of a given fuel *i* is computed as:

$$EF_{SO_2,i} = \frac{M_{SO_2}}{M_S} * \frac{C_{S,i}}{NCV_i}$$

Where:

 $EF_{SO2,i}$ is the emission factor for SO₂ for a given fuel *i* (g/GJ)

 M_{SO2} is the molar mass of SO_2 (g/mol)

M_S is the molar mass of sulphur (g/mol)

 $C_{S,i}$ is the measured sulphur content of the given fuel *i* if applicable, otherwise the maximum legal limit for sulphur content (g/t)

NCV_i is the net calorific value for the given fuel i (GJ/t)

The obtained country-specific and fuel-specific SO_2 emission factors are reported in Table 3-30.

Ongoing measurement surveys

"Schwerpunktaktion, SPA": The data produced by the Federal Office for Customs and Border Security (FOCBS) through its measurement project "Schwerpunktaktion Brenn und Treibstoffe" ("SPA") are used from 2004 onwards. This project aims at estimating the sulphur content for diesel oil, gasoline, gas oil Euro and Eco and residual fuel oil.

"Tankstellensurvey, TSS": For diesel oil and gasoline, the measurement project "Tankstellensurvey" ("TSS"), piloted by the FOEN, started in 2009 and is conducted annually. Samples are taken from a representative set of fueling stations in Switzerland and analysed for sulphur content.

Details per fuel type

Gas oil, heating gas: 2006 saw the introduction to the market of low-sulphur eco-grade gas oil with a maximum legal sulphur limit of 50 g/t. From 2009 onwards, FOCBS measurements ("SPA" campaign) include both standard Euro- and eco-grade gas oil. For eco-grade gas oil for the years before 2009, values are assumed equal to those from 2009. For each year, the sulphur content for the sum of gas oil is the measured sulphur content for each grade, weighted by the respective total annual fuel consumption. From 2014 onwards, the detailed annual fuel consumption for the two grades is available from the activity report of Carbura

(latest report: Carbura 2023b). The fraction of used eco-grade is interpolated linearly between 2006 and 2013. Measurements from both the SPA (from 2004 onwards) and the TSS (from 2009 onwards) campaigns are used. Before 2004, we use data as published in SAEFL (2000).

The emission factor for heating gas (used as fuel in source category 1A2c Chemicals) is assumed equal to the one for gas oil.

Diesel oil, Biodiesel: Measurements from both the SPA (from 2004 onwards) and the TSS (from 2009 onwards) campaigns are used. Before 1994, data are assumed equal to the measured values for Gas oil (Euro grade). Between 1994 and 2004, data are used as published in SAEFL 2000.

The emission factor for biodiesel is assumed equal to the one for diesel oil.

Gasoline, Bioethanol: Measurements from both the SPA (from 2004 onwards) and the TSS (from 2009 onwards) campaigns are used. Due to the absence of data for 1990-2000 included, the sulphur content in gasoline is assumed to be 10% less than the legal maximum limit of 200 g/t, producing a value of 180 g/t. Values are linearly interpolated between 2000 and 2004.

The emission factor for bioethanol is assumed equal to the one for gasoline.

Residual fuel oil, Gasolio: Measurements from the SPA campaign are used from 2004 onwards. For previous years, we use data as published in SAEFL (2000).

The emission factor for gasolio (used as fuel in source category 1A2c Chemicals) is assumed equal to the one for residual fuel oil.

Liquefied petroleum gas: No data is available for liquefied petroleum gas. We assume that the sulphur content is near the legal limit of 190 g/t for natural gas and therefore use a value of 0.5 g/GJ.

Natural gas: For natural gas for 2003, 2006, 2009 and then annually from 2011 onwards, we use the measured sulphur content as published by the SGWA (latest report: SGWA 2024). We use the annual data without averaging over 3 years because fluctuations between years are likely caused by different field origins of the natural gas. We also use a linear interpolation in case of missing data. For all years before 2003, we assume that the sulphur content in natural gas is near the legal limit of 190 g/t and therefore use a value of 0.5 g/GJ.

Gaseous fuels of biogenic origin: For biogas, sewage gas and landfill gas, no data are available. We assume that the sulphur content is near the legal limit of 190 g/t and therefore use a value of 0.5 g/GJ.

Other bituminous coal: There are no measured data and we assume that the sulphur content is 20% below the legal limit. The legal limit of sulphur content depends on the size of the heat capacity of the combustion system. The value of 1 % sulphur content (350 g SO_2/GJ) shown in Table 3-28 holds for heat capacity below 1 MW (see OAPC Annex 3, §513 (Swiss Confederation 1985)). For larger capacities, the value is 3 % (OAPC Annex 5, §2, Swiss Confederation 1985). For industrial combustion plants, the limit for the exhaust emissions actually sets the corresponding maximum sulphur content to 1.4 % (500 g SO_2/GJ).

Lignite: There are no measured data and we assume that the sulphur content is 10% below the legal limit, which is the same as for bituminous coal.

Jet kerosene: There is no default, country-specific emission factor for SO₂ for jet kerosene. Category-specific emission factors are reported in their respective chapters.

			Maxim	um legal limit	t of sulphur c	ontent			
Fuel	Diesel oil	Gasoline	Gas oil (Euro extra- light)	Gas oil (eco extra-light)	Natural gas	Res. fuel oil Class A	Res. fuel oil Class B	Coal, thermal input < 1MW	Coal, thermal input > 1MW
Ref. OAPC	OAPC	OAPC	OAPC	OAPC	OAPC	OAPC	OAPC	OAPC	OAPC
2022	Annex 5	Annex 5	Annex 5	Annex 5	Annex 5	Annex 3,	Annex 5	Annex 3	Annex 5
2022	§6	§5	§11bis a	§11bis b	§42	§421, lit.2	§11bis c	§513	§2
Unit	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t	g/t
1990	2'000	200	2'000	NO	190	15'000	28'000	10'000	30'000
1991	2'000	200	2'000	NO	190	10'000	28'000	10'000	30'000
1992	2'000	200	2'000	NO	190	10'000	28'000	10'000	30'000
1993	2'000	200	2'000	NO	190	10'000	28'000	10'000	30'000
1994	2'000	200	2'000	NO	190	10'000	28'000	10'000	30'000
2000	350	150	2'000	NO	190	10'000	28'000	10'000	30'000
2005	50	50	2'000	NO	190	10'000	28'000	10'000	30'000
2008	50	50	2'000	NO	190	10'000	28'000	10'000	30'000
2009	10	10	1'000	NO	190	10'000	28'000	10'000	30'000
2018	10	10	1'000	50	190	10'000	28'000	10'000	30'000
2023	10	10	1'000	50	190	10'000	28'000	10'000	30'000

Table 3-28 Legal limits for sulphur content per fuel type.

		Measured	sulphur con		
Fuel	Diesel oil	Gasoline	Gas oil	Gas oil (Eco)	Res. fuel oil
			(Euro)		Class A
Unit	g/t	g/t	g/t	g/t	g/t
1990	NE	NE	1'600	NO	9'747
1991	NE	NE	1'300	NO	8'900
1992	NE	NE	1'200	NO	8'600
1993	NE	NE	1'000	NO	8'700
1994	434	NE	1'350	NO	7'710
1995	341	NE	1'170	NO	7'770
1996	372	NE	1'160	NO	7'770
1997	353	NE	1'250	NO	7'000
1998	402	NE	926	NO	8'300
1999	443	NE	650	NO	6'200
2000	272	NE	680	NO	6'600
2001	250	NE	830	NO	8'200
2002	235	NE	798	NO	8'200
2003	200	NE	NE	NO	7'900
2004	5.2	3.8	730	NO	7'600
2005	6.4	5.6	808	NO	7'800
2006	NE	NE	NE	NE	NE
2007	NE	NE	NE	NE	NE
2008	NE	NE	NE	NE	NE
2009	7.6	5.3	641	25	9'217
2010	6.7	4.3	631	34	8'825
2011	6.6	4.7	531	21	8'967
2012	6.5	4.8	672	26	9'100
2013	7.1	4.5	308	25	8'967
2014	6.8	4.4	502	27	7'800
2015	7.7	4.2	516	14	8'233
2016	7.0	4.2	246	10	8'450
2017	7.7	5.0	248	19	9'833
2018	7.5	5.2	486	5	9'133
2019	NE	NE	NE	NE	NE
2020	6.2	NE	319	18	5'533
2021	7.1	NE	337	19	5'600
2022	6.6	4.8	551	17	6'567
2023	6.4	3.7	NE	14	5'500

Table 3-29 Measured sulphur content per fuel type.

Table 3-30 Country-specific and fuel-specific default emissions factors for SO_x used within source category 1A Fuel combustion activities, 1990-2023.

SOx emission factors		Unit	1990	1995	2000	2005	2010					
Fuel combustion	Gasoline	g/GJ	8.46	8.46	6.80	0.233	0.219					
Fuel combustion	Diesel oil	g/GJ	69.1	17.8	15.0	0.280	0.319					
Fuel combustion	Gas oil	g/GJ	72.4	57.5	33.7	34.6	23.0					
Fuel combustion	Residual fuel oil	g/GJ	466	376	339	381	438					
Fuel combustion	Liquefied petroleum gas	g/GJ	0.500	0.500	0.500	0.500	0.500					
Fuel combustion: Boilers manufacturing industry	Other bituminous coal	g/GJ	500	500	500	500	500					
Fuel combustion: Boilers residential	Other bituminous coal	g/GJ	350	350	350	350	350					
Fuel combustion	Lignite	g/GJ	500	500	500	500	500					
Fuel combustion	Natural gas	g/GJ	0.500	0.500	0.500	0.451	0.425					
Fuel combustion	Biodiesel biogenic	g/GJ	69.1	17.8	15.0	0.280	0.319					
Fuel combustion	Bioethanol	g/GJ	8.46	8.46	6.80	0.233	0.219					
Fuel combustion	Biogas	g/GJ	0.500	0.500	0.500	0.500	0.500					
Fuel combustion	Sewage gas	g/GJ	0.500	0.500	0.500	0.500	0.500					
SOx emission factors		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Fuel combustion	Gasoline	g/GJ	0.205	0.200	0.209	0.218	0.236	0.240	0.217	0.222	0.190	0.194
Fuel combustion						0.342	0.333	0.325			0.309	0.005
	Diesel oil	g/GJ	0.335	0.333	0.347	0.342	0.333	0.325	0.316	0.307	0.309	0.305
Fuel combustion	Diesel oil Gas oil	g/GJ g/GJ	0.335	0.333	0.347	8.85	0.333	0.325	0.316 6.79	0.307 4.88	1.94	0.305
		3										
Fuel combustion	Gas oil	g/GJ	14.2	13.8	10.6	8.85	8.38	7.84	6.79	4.88	1.94	0.841
Fuel combustion Fuel combustion	Gas oil Residual fuel oil Liquefied petroleum	g/GJ g/GJ g/GJ	14.2 416	13.8 396	10.6 448	8.85 453	8.38 460	7.84 356	6.79 269	4.88 290	1.94 290	0.841 283
Fuel combustion Fuel combustion Fuel combustion	Gas oil Residual fuel oil Liquefied petroleum gas	g/GJ g/GJ g/GJ	14.2 416 0.500	13.8 396 0.500	10.6 448 0.500	8.85 453 0.500	8.38 460 0.500	7.84 356 0.500	6.79 269 0.500	4.88 290 0.500	1.94 290 0.500	0.841 283 0.500
Fuel combustion Fuel combustion Fuel combustion Fuel combustion: Boilers manufacturing industry	Gas oil Residual fuel oil Liquefied petroleum gas Other bituminous coal	g/GJ g/GJ g/GJ	14.2 416 0.500 500	13.8 396 0.500 500	10.6 448 0.500 500	8.85 453 0.500 500 350 500	8.38 460 0.500 500 350 500	7.84 356 0.500 500	6.79 269 0.500 500	4.88 290 0.500 500	1.94 290 0.500 500	0.841 283 0.500 500 350 500
Fuel combustion Fuel combustion Fuel combustion Fuel combustion: Boilers manufacturing industry Fuel combustion: Boilers residential	Gas oil Residual fuel oil Liquefied petroleum gas Other bituminous coal Other bituminous coal Lignite Natural gas	a\C1 a\C1 a\C1 a\C1 a\C1 a\C1 a\C1	14.2 416 0.500 500 350	13.8 396 0.500 500 350	10.6 448 0.500 500 350 500 0.432	8.85 453 0.500 500 350 500 0.377	8.38 460 0.500 500 350 500 0.379	7.84 356 0.500 500 350 500 0.129	6.79 269 0.500 500 350	4.88 290 0.500 500 350	1.94 290 0.500 500 350	0.841 283 0.500 500 350
Fuel combustion Fuel combustion Fuel combustion Fuel combustion: Boilers manufacturing industry Fuel combustion: Boilers residential Fuel combustion	Gas oil Residual fuel oil Liquefied petroleum gas Other bituminous coal Other bituminous coal Lignite	8/C1 8/C1 8/C1 8/C1 8/C1 8/C1	14.2 416 0.500 500 350 500	13.8 396 0.500 500 350 500	10.6 448 0.500 500 350 500	8.85 453 0.500 500 350 500	8.38 460 0.500 500 350 500	7.84 356 0.500 500 350 500	6.79 269 0.500 500 350 500	4.88 290 0.500 500 350 500	1.94 290 0.500 500 350 500	0.841 283 0.500 500 350 500
Fuel combustion Fuel combustion Fuel combustion Fuel combustion: Boilers manufacturing industry Fuel combustion: Boilers residential Fuel combustion Fuel combustion	Gas oil Residual fuel oil Liquefied petroleum gas Other bituminous coal Other bituminous coal Lignite Natural gas	8/C1 8/C1 8/C1 8/C1 8/C1 8/C1	14.2 416 0.500 500 350 500 0.440	13.8 396 0.500 500 350 500 0.434	10.6 448 0.500 500 350 500 0.432	8.85 453 0.500 500 350 500 0.377	8.38 460 0.500 500 350 500 0.379	7.84 356 0.500 500 350 500 0.129	6.79 269 0.500 500 350 500 0.155	4.88 290 0.500 500 350 500 0.0393	1.94 290 0.500 500 350 500 0.175	0.841 283 0.500 500 350 500 0.231
Fuel combustion Fuel combustion Fuel combustion Fuel combustion: Boilers manufacturing industry Fuel combustion: Boilers residential Fuel combustion Fuel combustion Fuel combustion	Gas oil Residual fuel oil Liquefied petroleum gas Other bituminous coal Other bituminous coal Lignite Natural gas Biodiesel biogenic	a\C1 a\C1 a\C1 a\C1 a\C1 a\C1 a\C1 a\C1	14.2 416 0.500 500 350 500 0.440 0.335	13.8 396 0.500 500 350 500 0.434 0.333	10.6 448 0.500 500 350 500 0.432 0.347	8.85 453 0.500 500 350 500 0.377 0.342	8.38 460 0.500 500 350 500 0.379 0.333	7.84 356 0.500 500 350 500 0.129 0.325	6.79 269 0.500 500 350 500 0.155 0.316	4.88 290 0.500 500 350 500 0.0393 0.307	1.94 290 0.500 500 350 500 0.175 0.309	0.841 283 0.500 500 350 500 0.231 0.305

3.2.2 Source category 1A1 - Energy industries (stationary)

3.2.2.1 Source category description for 1A1 Energy industries (stationary)

The most important source category in Energy industries is 1A1a Public electricity and heat production, followed by 1A1b Petroleum refining. Activities in source category 1A1c Manufacture of solid fuels and other energy industries are virtually not occurring in Switzerland apart from a very small charcoal production activity in traditional and historic trade.

1A1	Source category	Specification
1A1a	Public electricity and heat production	Main sources are waste incineration plants with heat and power generation (Other fossil and biogenic fuels) and public district heating systems including boilers, and boilers with combined heat and power generation not further defined, as well as engines and gas turbines with fossil fuels and biogas, and engines on landfill sites or emergency generators. The only fossil fuelled public electricity generation unit "Vouvry" (300 MW _e ; no public heat production) ceased operation in 1999.
1A1b	Petroleum refining	Combustion activities supporting the refining of petroleum products, excluding evaporative emissions. Use of refinery gas in gas turbines with SCGT at refineries.
1A1c	Manufacture of solid fuels and other energy industries	Emissions from charcoal production

Table 3-31 Specification of source category 1A1 Energy industries.

Table 3-32 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1A1, Energy Industries.

NFR code	Source category	Pollutant	Identification criteria
1A1a	Public electricity and heat production	NOx	L1, L2
1A1a	Public electricity and heat production	SOx	L1, L2
1A1a	Public electricity and heat production	PM2.5	T1, T2
1A1a	Public electricity and heat production	PM10	T1, T2

3.2.2.2 Methodological issues for 1A1 Energy industries (stationary)

3.2.2.2.1 Public electricity and heat production (1A1a)

Methodology (1A1a)

Within source category 1A1a Energy industries, heat and electricity production in waste incineration plants cause the largest emissions, as electricity production in Switzerland is dominated by hydroelectric power plants (almost 60 %) and nuclear power stations (more than 30 %). Emissions from industries producing heat and/or power for their own use are included in category 1A2 Manufacturing industries and construction.

Energy recovery from municipal solid waste incineration is mandatory in Switzerland and plants are equipped with energy recovery systems (Schwager 2005). The emissions from municipal solid waste and special waste incineration plants are therefore reported under category 1A1a.

Emissions from fuel combustion in 1A1a Public electricity and heat production are estimated using a Tier 2 method, see decision tree in chapter 1A1 Energy industries in EMEP/EEA guidebook (EMEP/EEA 2023).

Emission factors (1A1a)

Municipal solid waste incineration plants and special waste incineration plants with heat and power generation (reported under "Other fuels"):

Emission factors are expressed in pollutant per energy content of municipal solid waste incinerated. They are all country-specific and based on extensive and repeated emission control measurements according to the Ordinance on Air Pollution Control on municipal solid waste incineration and special waste incineration plants (TBF 2005, TBF 2015, TBF 2021) as well as on expert estimates. The sources are documented in the EMIS database (EMIS 2025/1A1a Kehrichtverbrennungsanlagen and EMIS 2025/1A1a Sonderabfallverbrennungsanlagen). Emission factors are taking into account flue gas cleaning standards in incineration plants. In addition, the burn-out efficiency in modern municipal solid and special waste incineration plants is very high. The PCB emission factors from municipal solid waste and special waste incineration are based on the mass flow and emission model of former use and disposal of PCBs in Switzerland (Glüge et al. 2017), see Annex A2.2.

Until 2003 the same emission factors have been applied for special waste and municipal solid waste incineration plants (TBF 2005). The emission factors have been reevaluated and revised for the two types of installations separately for the years 2013 and 2018 (TBF 2015, TBF 2021). In general, emission factors for sewage sludge incineration plants are considerably higher compared to those for municipal solid waste incineration plants. Regardless, special waste incineration plants meet equal Ordinance on Air Pollution Control emission limit values as municipal solid waste incineration plants.

1A1a Public electricity and heat production	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex
- · ·		g/	g/	g/	g/	g/	g/	g/	g/
Waste	t	376	28	52	4.6	8.2	8.2	8.2	0.074
Hazardous waste	t	745	150	24	16	33	33	33	0.30
PCB	g	NA	NA	NA	NA	NA	NA	NA	NA
1A1a Public electricity and heat production	Unit	СО	Pb	Cd	Hg	PCDD/ PCDF	HCB	PCB	
	Onit	g/	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	
Waste	t	72	300	30	69	200	0.045	NA	
Hazardous waste	t	229	1'383	124	42	250	NA	NA	
PCB	g	NA	NA	NA	NA	NA	NA	0.0058	

Table 3-33 Implied emission factors for 1A1a Public electricity and heat production of energy industries for Other fuels (municipal solid waste and special waste) in 2023.

Wood for combined heat and power generation as well as for heat production:

Emission factors for wood as fuel for combined heat and power generation as well as in plants for renewable waste from wood products are based on a study for wood use in the sector 1A (EMIS 2025/1A Holzfeuerungen) as described in chapter 3.2.1.1.3.

Fossil fuels for heat production and for power generation with boilers not further defined:

Emission factors for NO_x, CO, NMVOC and PM2.5/PM10/TSP are country-specific and are documented in SAEFL 2000 (pp. 14 – 27). For NO_x emission factors, expert judgement has been used to estimate the fraction of low-NO_x burners. The emission factors for NO_x and CO for natural gas and gas oil are based on Leupro (2012) and Zotter and Nussbaumer (2025). The particulate matter emission factors for natural gas and gas oil from 2020 onwards are also based on Zotter and Nussbaumer (2025).

The emission factors for SO_x are based on the estimated sulphur content for each combustible, see detailed description in chp. 3.2.1.2.

Emission factors for Hg, Pb, Cd, PCDD/PCDF and PAH are taken from the EMEP/EEA guidebook (EMEP/EEA 2019) as follows:

- Gas oil; PAH: chp. 1A4, Tier 1, Table 3.9 liquid fuels
- Gas oil; Pb, Hg, Cd, PCDD/PCDF: chp. 1A4, Table 3.18
- Natural gas; Pb, Hg, Cd, PAH: chp. 1A4, Tier 2, Table 3.13
- Natural gas; PCDD/PCDF: chp. 1A4, Tier 2 Table 3.26

The emission factors of HCB and PCBs are taken from the Danish emission inventory for HCB and PCBs (Nielsen et al. 2013).

Engines and gas turbines

The use of fossil and biogenic fuels in engines and gas turbines is described in the specific model description chp. 3.2.1.1.2. For the greenhouse gas inventory under the UNFCCC reporting the fossil carbon fraction in biodiesel is estimated based on the method described in chp. 3.2.1.1.2. For technical reasons in our database, there is a split of the whole biodiesel amount in fossil and biogenic biodiesel and not only for the carbon fraction and CO₂. Therefore, there are two lines with biodiesel, one with "biodiesel fossil" and one with "biodiesel biogenic".

1A1a Public electricity and heat production	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	со	
		g/	g/	g/	g/	g/	g/	g/	g/	g/	
Gas oil	GJ	38	4.3	0.84	0.40	1.8	1.8	1.8	0.13	10	
Residual fuel oil	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	
Other bituminous coal	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	
Natural gas	GJ	27	6.6	0.23	0.14	0.26	0.26	0.26	0.0023	14	
Biodiesel fossil	GJ	404	50	0.30	3.5	30	30	30	2.3	131	
Biodiesel biogenic	GJ	404	50	0.30	3.5	30	30	30	2.3	131	
Biogas	GJ	54	12	0.50	0.31	0.40	0.40	0.40	0.00091	23	
Wood and wood waste	GJ	67	0.53	6.7	2.9	0.62	0.62	0.65	0.012	24	
1A1a Public electricity and heat production	Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
	Onic	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
Gas oil	GJ	0.019	0.0014	0.12	1.8	0.0019	0.015	0.0017	0.0015	216	0.11
Residual fuel oil	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Other bituminous coal	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Natural gas	GJ	0.0036	0.00040	0.10	0.50	0.00060	0.0013	0.00089	0.00089	NA	NA
Biodiesel fossil	GJ	0.15	0.0099	0.11	1.00	0.0019	0.015	0.0017	0.0015	218	0.11
Biodiesel biogenic	GJ	0.15	0.0099	0.11	1.00	0.0019	0.015	0.0017	0.0015	218	0.11
Biogas	GJ	0.0060	0.00057	0.10	0.51	0.00063	0.0018	0.00094	0.00095	NA	NA
Wood and wood waste	GJ	38	1.3	2.0	21	0.36	0.36	0.36	0.36	940	10

Table 3-34 Implied emission factors for 1A1a Public electricity and heat production of energy industries for fossil fuels, biogenic fuels and wood in 2023.

Activity data (1A1a)

Municipal solid waste incineration

Activity data for municipal solid waste and special waste incineration are based on annual waste statistics (FOEN 2024h) and provided in the table below.

Table 3-35 Activity data for 1A1a Other fuels: municipal solid waste and special waste incineration plants (with heat and/or power generation).

1A1a Public electricity and heat production	Unit	1990	1995	2000	2005	2010					
Waste	kt	2'470	2'270	2'801	3'297	3'717					
Hazardous waste	kt	133	163	239	230	252					
PCB	t	60	44	73	49	31					
1A1a Public electricity and heat production	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
14/	1.4	01047	010.00								
Waste	ĸt	3'817	3'889	4'010	4'011	4'042	4'059	4'072	4'027	3'853	3'921
Hazardous waste	kt	249		4'010 254			4'059 262	-	4'027 218		3'921 209

Engines and gas turbines

The use of fossil and biogenic fuels in engines and gas turbines is described in the specific model description chp. 3.2.1.1.2.

Energy: Source category 1A - Fuel combustion activities - Source category 1A1 - Energy industries (stationary)

Other public electricity and heat production

Apart from fossil or biogenic municipal solid waste, hazardous waste, wood waste and wood, fuel consumption (TJ) for Public electricity and heat production (1A1a) as activity data are extracted from the Swiss overall energy statistics (SFOE 2024; Tables 21, 26, and 28).

Activity data for wood as fuel for combined heat and power generation and for plants for renewable waste from wood products are taken from the Swiss wood energy statistics (SFOE 2024b) as described in chapter 3.2.1.1.3 Model for wood energy combustion.

1A1a Public electricity and heat production	Unit	1990	1995	2000	2005	2010	1				
Total fuel consumption	TJ	40'379	39'179	49'913	56'978	61'751	1				
Gas oil	TJ	980	554	790	1'300	490	1				
Residual fuel oil	TJ	3'214	1'813	340	290	40	1				
Other bituminous coal	TJ	530	46	NO	NO	NO	1				
Natural gas	TJ	4'339	5'422	8'292	9'827	9'926	1				
Waste fossil	TJ	13'995	13'662	17'784	20'181	21'044	1				
Hazardous waste fossil	TJ	2'610	3'206	4'692	4'514	4'941	1				
Biodiesel fossil	TJ	NO	NO	NO	0.11	0.47	1				
Biodiesel biogenic	TJ	NO	NO	NO	2.1	10	1				
Biogas	TJ	247	614	573	207	49	1				
Waste biogenic	TJ	14'163	13'396	16'894	19'813	22'292	1				
Wood and wood waste	TJ	301	466	547	844	2'958	I				
1A1a Public electricity and heat production	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	59'325	61'386	65'017	64'752	65'311	66'482	65'552	66'108	63'324	63'158
Gas oil	TJ	770	660	430	490	380	450	340	420	420	390
Residual fuel oil	TJ	NO									
Other bituminous coal	TJ	NO									
Natural gas	TJ	5'032	7'050	8'926	7'907	8'111	8'444	7'501	8'551	6'568	5'861
Waste fossil	TJ	21'382	22'054	23'146	23'377	23'697	23'974	24'154	23'802	22'972	23'070
Hazardous waste fossil	TJ	4'886	5'115	4'979	4'641	5'013	5'148	4'722	4'276	5'127	4'101
Biodiesel fossil	TJ	0.47	0.43	0.35	0.35	0.28	0.28	0.30	0.32	0.34	0.33
Biodiesel biogenic	TJ	8.6	7.7	7.4	7.7	6.4	6.2	6.0	6.0	6.1	6.0
Biogas	TJ	31	21	13	6.5	6.0		14	125		147
Waste biogenic	TJ	22'893	23'379	24'296	24'298	24'387	24'430	24'372	23'781	22'725	22'823
Wood and wood waste	TJ	4'321	3'098	3'218	4'024	3'710	4'022	4'443	5'147	5'366	6'759

Table 3-36 Fuel consumption of 1A1a Public electricity and heat production.

3.2.2.2.2 Petroleum refining (1A1b)

In Switzerland, there were originally two petroleum refining plants. One of the two Swiss refineries operated at reduced capacity in 1990 and resumed full production in later years. In 2012, one of the refineries was closed over six months due to insolvency and the search for a new buyer (EV 2014). Since one of the refineries ceased operation in 2015, the data are considered confidential. Data are available to reviewers on request. In addition, operation was interrupted several times in 2014.

Methodology (1A1b)

Based on the decision tree Fig. 4.1 in chapter 1A1b Petroleum refining of the EMEP/EEA guidebook (EMEP/EEA 2023), emissions from fuel combustion are calculated by a Tier 2 bottom-up approach. The calculations are generally based on measurements and data from individual point sources from the refining industry.

Since 2013, the refineries in Switzerland are participating in the Swiss Emissions Trading Scheme (ETS). Starting from 2013, fuel consumption data are available from annual monitoring reports, which provides plant-specific information on activity data, and an allocation report, which provide plant specific information between 2005 and 2011.

Emission factors (1A1b)

Emission factors are confidential but are available to reviewers on request. Most of the emission factors were derived from SAEFL (2000) or adopted from EMEP/EEA guidebook 2019.

The fraction of BC from PM 2.5 while burning natural gas in boilers of the refineries was set to 8.6 % according to the EMEP/EEA guidebook (EMEP/EEA 2019, chp. 1.A.1, table 4-6).

Emission factors for gas turbines with SCGT are described in chp. 3.2.1.1.2.

Activity data (1A1b)

Activity data on fuel combustion for 1A1b Petroleum refining is provided by the Swiss overall energy statistics (SFOE 2024) and the refining industry (bottom-up data). The data from the industry is collected by Carbura and forwarded to the Swiss Federal Office of Energy for inclusion in the Swiss overall energy statistics (SFOE 2024). As one of the refineries ceased operation in 2015, the data are considered confidential since 2014. Data are available to reviewers on request. The use of refinery gas in gas turbines with SCGT is described in chp. 3.2.1.1.2.

Refinery gas is the most important fuel used in source category 1A1b. Energy consumption, in particular use of refinery gas has increased substantially since 1990 because one of the two Swiss Refineries operated at reduced capacity in 1990 and resumed full production in later years. In 2012, one of the refineries was closed over six months due to insolvency and the search for a new buyer (EV 2014). Between 2004 and 2015, one of the Swiss refineries is also using petroleum coke as a fuel. Natural gas is used additionally to residual fuel oil and refinery gas since 2017. In 2019, 2020, 2022 and 2023, the application of residual fuel oil was halted.

Net calorific values are provided by the annual monitoring reports of the refining industries for the years 2005-2011 and 2013-2023 that are required under the Swiss Federal Act and Ordinance on the Reduction of CO_2 Emissions (Swiss Confederation 2011, Swiss Confederation 2012). For years with missing data (1990-2004 and 2012), the weighted mean of the net calorific value is applied for residual fuel oil and petroleum coke. The net calorific value of refinery gas is based on an estimate provided by one of the two refining plants for the years 1990-2004, which is assumed to be constant. The use of a plant-specific net calorific value leads to a slight difference to the energy consumption data provided by the Swiss overall energy statistics (SFOE 2024).

1A1b Petroleum refining	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	5'629	9'836	9'636	14'548	14'176					
Petroleum coke	TJ	NO	NO	NO	1'813	2'003					
Refinery residual fuel oil	TJ	1'259	1'786	1'908	902	891					
Refinery gas	TJ	4'370	8'050	7'728	11'833	11'282					
Natural gas	TJ	NO	NO	NO	NO	NO					
1A1b Petroleum refining	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	14'173	7'232	6'355	6'298	6'627	5'911	5'987	5'160	6'575	6'198
Petroleum coke	TJ	1'908	С	NO	NO	NO	NO	NO	NO	NO	NO
Refinery residual fuel oil	TJ	1'330	С	С	С	С	NO	NO	С	NO	NO
Refinery gas	TJ	10'935	С	С	С	С	С	С	С	С	С

Table 3-37 Activity data of 1A1b Petroleum Refining.

3.2.2.2.3 Manufacture of solid fuels and other energy industries (1A1c)

Methodology (1A1c)

Based on the decision tree Figure 5.1 in chapter 1A1c Manufacture of solid fuels and other energy industries of the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions are

calculated by a Tier 2 approach. The only activity in this source category is charcoal production and is only of minor importance in Switzerland.

Emission factors (1A1c)

Emission factors for NO_x, NMVOC, CO are based on the revised 1996 IPCC Guidelines (IPCC 1996) and for PM10 exhaust and TSP exhaust based on USEPA (1995, Chapter 10.7 Charcoal). PM2.5 exhaust is supposed to be 95 % from PM10 exhaust (EMIS 2025/1A1c). Since there is no information available on BC emissions from source category 1A1c Charcoal production (artisanal) its BC factor (%PM2.5) is set to the default Tier 2 value (48 %) of coke manufacture provided in the EMEP/EEA guidebook (EMEP/EEA 2023, chp. 1A1c Manufacture of solid fuels and other energy industries, Tab. 5-2/5-3). Neither the 1996 IPCC Guidelines nor the EMEP/EEA guidebook provide a SO_x emission factor for charcoal production. The latter one contains data on coke manufacture only which we did not consider as applicable for artisanal charcoal production as the sulphur content of coal is more than one order of magnitude higher than that of wood.

1A1c Manufacture of solid fuels and other energy	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	СО	
industries		g/	g/	g/	g/	g/	g/	g/	g/	g/	
Charcoal	GJ	10	1'700	NE	NE	3'700	3'900	4'800	1'776	7'000	
1A1c Manufacture of solid fuels and other energy	Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
industries	Onit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
Charcoal	GJ	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE

Table 3-38 Emission factors of 1A1c charcoal production in 2023.

Activity data (1A1c)

Activity data on annual charcoal production are provided by the Swiss association of charcoal producers (Köhlerverband Romoos) and individual producers as documented in the EMIS database (EMIS 2025/1A1c).

1A1c Manufacture of solid fuels and other energy industries	Unit	1990	1995	2000	2005	2010					
Charcoal	TJ	1.3	1.4	2.2	3.4	3.6					
1A1c Manufacture of solid fuels and other energy industries	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Charcoal	ТJ	4.3	3.8	4.1	3.9	4.3	5.1	3.9	4.0	3.4	3.6

Table 3-39 Activity data of 1A1c charcoal production.

3.2.2.3 Category-specific recalculations in 1A1 Energy industries (stationary)

The following recalculations were implemented in submission 2025:

- 1A1, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A1a: The emission factors of NO_x and CO for natural gas and gas oil boilers were updated for 2022 based on the evaluation of a large number of air pollution control measurements of combustion installations in numerous Swiss cantons. This has resulted in revised emission factors of NO_x and CO for the boilers fuelled with gas oil and natural gas in source categories 1A1a Public electricity and heat production from 2011 onwards. In addition, the values of the NO_x and CO emission factors for the years 1990–2010 and 2001–2010 (gas oil, CO) were also adjusted. The projected emission factor values for all

particulate matter fractions (2035, PM2.5, PM10, TSP and BC) were also updated, resulting in changes to the linearly interpolated emission factors for 2021 and 2022.

- 1A1a: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A1a: Due to new model-runs, there are small recalculations of activity data for all stationary engines and gas turbines 1990-2022.
- 1A1b: The emission factors of NO_x and CO for natural gas and gas oil boilers were updated for 2022 based on the evaluation of a large number of air pollution control measurements of combustion installations in numerous Swiss cantons. This has resulted in revised CO emission factors for the boilers fuelled with refinery liquefied petroleum gas and natural gas in source categories 1A1b Petroleum refining from 2011 onwards. The emission factor values for all particulate matter fractions (2035, PM2.5, PM10, TSP and BC) natural gas boilers were also updated, resulting in changes of the emission factor values in the years 1990–1994, 2001–2004 and 2021–2022.

3.2.3 Source category 1A2 - Stationary combustion in manufacturing industries and construction

3.2.3.1 Source category description for 1A2 Stationary combustion in manufacturing industries and construction

The source category 1A2 Stationary combustion in manufacturing industries and construction comprises all emissions from the combustion of fuels in stationary boilers and cogeneration facilities within manufacturing industries and construction. This includes use of conventional fossil fuels as well as waste derived fuels and biomass. Within this category, only activities involving fuel combustion are taken into account. Note that information regarding vehicles and machinery of source category 1A2gvii Mobile combustion in manufacturing industries and construction are provided in chapter 3.2.5.

1A2	Source category	Specification
1A2a	Iron and steel	Fuel combustion in iron and steel industry (cupola furnaces of iron foundries, reheating furnaces in steel plants, boilers)
1A2b	Non-ferrous metals	Fuel combustion in non-ferrous metals industry (non-ferrous metals foundries, aluminium production (ceased in 2006), boilers)
1A2c	Chemicals	Fuel combustion in chemical industry (steam production from cracker by-products, boilers)
1A2d	Pulp, paper and print	Fuel combustion in pulp, paper and print industry (furnaces of cellulose production (ceased in 2008), boilers and gas turbines)
1A2e	Food processing, beverages and tobacco	Fuel combustion in food processing, beverages and tobacco industry (boilers)
1A2f	Non-metallic minerals	Fine ceramics, container glass, tableware glass, glass wool, lime, mineral wool, mixed goods, cement, brick and tile
1A2gviii	Other	Fibreboard production, use of fossil fuel and biomass (wood and biogas) in industrial boilers, engines and gas turbines

Table 3-40 Specification of source category 1A2 Stationary combustion in manufacturing industries and construction (stationary without 1A2gvii) in Switzerland.

NFR code	Source category	Pollutant	Identification criteria
1A2d	Stationary combustion in manufacturing industries and construction: pulp paper and print	SOx	T1, T2
1A2f	Stationary combustion in manufacturing industries and construction: non- metallic minerals	NOx	L1, L2, T1, T2
1A2f	Stationary combustion in manufacturing industries and construction: non- metallic minerals	SOx	L1, L2, T1, T2
1A2f	Stationary combustion in manufacturing industries and construction: non- metallic minerals	PM10	T1
1A2gviii	Stationary combustion in manufacturing industries and construction: other	NOx	L1, T1, T2
1A2gviii	Stationary combustion in manufacturing industries and construction: other	SOx	L1, L2
1A2gviii	Stationary combustion in manufacturing industries and construction: other	PM2.5	L1, L2

Table 3-41 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1A2 Combustion in manufacturing industries and construction (stationary only).

3.2.3.2 Methodological issues for 1A2 Stationary combustion in manufacturing industries and construction

3.2.3.2.1 Methodology (1A2) and industry model

Based on the decision tree Fig. 3.1 in chapter 1A2 Combustion in manufacturing industries and construction of the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions are calculated according to a Tier 2 approach based on country-specific emission factors.

Overview industry model

As a sub-model of the Swiss energy model (see chp. 3.1.6.2.2), the industry model disaggregates for each fuel type, the total fuel consumption in the industry sector provided by the Swiss overall energy statistics (SFOE 2024, see also description in chp. 3.1.6.2) into the source categories and processes under 1A2 Manufacturing industries and construction. As visualized in Figure 3-22, the industry model is based on two pillars. First, the energy consumption statistics in the industry and services sectors (SFOE 2024d) provide a comprehensive annual survey of fuel consumptions for all years since 1999 or 2002 (depending on the fuel type, see paragraph "Energy consumption statistics in the industry and services are consistently extended back to 1990 based on a bottom-up industry model (Prognos 2013, see paragraph "Modelling of industry categories" below). Second, further disaggregation is achieved by using plant-level industry data" below).

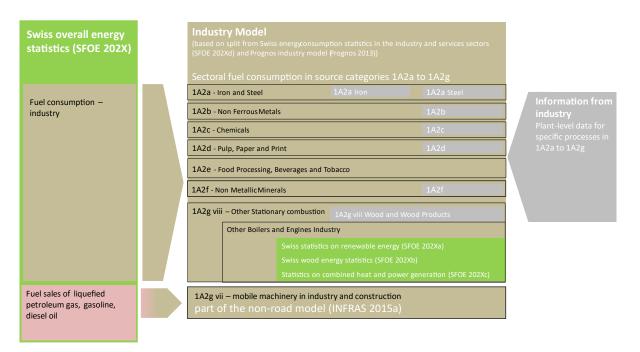


Figure 3-22 Schematic presentation of the data sources used for the industrial sectors 1A2a – 1A2g. The references SFOE 202X, SFOE 202Xa, 202Xb and 202Xc refer to the 2024 edition of the corresponding energy statistics. For each fuel type, the Swiss overall energy statistics provide the total fuel consumption in the industry sector (SFOE 2024). The total fuel consumption is then distributed to the different source categories based on the energy consumption statistics in the industry and services sectors (SFOE 2024d) for all years since 1999 or 2002 (depending on the fuel type), consistently extended back to 1990 based on a bottom-up industry model (Prognos 2013). The grey boxes on the right show the further disaggregation achieved by using plant-level industry data for specific processes.

Energy consumption statistics in the industry and services sectors

The energy consumption statistics in the industry and services sectors (SFOE 2024d) refer to representative annual surveys with about 13'000 workplaces in the industry and services sectors that are then grossed up or extrapolated to the entire industry branch. For certain sectors and fuel types (i.e. industrial waste, residual fuel oil, other bituminous coal and lignite) the surveys represent a census covering all fuel consumed. The surveys are available since 1999 for gas oil and natural gas. For all other standard fossil fuels (i.e. residual fuel oil, liquefied petroleum gas, petroleum coke, other bituminous coal and lignite) data are available since 2002.

In 2015, a change in the survey method of the energy consumption statistics in the industry and services sectors was implemented (SFOE 2015d). In brief, the business and enterprise register, which forms the basis for the samples of the surveys, was revised. While previously the business and enterprise register was based on direct surveys with work places, it is now based on annual investigations of registry data (e.g. from the old-age and life insurance). In the course of this revision, a comparative assessment was conducted for the year 2013. This comparison showed that the energy consumption in the source categories of 1A2 stationary are modified by less than 1 percent, but also that the differences between the new and the old results for 2013 are not statistically significant (SFOE 2015d). As these statistics are only used for allocation of total energy consumption to different source categories, the impact on the different source categories consists only of a reallocation of the energy consumption and does not affect the total of the sector. Moreover, only consumption of gas oil and natural gas is affected. For all these reasons, the time series consisting of data based on the old (1990-2012) and new (since 2013) survey method are therefore considered consistent.

Modelling of industry categories

As mentioned above, the energy consumption statistics in the industry and services sectors (SFOE 2024d) are available since 1999 or 2002. In order to get consistent time series starting in 1990, a bottom-up industry model (Prognos 2013) is used. The model is based on 164 individual industrial processes and further 64 processes related to infrastructure in industry. Fuel consumption of a specific process is calculated by multiplication of the process activity data with the process-specific fuel consumption factor.

The model provides data on the disaggregation of total energy consumption according to different industries and services between 1990 and 2012. For the time period where the two disaggregation methods (i.e. surveys and model) overlap, systematic differences between the two time series can be detected. These two data sets have been combined in order to obtain consistent time series of the shares of each source category 1A2a-1A2g for each fuel type. For this purpose, the approach to "generate consistent time series from overlapping time series" is used according to the 2019 Refinement to the 2006 IPCC Guidelines (IPCC 2019, Volume 1, chp. 5.3.3.1, overlap). To illustrate the approach, an example for gas oil attributed to source category 1A2a-1A2g), including further assumptions, is provided in the underlying documentation of the EMIS database (EMIS 2025/1A2_Sektorgliederung Industrie).

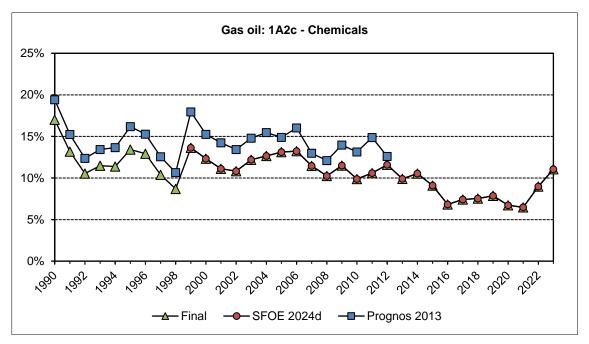


Figure 3-23 Illustrative example for combining time series with consistent overlap according to the 2019 Refinement (IPCC 2019, Volume 1, chp. 5.3.3.1, overlap). The y-axis indicates the share of source category 1A2c in total gas oil consumption in the industry sector. The green triangles correspond to the share finally used to calculate the fuel consumption in 1A2c, based on the combination of the shares from the energy consumption statistics in the industry and services sectors (SFOE 2024d, orange dots, since 1999) and the bottom-up industry model (Prognos 2013, blue squares, from 1990 to 2012). Similar calculations are performed for each source category and fuel type.

Bottom-up industry data

Grey colored boxes in Figure 3-22 represent source categories (i.e. 1A2a-d, 1A2f and 1A2gviii) for which bottom-up data from the industry are used in order to further disaggregate the fuel consumption within a particular source category. These data consist of validated and verified monitoring data from the Swiss emissions trading scheme implemented under the

Energy: Source category 1A - Fuel combustion activities - Source category 1A2 - Stationary combustion in manufacturing industries and construction

Ordinance for the Reduction of CO₂ Emissions (Swiss Confederation 2012) and are discussed in depth in the following chapters 3.2.3.2.2 to 3.2.3.2.8.

The bottom-up information provides activity data for specific industrial production processes and forms a subset of the total fuel consumption allocated to each source category by the approach described above. Therefore, the fuel consumptions of the bottom-up industry processes are subtracted from the total fuel consumption of the respective source category and the remaining fuel consumptions are considered as fuels used in boilers of each source category (exclusion principle). This method ensures that the sum of fuel consumptions over all processes of a source category corresponds to the total fuel consumption assigned based on the energy consumption statistics in the industry and services sectors (SFOE 2024d) and the bottom-up industry model (Prognos 2013).

There is a difference in calculating the emissions from boilers and bottom-up industry processes. For boilers, fuel consumption is used as activity data whereas for bottom-up processes production data is used.

Further specific statistical data

The share of fuel used for co-generation in turbines and engines within 1A2 is derived from a model of stationary engines and gas turbines developed by INFRAS (2022a) as described in chapter 3.2.1.1.2.

Fuel consumption of wood, wood waste and biogas in manufacturing industries is based on the Swiss wood energy statistics (SFOE 2024b) as well as on data from the Swiss renewable energy statistics (SFOE 2024a) and the Statistics on combined heat and power generation in Switzerland (SFOE 2024c), respectively. Emissions from these sources are reported under 1A2gviii Other due to insufficient information regarding sectoral disaggregation.

Emission factors (1A2)

This chapter describes the emission factors of fossil fuel consumption in boilers. Emission factors are identical for all source categories. Emission factors of bottom-up industry processes and other relevant processes are described in the following chapters for each source category. Emission factors for engines and gas turbines are described in chapter 3.2.1.1.2.

For liquefied petroleum gas and petroleum coke, the same emission factors are assumed for all air pollutants as for natural gas and residual fuel oil, respectively, except for SO_x of liquefied petroleum gas (see chp. 3.2.1.2).

The emission factors of NO_x and CO for natural gas and gas oil are derived from a large number of air pollution control measurements of combustion installations in several Swiss cantons in 1990, 2000 and 2010 (Leupro 2012) and 2022 (Zotter and Nussbaumer 2025). The emission factors for residual fuel oil, other bituminous coal and lignite are country-specific and documented in the Handbook on emission factors for stationary sources (SAEFL 2000). The emission factors for NMVOC and NH₃ as well as PM2.5, PM10 and TSP (until 2020) are country-specific and documented in the Handbook on emission factors for stationary sources (SAEFL 2000). The particulate matter emission factors for natural gas and gas oil from 2020 onwards are also based on Zotter and Nussbaumer (2025).

The SO_x emission factors for gas oil, residual fuel oil, liquefied petroleum gas, other bituminous coal, lignite and natural gas are described in chp. 3.2.1.2 and Table 3-30.

Emission factors of BC (% PM2.5), Pb (except natural gas), Cd (except natural gas), Hg, PCDD/PCDF (except natural gas) and PAH (except natural gas) are taken from the EMEP/EEA guidebook (EMEP/EEA 2023). For natural gas, emission factors of Pb, Cd, PCDD/PCDF and PAH are still based on EMEP/EEA (2019). The emission factors of HCB and PCBs are taken

from the Danish emission inventory for HCB and PCBs (Nielsen et al. 2013). There is a difficulty with industrial gas oil burners, as there is a lack of data for non-residential mediumsized boiler in the EMEP/EEA guidebook. Therefore, the emission factors available for the different combustion installations burning gas oil were compared and then the most reasonable and most current data were chosen. The emission factors of BC (% PM2.5), Pb, Cd, Hg and PCDD/PCDF are taken from table 3-18 (EMEP/EEA 2023, Tier 2 Residential plants, boilers burning liquid fuels, chp. 1A4). While the emission factors of PAHs are taken from table 3-9 (EMEP/EEA 2023, Tier 1 emission factors for NFR source category 1.A.4.a/c, 1.A.5.a, using liquid fuels) as they represent an average of Tier 2 emission factors for liquid fuel combustion for all technologies.

Table 3-42 Emission factors for fossil fuel boilers of 1A2 Stationary combustion in manufacturing industries and construction in 2023.

1A2 Manufacturing industries and construction (Boilers)	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	СО	
		g/	g/	g/	g/	g/	g/	g/	g/	g/	1
Gas oil	GJ	28	2.0	0.84	0.0020	0.19	0.19	0.19	0.0074	3.7	1
Residual fuel oil	GJ	125	4.0	283	0.0020	20	20	23	2.0	10	1
Liquefied petroleum gas	GJ	17	2.0	0.50	0.00100	0.090	0.090	0.090	0.0049	8.1	1
Petroleum coke	GJ	125	4.0	283	0.0020	20	20	23	2.0	10	1
Other bituminous coal	GJ	200	10	500	0.0030	45	45	50	2.9	100	1
Lignite	GJ	200	10	500	0.0030	45	45	50	2.9	100	1
Natural gas	GJ	17	2.0	0.23	0.00100	0.090	0.090	0.090	0.0049	8.1	l
1A2 Manufacturing industries and construction (Boilers)	Lloit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
	Onic	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
Gas oil	GJ	0.012	0.0010	0.12	1.8	0.0019	0.015	0.0017	0.0015	220	0.11
Residual fuel oil	GJ	4.6	1.2	0.34	2.5	0.0045	0.0045	0.0045	0.0069	220	3.2
Liquefied petroleum gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
Petroleum coke	GJ	4.6	1.2	0.34	2.5	0.0045	0.0045	0.0045	0.0069	220	3.2
Other bituminous coal	GJ	167	1.0	16	40	0.079	1.2	0.85	0.62	620	53
Lignite	GJ	167	1.0	16	40	0.079	1.2	0.85	0.62	620	53
Natural gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA

Activity data (1A2)

Table 3-43 shows the total fuel consumption in 1A2. Table 3-44 to Table 3-49 show fuel consumption in boilers of each source category 1A2a-1A2gviii as described above in the industry model (chp. 3.2.3.2.1). Consumption of other fossil fuels occurs mainly in source category 1A2f, where it refers to fossil waste fuels in cement production. But also, the cracker by-products, i.e. gasolio, heating gas and synthesis gas (from 2018 onwards) used for steam production in a chemical plant in source category 1A2c are included. There is no fuel consumption in boilers of source category 1A2f Non-metallic minerals since this source category consists of specific bottom-up industry processes only.

1A2 Manufacturing industries and	Unit	1990	1995	2000	2005	2010					
constr. (stationary sources)											
Total fuel consumption	TJ	88'850	89'257	87'412	90'689	89'353					
Gas oil	TJ	22'910	24'471	25'892	25'317	21'137					
Residual fuel oil	TJ	18'870	13'678	5'675	4'613	2'036					
Liquefied petroleum gas	TJ	4'351	4'404	5'475	4'173	3'756					
Petroleum coke	TJ	1'400	1'260	551	1'093	1'495					
Other bituminous coal	TJ	13'476	7'303	5'866	4'799	4'348					
Lignite	TJ	265	153	124	742	1'460					
Natural gas	ΤJ	19'610	28'700	32'000	34'870	38'420					
Other fossil fuels	TJ	2'469	2'718	3'812	4'138	4'625					
Biomass	TJ	5'500	6'570	8'018	10'944	12'077					
1A2 Manufacturing industries and	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
constr. (stationary sources)											
Total fuel consumption	TJ	80'166	78'724	79'781	80'236	77'424	77'075	74'279	78'354	70'611	64'802
Gas oil	TJ	12'444	12'725	12'812	11'489	10'871	10'071	8'854	9'074	8'725	7'679
Residual fuel oil	TJ	231	196	155	123	34	111	76	55	NO	41
Liquefied petroleum gas	TJ	3'149	3'216	2'577	3'068	3'009	2'892	2'765	2'908	2'917	3'006
										= 0.4	763
Petroleum coke	TJ	1'240	795	890	763	781	777	700	604	731	/03
Petroleum coke Other bituminous coal	TJ TJ	1'240 2'403	795 1'946	890 1'517	763 1'634	781 1'665	777 1'481	700 1'186	604 1'184	731 1'364	1'070
	TJ TJ	2'403 3'102	1'946 3'060	1'517 3'078	1'634 2'876	1'665 2'520	1'481 2'262	1'186 2'410	1'184 2'442	1'364 2'466	1'070 1'945
Other bituminous coal Lignite Natural gas	TJ TJ TJ TJ	2'403	1'946 3'060 39'450	1'517 3'078 39'960	1'634 2'876 41'000	1'665 2'520 39'320	1'481 2'262 39'560	1'186 2'410 38'180	1'184 2'442 39'700	1'364 2'466 33'120	1'070 1'945 29'840
Other bituminous coal Lignite	TJ TJ	2'403 3'102	1'946 3'060	1'517 3'078	1'634 2'876	1'665 2'520	1'481 2'262	1'186 2'410	1'184 2'442	1'364 2'466	1'070 1'945

Table 3-44 Fuel consumption in boilers of 1A2a Stationary combustion in manufacturing industries and construction: Iron and steel.

1A2a Iron and steel (Boilers)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	1'045	1'017	978	1'094	1'657					
Gas oil	TJ	480	262	338	401	315					
Residual fuel oil	TJ	26	131	20	39	51					
Liquefied petroleum gas	TJ	408	193	286	217	219					
Natural gas	TJ	131	431	334	437	1'072					
1A2a Iron and steel (Boilers)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	1'513	1'920	1'892	2'159	2'292	2'143	2'141	1'935	1'823	1'725
Gas oil	TJ	86	136	134	123	127	97	81	80	57	58
Residual fuel oil	TJ	NO									
Liquefied petroleum gas	TJ	388	393	327	368	358	342	327	342	342	352
Natural gas	TJ	1'039	1'391	1'431	1'669	1'808	1'704	1'732	1'513	1'424	1'315

Table 3-45 Fuel consumption in boilers of 1A2b Stationary combustion in manufacturing industries and construction: Non-ferrous metals.

1A2b Non-ferrous metals (Boilers)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	2'256	1'969	1'555	973	1'217					
Gas oil	TJ	451	336	225	119	108					
Residual fuel oil	TJ	NO	NO	NO	NO	0.024					
Liquefied petroleum gas	TJ	27	17	15	7.1	7.7					
Natural gas	TJ	1'779	1'616	1'315	848	1'101					
1A2b Non-ferrous metals (Boilers)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	1'919	1'794	1'684	1'642	1'748	1'965	1'815	2'018	1'839	1'658
Gas oil	TJ	88	77	74	77	53	60	48	64	68	66
Residual fuel oil	TJ	NO	44	NO	3.7	NO	NO	NO	NO	NO	NO
Liquefied petroleum gas	TJ	9.8	9.9	8.3	9.3	9.0	8.6	8.3	8.6	8.6	8.9
Natural gas	TJ	1'821	1'664	1'602	1'552	1'686	1'897	1'758	1'945	1'762	1'583

Table 3-46 Fuel consumption in boilers of 1A2c Stationary combustion in manufacturing industries and construction: Chemicals.

1A2c Chemicals (Boilers)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	14'511	15'236	13'544	15'515	11'836					
Gas oil	TJ	3'942	3'313	3'215	3'345	2'103					
Residual fuel oil	TJ	1'434	693	252	36	66					
Liquefied petroleum gas	TJ	15	13	12	10	7.5					
Natural gas	TJ	9'119	11'217	10'065	12'124	9'660					
1A2c Chemicals (Boilers)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	12'155	12'551	14'401	13'834	13'312	11'834	10'956	10'733	9'202	8'035
Gas oil	TJ	1'321	1'167	881	860	825	799	602	593	790	858
Residual fuel oil	TJ	NO	NO	NO							
Liquefied petroleum gas	TJ	8.9	9.0	7.5	8.4	8.2	7.9	7.5	7.9	7.9	8.1
Natural gas	TJ	10'825	11'375	13'512	12'966	12'479	11'026	10'346	10'132	8'405	7'168

Table 3-47 Fuel consumption in boilers of 1A2d Stationary combustion in manufacturing industries and construction: Pulp, paper and print.

1A2d Pulp paper and print (Boilers)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	9'701	11'440	8'300	8'854	6'364					
Gas oil	TJ	1'188	1'751	1'403	1'456	852					
Residual fuel oil	TJ	5'250	3'061	1'417	2'092	279					
Liquefied petroleum gas	TJ	86	141	148	100	61					
Natural gas	TJ	3'177	6'486	5'333	5'206	5'172					
1A2d Pulp paper and print (Boilers)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	4'046	2'980	2'988	2'857	2'077	2'155	2'071	2'268	1'950	1'676
Gas oil	TJ	297	383	410	288	293	345	284	247	363	260
Residual fuel oil	TJ	22	19	9.0	8.8	NO	NO	NO	NO	NO	NO
Liquefied petroleum gas	TJ	60	60	50	57	55	53	50	53	53	54
Natural gas	TJ	3'667	2'518	2'518	2'504	1'729	1'757	1'737	1'968	1'534	1'362

Table 3-48 Fuel consumption in boilers of 1A2e Stationary combustion in manufacturing industries and construction; Food processing, beverages and tobacco.

1A2e Food processing beverages and tobacco (Boilers)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	9'867	8'802	10'457	10'256	13'181					
Gas oil	TJ	7'410	5'511	5'515	4'070	3'778					
Residual fuel oil	TJ	1'160	466	137	NO	NO					
Liquefied petroleum gas	TJ	204	308	535	534	659					
Natural gas	TJ	1'094	2'517	4'270	5'653	8'744					
1A2e Food processing beverages and tobacco (Boilers)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	12'463	11'591	10'992	11'231	10'843	11'851	11'928	12'269	10'109	10'078
Gas oil	TJ	2'395	2'522	2'503	2'110	1'925	2'119	2'009	2'298	2'246	1'997
Residual fuel oil	TJ	NO									
Liquefied petroleum gas	TJ	828	838	699	785	763	731	699	731	731	752
Natural gas	TJ	9'241	8'230	7'790	8'337	8'155	9'001	9'220	9'240	7'132	7'328

Table 3-49 Fuel consumption in boilers of 1A2gviii Stationary combustion in manufacturing industries and construction: Other.

1A2gviii Stationary combustion Other (Boilers)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	16'898	20'913	21'380	22'190	22'222					
Gas oil	TJ	7'418	11'626	13'484	14'497	12'705					
Residual fuel oil	TJ	5'237	3'605	47	4.9	9.3					
Liquefied petroleum gas	TJ	3'087	3'233	4'011	2'979	2'697					
Petroleum coke	TJ	765	914	15	383	318					
Other bituminous coal	TJ	205	140	12	88	11					
Lignite	TJ	NO	NO	NO	4.7	111					
Natural gas	TJ	186	1'396	3'811	4'233	6'371					
1A2gviii Stationary combustion Other (Boilers)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	16'686	17'837	17'665	17'728	16'846	16'637	15'174	16'287	13'837	12'145
Gas oil	TJ	7'050	7'342	7'785	6'912	6'568	5'597	4'831	4'794	4'141	3'412
Residual fuel oil	TJ	0.33	2.8	7.9	4.3	2.2	2.4	3.7	2.8	NO	41
Liquefied petroleum gas	TJ	1'810	1'852	1'441	1'798	1'772	1'705	1'634	1'725	1'712	1'683
Petroleum coke	TJ	108	104	155	113	168	169	65	21	185	195
Other bituminous coal	TJ	105	134	125	102	91	89	133	47	57	34
Lignite	TJ	189	204	197	182	153	141	144	138	135	122
Natural gas	TJ	7'425	8'198	7'955	8'617	8'092	8'934	8'362	9'560	7'607	6'658

3.2.3.2.2 Iron and steel (1A2a)

Methodology (1A2a)

Emission factors and activity data of fuel consumption in boilers of this source category are documented in Table 3-42 and Table 3-44, respectively. In the following chapters, only those source categories are described, that are directly based on bottom-up industry data as outlined above in chapter 3.2.3.2.1. In addition, the chapter on activity data provides an overview on the fuel consumption within 1A2a.

Reheating furnaces in steel production

There is no primary iron and steel production in Switzerland. Only secondary steel production using recycled steel scrap occurs. Today, steel is produced in two steel production plants only, after two plants closed in 1994. The remaining plants use electric arc furnaces (EAF) with carbon electrodes for melting the steel scrap. Therefore, only emissions from the reheating furnaces are reported in source category 1A2a. These furnaces use mainly natural gas for reheating the ingot moulds prior to the rolling mills. Process emissions from steel production are included in source category 2C1 Iron and steel production.

Electric arc furnaces in steel production:

In the electric arc furnaces of secondary steel production also so-called injection coal and petroleum coke for slag formation as well as natural gas are used. The emissions from the electric arc furnaces reported under source category 2C1 Steel production are based on air pollution control measurements at the chimney and thus also include emissions from injection coal, coke and natural gas. Therefore, in order to avoid double counting, these fuel consumptions are subtracted from the respective boilers in source categories 1A2gviii Other (petroleum coke, other bituminous coal) and 1A2a Iron and steel (natural gas) based on plant-specific data from monitoring reports of the Swiss ETS for the years 2005-2011 and from 2013 onwards.

Cupola furnaces in iron foundries

Iron is produced in 14 iron foundries. About 75 % of the iron is processed in induction furnaces and 25 % in cupola furnaces. The share of induction furnaces increased since 1990 with a sharp increase in 2009 based on the closure of at least one cupola furnace. Induction furnaces use electricity for the melting process and therefore only process emissions occur, which are reported in source category 2C1 Iron and steel production.

Emission factors (1A2a)

Reheating furnaces in steel production

For NO_x, PM2.5/PM10, TSP and CO production weighted emission factors are derived from data that are based on various air pollution control measurements under the Ordinance on Air Pollution Control (Swiss Confederation 1985). In years with missing data, emission factors are estimated by interpolation. For NMVOC, SO_x and Hg country-specific emission factors are used. Emission factors for Pb and Cd are available for selected years. Since 1995, emission factors are assumed to be constant. The emission factors of BC (% PM2.5) are taken from EMEP/EEA guidebook (EMEP/EEA 2023, chp. 1A4, table Liquid fuels (rounded mean value), Appendix E for residual fuel oil and table 3-26 for natural gas), see EMIS 2025/1A2a Stahl-Produktion Wärmeöfen.

Cupola furnaces in iron foundries

Emission factors of NO_x, NMVOC, SO_x, PM2.5/PM10, TSP, CO, Pb, Cd and PCDD/PCDF are provided by the Swiss foundry association (Schweizerischer Giessereiverband GVS) and are assumed constant. The emission factors of BC (% PM2.5) is taken from EMEP/EEA guidebook (EMEP/EEA 2023, chp.1A4, Table 3-23). Emission factors of PAH are based on data from literature, see USEPA (1998) and EMIS 2025/1A2a Eisengiessereien Kupolöfen). The Hg emission factor is based on the default value for other bituminous coal of Table 3-23 (chp. 1A4) of EMEP/EEA (2023).

1A2a Iron and steel		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	со	
			g/	g/	g/	g/	g/	g/	g/	g/	g/	
Iron foundries, cupola	Iron	t	67	40	1'500	NE	60	110	120	3.8	11'000	
Steel plants, reheating furnaces	Steel	t	75	2.8	0.71	NE	2.1	2.1	4.1	0.11	0.50	
1A2a Iron and steel		Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
		Onit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	mg/	mg/
Iron foundries, cupola	Iron	t	4'800	24	80	1'300	0.13	1.4	1.2	1.6	NE	NE
Steel plants, reheating furnaces	Steel	4	32	3.4	0.071	NE	NE	NE	NE	NE	NA	NA

Table 3-50 Emission factors of 1A2a Iron and Steel in 2023.

Activity data (1A2a)

Activity data of iron and steel production that is used to calculate emissions from cupola ovens in iron foundries and reheating furnaces in steel plants is provided by the industry as documented in the EMIS database (EMIS 2025/1A2a).

Reheating furnaces in steel production

Since 1995, steel production increased continuously until 2004 to reach the same production level as 1990. Up to 2022 the steel production remained about constant. In 2009, the production was significantly lower due to the financial crisis. Due to the economic situation, including the strong rise in electricity prices because of the war in Ukraine, production fell sharply from 2022 to 2023. One steel producer switched its production to high quality steel and therefore the specific energy use per tonne of steel produced increased between 1995 and 2000. This led to higher natural gas consumption. Data on annual steel production is provided by the steel production plant. Since 2009, activity data refer to monitoring reports of the Swiss ETS.

In steel production, mainly natural gas is used as fuel. Until 1994, the Swiss steel industry also used residual fuel oil in one steel production plant. Due to the closure of two steel production plants in 1994, the amount of fuel used in Swiss steel plants decreased significantly. Fuel consumption is derived from specific energy consumption per tonne of steel or iron and the annual production of steel or iron respectively.

Cupola furnaces in iron foundries

Annual production data are provided by the Swiss foundry association (Schweizerischer Giessereiverband GVS). The use of other bituminous coal decreased significantly due to a switch from cupola furnaces to induction furnaces. Bituminous coal used in cupola furnaces primarily acts as fuel, but also as carburization material and reductant. Therefore, emissions are accounted for in source category 1A2a. This allows to be consistent with the allocation of bituminous coal in the Swiss overall energy statistics (SFOE 2024).

Table 3-51 Activity data from production of iron and steel that is used to calculate bottom-up emissions from sources of 1A2a.

1A2a Iron and steel		Unit	1990	1995	2000	2005	2010					
Iron foundries, cupola	Iron	kt	90	60	55	32	13					
Steel plants, reheating furnaces	Steel	kt	1'108	716	1'022	1'082	1'082					
1A2a Iron and steel		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1A2a Iron and steel Iron foundries, cupola	Iron	Unit kt	2014 11	2015 9.2	2016 8.6	2017 8.8	2018 8.6	2019 6.0	2020 5.1	2021 5.4	2022 5.8	2023 5.4

3.2.3.2.3 Non-ferrous metals (1A2b)

Methodology (1A2b)

Emission factors and activity data of fuel consumption in boilers of this source category are documented in Table 3-42 and Table 3-45, respectively. In the following chapters, only those source categories are described, that are directly based on bottom-up industry data as outlined above in chapter 3.2.3.2.1. In addition, the chapter on activity data provides an overview on the fuel consumption within 1A2b.

Source category 1A2b Non-ferrous metals includes secondary aluminium production plants as well as non-ferrous metal foundries, producing mainly copper alloys.

Secondary aluminium production plants:

Until 1993, secondary aluminium production plants have been in operation using gas oil. On the other hand, emissions from primary aluminium production in Switzerland are reported in source category 2C3 as induction furnaces have been used. Its last production site closed in April 2006.

Non-ferrous metals smelters and furnaces

Regarding non-ferrous metal industry in Switzerland, only casting and no production of non-ferrous metals occur. There is one large company and several small foundries, which are organized within the Swiss foundry association (GVS).

Emission factors (1A2b)

Emissions from non-ferrous metals smelters and furnaces are derived from the emission factors per tonne of metal as shown in the following table as documented in the EMIS database (EMIS 2025/1A2b Buntmetallgiessereien übriger Betrieb). The emission factors are based on information of the Swiss foundry association (GVS).

1A2b Non-ferrous metals		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx
			g/	g/	g/	g/	g/	g/	g/	g/
Aluminium production remelting plant	Aluminium	t	NO	NO	NO	NO	NO	NO	NO	NO
Foundries	Metal	t	7.0	420	4.0	NE	160	NA	170	NA
142h Non forrous motols		Unit	TSP ex	TSP nx	BC ex	СО	Pb	Cd	Hg	PCDD/ PCDF
1A2b Non-ferrous metals			g/	g/	g/	g/	mg/	mg/	mg/	ng I- Teq/
Aluminium production remelting plant	Aluminium	t	NO	NO	NO	NO	NO	NO	NO	NO
Foundries	Metal	t	170	NA	6.2	2'100	510	85	NE	4'900
1A2b Non-ferrous metals		Unit	BaP	BbF	BkF	IcdP	HCB	PCB		
TA2D Non-terrous metals		Unit	mg/	mg/	mg/	mg/	mg/	mg/		
Aluminium production remelting plant	Aluminium	t	NO	NO	NO	NO	NO	NO		
Foundries	Metal	t	NE	NE	NE	NE	NE	NE		

Table 3-52 Emission factors of 1A2b Non-ferrous metals in 2023.

Activity data (1A2b)

The production data for the non-ferrous metal industry is provided by the largest company (Swissmetal, monitoring reports of the Swiss ETS from 2006 onwards) and the annual statistics of the Swiss Foundry Association (GVS). The non-ferrous metal foundries continuously increased their production from 1990 to 2000. Since 2000, the production has strongly decreased. The decrease in production is also reflected in its fuel consumption (Table 3-45).

Activity data of the secondary aluminium production plant (ceased in 1993) were based on data from the Swiss aluminium association (<u>www.alu.ch</u>).

Table 3-53 Activity data from production of Non-ferrous metals that are used to calculate bottom-up emissions from sources of 1A2b.

1A2b Non-ferrous metals		Unit	1990	1995	2000	2005	2010					
Aluminium production remelting plant	Aluminium	kt	34	NO	NO	NO	NO					
Foundries	Metal	kt	60	56	53	33	20					
1A2b Non-ferrous metals		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Aluminium production remelting plant	Aluminium	kt	NO									
Foundries	Metal	kt	9.5	8.9	9.0	8.0	6.8	6.4	5.1	7.5	7.9	5.3

3.2.3.2.4 Chemicals (1A2c)

Methodology (1A2c)

In Switzerland, there are more than thirty chemical companies mainly producing fine chemicals and pharmaceuticals. Fossil fuels are mostly used for steam production.

Emission factors and activity data of fuel consumption in boilers of this source category are documented in Table 3-42 and Table 3-46, respectively. In the following chapters, only those source categories are described, that are directly based on bottom-up industry data as outlined above in chapter 3.2.3.2.1. In addition, the chapter on activity data provides an overview on the fuel consumption within 1A2c.

Steam production from cracker by-products

There is one large company producing ammonia and ethylene by thermal cracking of liquefied petroleum gas and light virgin naphtha. In addition, thermal cracking also produces so-called heating gas and gasolio as by-products. In 2018 the cracking process and the subsequent integrated production chain were modified yielding synthesis gas as additional by-product. These cracker by-products are used thermally for steam production within the same plant and are accounted for within source category 1A2c as other fossil fuels. Process emissions from ammonia and ethylene production are reported in source category 2B10a Ethylene production.

Emission factors (1A2c)

Since the fuel quality of gasolio and heating gas are of similar quality as residual fuel oil and gas oil, respectively, the same emission factors as of those boilers are assumed for all air pollutants, see Table 3-42. For synthesis gas (about 23 % vol. CO, 77 % vol. H₂) emissions of NO_x and NH₃ are assumed only. Thus, for NO_x and NH₃, the same emission factors as of boilers, natural gas are applied, see Table 3-42.

Activity data (1A2c)

Activity data on gasolio, heating gas and synthesis gas (from 2018 onwards) are provided by the industry. Since 2013, they are based on monitoring reports of the Swiss ETS as documented in the EMIS database (EMIS 2025/1A2c ethylene production). The activity data are confidential but available to reviewers on request.

3.2.3.2.5 Pulp, paper and print (1A2d)

Methodology (1A2d)

Around half a dozen paper producers and several printing facilities exist in Switzerland. The only cellulose production plant was closed in 2008. Thermal energy is mainly used for provision of steam used in the drying process within paper production.

Emission factors and activity data of fuel consumption in boilers of this source category are documented in Table 3-42 and Table 3-47, respectively. In the following chapters, only those source categories are described, that are directly based on bottom-up industry data as outlined above in chapter 3.2.3.2.1. In addition, the chapter on activity data provides an overview on the fuel consumption within 1A2d.

Emission factors (1A2d)

For the cellulose production plant, NO_x and SO_x emission factors were derived from air pollution control measurements. The emission factor of BC (% PM2.5) was taken according to the EMEP/EEA guidebook (EMEP/EEA 2023, chp. 1A4, table Liquid fuels (rounded mean value), Appendix E) as documented in the EMIS database (EMIS 2025/1A2d Zellulose-Produktion Feuerung). Emission factors for natural gas used in gas turbines as SCGT or CCGT are described in chapter 3.2.1.1.2.

Activity data (1A2d)

Activity data on annual cellulose production are provided by the industry as documented in the EMIS database (EMIS 2025/1A2d Zellulose-Produktion Feuerung). The only plant closed in 2008.

In 2023, natural gas is the most important fuel in this category (see Table 3-47). The use of natural gas in gas turbines as SCGT or CCGT is described in chapter 3.2.1.1.2. Biomass used in paper production is reported in source category 1A2gviii, because no comprehensive data exist to distribute biomass consumption to the specific industries within 1A2.

The overall fuel consumption within the Swiss pulp and paper industry has decreased significantly due to the closure of the cellulose production plant in 2008 and the closure of several paper producers in the last years.

3.2.3.2.6 Food processing, beverages and tobacco (1A2e)

Methodology (1A2e)

In Switzerland, the source category 1A2e Food, beverages and tobacco includes around 200 companies. According to the national food industry association, a major part of revenues is provided by meat production, milk products and convenience food. Further productions comprise chocolate, sugar or baby food (Fial 2013). Fossil fuels are used for steam production and drying processes.

Emission factors and activity data of fuel consumption in boilers of this source category are documented in Table 3-42 and Table 3-48, respectively.

In 2023, the fuels used in this category were mainly natural gas as well as gas oil and small amounts of liquefied petroleum gas (Table 3-48). All fuel is consumed in boilers.

3.2.3.2.7 Non-metallic minerals (1A2f)

Source category 1A2f Non-metallic minerals includes several large fuel consumers from mineral industry as for example cement, lime or brick and tile, glass and rock wool production (EMIS 2025/1A2f). Emission factors and activity data of some source categories reported under 1A2f Non-metallic minerals are considered confidential and are available to reviewers on request.

Emission factors (1A2f)

The following table provides an overview of the emission factors applied for source category 1A2f. Data sources are described for each process in the following chapters and are documented in the EMIS database (EMIS 2025/1A2f).

1A2f Non-metallic minerals		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx
TAZI NON-metallic minerals		Unit	g/	g/	g/	g/	g/	g/	g/	g/
Brick and tile	Bricks	t	530	140	80	NE	19	NA	29	NA
Cement	Clinker	t	775	67	280	45	3.0	NA	4.0	NA
Container glass	Glass	t	C	NA	С	NE	С	NA	С	NA
Fine ceramics	Ceramics	t	C	C	С	NE	С	NA	С	NA
Glass wool	Glass wool	t	5'000	14	3.4	NE	342	NA	611	NA
Lime	Lime	t	С	С	С	NE	С	NA	С	NA
Mixed goods	Mixed goods	t	10	32	17	NE	1.0	NA	2.9	NA
Rock wool	Rock wool	t	C	IE	С	С	С	С	С	С
Tableware glass	Glass	t	C	С	С	NE	С	NA	С	NA
1A2f Non-metallic minerals		Unit	TSP ex	TSP nx	BC ex	со	Pb	Cd	Hg	PCDD/ PCDF
		Onic	g/	g/	g/	g/	mg/	mg/	mg/	ng I- Teq/
Brick and tile	Bricks	t	32	NA	1.0	560	45	0.70	7.0	18
Cement	Clinker	t	5.0	NA	0.25	2'600	20	2.0	10	40
Container glass	Glass	t	С	NA	С	С	С	С	NE	NE
Fine ceramics	Ceramics	t	С	NA	С	С	С	С	С	С
Glass wool	Glass wool	t	630	NA	18	80	860	90	0.34	NE
Lime	Lime	t	C	NA	С	С	С	С	С	С
Mixed goods	Mixed goods	t	3.0	NA	0.044	85	20	2.0	2.0	5.0
Rock wool	Rock wool	t	C	С	С	С	С	С	С	NE
Tableware glass	Glass	t	C	NA	С	С	С	С	С	NE
		11.2	BaP	BbF	BkF	IcdP	HCB	PCB		
1A2f Non-metallic minerals		Unit	mg/	mg/	mg/	mg/	mg/	mg/		
Brick and tile	Bricks	t	NE	NE	NE	NE	NE	NE		
Cement	Clinker	t	0.060	1.0	0.040	0.30	0.0040	0.10		
Container glass	Glass	t	NE	NE	NE	NE	NA	NA		
Fine ceramics	Ceramics	t	NE	NE	NE	NE	NA	NA		
Glass wool	Glass wool	t	NE	NE	NE	NE	NA	NA		
Lime	Lime	t	NE	NE	NE	NE	NA	NA		
Mixed goods	Mixed goods	t	0.040	0.060	0.040	0.040	NE	NE		
Rock wool	Rock wool	t	NE	NE	NE	NE	NE	NE		
Tableware glass	Glass	t	NE	NE	NE	NE	NA	NA	[

Table 3-54 Emission factors for 1A2f Non-metallic minerals in 2023.

Activity data (1A2f)

Table 3-55 provides an overview of activity data in source category 1A2f. Data sources are described for each process in the following chapters and are documented in the EMIS database (EMIS 2025/1A2f).

1A2f Non-metallic minerals		Unit	1990	1995	2000	2005	2010					
Brick and tile	Bricks	kt	1'271	1'115	959	1'086	879					
Cement	Clinker	kt	4'808	3'706	3'214	3'442	3'642					
Container glass	Glass	kt	С	С	С	С	С					
Fine ceramics	Ceramics	kt	С	С	С	С	С					
Glass wool	Glass wool	kt	24	24	31	37	36					
Lime	Lime	kt	С	С	С	С	С					
Mixed goods	Mixed goods	kt	5'500	4'800	5'170	4'780	5'250					
Rock wool	Rock wool	kt	С	С	С	С	С					
Tableware glass	Glass	kt	С	С	С	С	С					
1A2f Non-metallic minerals		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Brick and tile	Bricks	kt	765	726	660	622	581	554	531	484	521	449
Cement	Clinker	kt	3'502	3'195	3'296	3'279	3'239	3'227	3'129	3'227	3'155	2'855
Container glass	Glass	kt	С	С	С	С	C	С	С	С	С	С
Fine ceramics	Ceramics	kt	С	С	С	С	С	С	С	С	С	С
Glass wool	Glass wool	kt	32	31	32	36	40	47	40	47	45	37
Lime	Lime	kt	С	С	С	С	С	С	С	С	С	С
								51040	110.1.0			
Mixed goods	Mixed goods	kt	5'260	4'850	4'710	5'260	5'180	5'210	4'910	4'960	4'970	5'000
Mixed goods Rock wool	Mixed goods Rock wool	kt kt	5'260 C	4'850 C	4'710 C	5'260 C	5'180 C	5'210 C	4'910 C	4'960 C	4'970 C	5'000 C

Table 3-55 Activity data for 1A2f Non-metallic minerals.

Cement (1A2f)

Methodology

In Switzerland, there are six plants producing clinker and cement. The Swiss plants are rather small and do not exceed a capacity of 3'000 tonnes of clinker per day. All of them use modern dry process technology.

Cement industry emissions stem from incineration of fossil and waste derived fuels used to generate high temperatures needed for the clinker production process. Fossil fuels used in cement industry are coal (lignite and other bituminous coal), petroleum coke and, to a lesser extent, gas oil, residual fuel oil and natural gas. Waste derived fuels can be of fossil or biogenic origin and include for example plastics, waste oil, solvents and residues from distillation or wood waste. The fuels consumed in this category are very diverse and depend on the fuel use within the specific plant (see detailed documentation below).

Emission factors

Table 3-54 shows product-specific emission factors for cement production (EMIS 2025/1A2f Zementwerke Feuerung). Since 2008, emission factors are based on various air pollution control measurements under the Ordinance on Air Pollution Control (Swiss Confederation 1985). A reassessment of emission measurement reports of the years 2013 and 2018 led to changes in emission factors for the years 2009-2012 and from 2013 onwards. Regarding NO_x, industry agreements define an emission reduction path for the years 2016-2021 and 2022-2031, respectively. Emission data for monitoring compliance with the agreement were evaluated and the emission factor for NO_x was computed accordingly. The value for PCB is based on the Tier 2 emission factor in the EMEP/EEA guidebook (EMEP/EEA 2023, chp.1A2, Table 3-25).

Activity data

Activity data of annual clinker production of each cement production plant in Switzerland are provided by the association of the Swiss cement industry (see Table 3-55). Since 2008, activity data are available from monitoring reports of the Swiss ETS.

For information purposes, annual fuel consumption of the cement production plants in Switzerland are shown in Table 3-56. The waste derived fuels can be of fossil or biogenic origin and are accordingly differentiated into so-called other fossil fuels and biomass.

The amount of fuels consumed in the Swiss cement production plants is also provided in the annual monitoring reports of the cement production plants as documented in the respective EMIS 2025/1A2f Zementwerke Feuerung.

1A2f Non-metallic minerals (Cement industry)	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	17'194	12'774	11'017	11'623	12'388					
Gas oil	TJ	NO	NO	NO	72	5.4					
Residual fuel oil	TJ	1'907	2'825	1'530	637	112					
Petroleum coke	TJ	550	300	480	638	1'130					
Other bituminous coal	TJ	12'235	6'547	5'176	4'120	3'662					
Lignite	TJ	265	153	124	737	1'348					
Natural gas	TJ	362	168	22	3.9	21					
CSS, fossil	TJ	5.0	29	34	29	26					
Mixed industrial waste	TJ	NO	NO	NO	NO	NO					
Other fossil waste fuels	TJ	NO	NO	NO	NO	45					
Plastics, fossil	TJ	NO	40	413	608	905					
Solvents and residues from distillation, fossil	TJ	281	180	422	967	1'178					
Waste coke from coke filters	TJ	59	59	59	58	NO					
Waste oil, fossil	TJ	1'170	1'485	1'520	1'411	1'253					
Waste tyres and rubber, fossil	TJ	241	303	307	471	614					
Biogas	TJ	NO	NO	NO	NO	NO					
Wood waste	TJ	NO	322	NO	NO	292					
CSS, biogenic	TJ	18	106	124	105	97					
Agricultural waste	TJ	NO	NO	NO	NO	7.3					
Animal meal	TJ	NO	NO	198	856	624					
Dry sewage sludge	TJ	9.4	128	333	494	477					
Other biomass	TJ	NO	NO	NO	NO	5.7					
Plastics, biogenic	TJ	NO	15	158	233	347					
Solvents biogenic	TJ	2.5	1.6	3.8	8.8	11					
Waste oil, biogenic	TJ	NO	NO	NO	NO	NO					
Waste tyres and rubber, biogenic	TJ	89	112	114	174	227					
1A2f Non-metallic minerals (Cement industry)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1A2f Non-metallic minerals (Cement industry) Total fuel consumption	Unit TJ	2014 12'339					2019 11'416	2020 11'248	2021 11'609	2022 11'606	2023 10'485
		-	2015	2016	2017	2018			-	-	
Total fuel consumption	TJ	12'339	2015 11'348	2016 11'583	2017 11'476	2018 11'524	11'416	11'248	11'609	11'606	10'485
Total fuel consumption Gas oil	TJ TJ	12'339 75	2015 11'348 87	2016 11'583 50	2017 11'476 56	2018 11'524 63	11'416 43	11'248 54	11'609 61	11'606 93	10'485 81
Total fuel consumption Gas oil Residual fuel oil	TJ TJ TJ	12'339 75 58	2015 11'348 87 45	2016 11'583 50 90	2017 11'476 56 59	2018 11'524 63 NO	11'416 43 63	11'248 54 35	11'609 61 52	11'606 93 NO	10'485 81 NO
Total fuel consumption Gas oil Residual fuel oil Petroleum coke	TJ TJ TJ TJ	12'339 75 58 1'052	2015 11'348 87 45 622	2016 11'583 50 90 658	2017 11'476 56 59 574	2018 11'524 63 NO 542	11'416 43 63 552	11'248 54 35 591	11'609 61 52 583	11'606 93 NO 547	10'485 81 NO 568
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal	TJ TJ TJ TJ TJ TJ	12'339 75 58 1'052 1'713	2015 11'348 87 45 622 1'267	2016 11'583 50 90 658 826	2017 11'476 56 59 574 938	2018 11'524 63 NO 542 987	11'416 43 63 552 831	11'248 54 35 591 528	11'609 61 52 583 587	11'606 93 NO 547 780	10'485 81 NO 568 605
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite	TJ TJ TJ TJ TJ TJ TJ	12'339 75 58 1'052 1'713 2'912	2015 11'348 87 45 622 1'267 2'856	2016 11'583 50 90 658 826 2'881	2017 11'476 56 59 574 938 2'694	2018 11'524 63 NO 542 987 2'367	11'416 43 63 552 831 2'120	11'248 54 35 591 528 2'266	11'609 61 52 583 587 2'304	11'606 93 NO 547 780 2'331	10'485 81 NO 568 605 1'824
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas	TJ TJ TJ TJ TJ TJ TJ TJ	12'339 75 58 1'052 1'713 2'912 37	2015 11'348 87 45 622 1'267 2'856 41	2016 11'583 50 90 658 826 2'881 39	2017 11'476 56 59 574 938 2'694 34	2018 11'524 63 NO 542 987 2'367 56	11'416 43 63 552 831 2'120 65	11'248 54 35 591 528 2'266 26	11'609 61 52 583 587 2'304 28	11'606 93 NO 547 780 2'331 82	10'485 81 NO 568 605 1'824 71
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil	TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	12'339 75 58 1'052 1'713 2'912 37 25	2015 11'348 87 45 622 1'267 2'856 2'856 41 20 NO 12	2016 11'583 50 90 658 826 2'881 39 26 NO 11	2017 11'476 56 59 574 938 2'694 34 21 NO 5.7	2018 11'524 63 NO 542 987 2'367 2'367 56 20 NO 5.4	11'416 43 63 552 831 2'120 65 16	11'248 54 35 591 528 2'266 26 0.043 NO	11'609 61 52 583 587 2'304 28 0.58 0.58 NO 13	11'606 93 NO 547 780 2'331 82 0.67	10'485 81 NO 568 605 1'824 71 0.42
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste	דו דו דו דו דו דו דו דו דו	12'339 75 58 1'052 1'713 2'912 37 25 NO	2015 11'348 87 45 622 1'267 2'856 41 20 NO	2016 11'583 50 90 658 826 2'881 39 26 NO	2017 11'476 56 59 574 938 2'694 34 21 NO	2018 11'524 63 NO 542 987 2'367 56 20 NO	11'416 43 63 552 831 2'120 65 16 NO	11'248 54 35 591 528 2'266 26 0.043 NO	11'609 61 52 583 587 2'304 28 0.58 NO	11'606 93 NO 547 780 2'331 82 0.67 NO	10'485 81 NO 568 605 1'824 71 0.42 NO
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels	TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	12'339 75 58 1'052 1'713 2'912 37 25 NO 19	2015 11'348 87 45 622 1'267 2'856 2'856 41 20 NO 12	2016 11'583 50 90 658 826 2'881 39 26 NO 11	2017 11'476 56 59 574 938 2'694 34 21 NO 5.7	2018 11'524 63 NO 542 987 2'367 2'367 56 20 NO 5.4	11'416 43 63 552 831 2'120 65 16 NO NO	11'248 54 35 591 528 2'266 26 0.043 NO	11'609 61 52 583 587 2'304 28 0.58 0.58 NO 13	11'606 93 NO 547 780 2'331 82 0.67 NO NO	10'485 81 NO 568 605 1'824 71 0.42 NO NO
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil	עד עד עד עד עד עד עד עד עד עד עד עד עד	12'339 75 58 1'052 1'713 2'912 37 25 NO 19 1'016 1'193 NO	2015 11'3'48 87 45 622 1'267 2'856 41 2'856 41 2'856 41 20 NO 12 2 887 1'194 NO	2016 11'583 500 900 658 826 2'881 339 26 NO 11 1 1 8900 1'397 NO	2017 11'476 566 59 574 938 2'694 34 2'1 NO 5.7 1'071 1'254 66	2018 11'524 63 NO 542 987 2'367 56 2'0 NO 5.4 1'319 1'238 61	11'416 43 63 552 831 2'120 65 16 NO NO 1'246 1'456 48	11'248 54 35 591 528 2'266 266 0.043 NO NO 1'558 1'155 52	11'609 61 52 583 587 2'304 28 0.58 NO 13 1'688 1'107 48	11'606 93 NO 547 780 2'331 82 0.67 NO NO 1'692 1'265 30	10'485 81 NO 568 605 1'824 71 0.42 NO NO 1'704 1'121 24
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossii Mixed industrial waste Other fossii waste fuels Plastics, fossil Solvents and residues from distillation, fossil	TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ T	12'339 75 58 1'052 1'713 2'912 37 25 NO 19 1'016 1'193 NO 884	2015 11'348 87 45 622 1'267 2'856 411 20 NO 12 887 1'194 NO 1'083	2016 11'583 50 90 658 826 2'881 39 26 NO 11 890 1'397 NO 1'469	2017 11'476 56 59 574 938 2'694 34 2'694 34 2'1 NO 5.7 1'071 1'254 66 66 1'215	2018 11'524 63 NO 542 987 2'367 566 20 NO 5.4 1'319 1'238 611 1'239	11'416 43 63 552 831 2'120 65 16 NO NO NO NO NO 1'246 1'456 48 1'359	11'248 54 35 591 528 2'266 26 0.043 NO NO NO NO 1'558 1'155 52 1'353	11'609 61 52 583 587 2'304 2'304 2'304 2'304 2'304 1'305 1'305 1'305 1'107 48 1'253	11'606 93 NO 547 780 2'331 82 0.67 NO NO 1'692 1'265	10'485 81 NO 568 605 1'824 71 0.42 NO NO 1'704 1'704 1'121 24 973
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters	עד עד עד עד עד עד עד עד עד עד עד עד עד	12'339 75 58 1'052 1'713 2'912 37 25 NO 19 1'016 1'193 NO	2015 11'3'48 87 45 622 1'267 2'856 41 2'856 41 2'856 41 20 NO 12 2 887 1'194 NO	2016 11'583 500 900 658 826 2'881 339 26 NO 11 1 1 8900 1'397 NO	2017 11'476 566 59 574 938 2'694 34 2'1 NO 5.7 1'071 1'254 66	2018 11'524 63 NO 542 987 2'367 56 2'0 NO 5.4 1'319 1'238 61	11'416 43 63 552 831 2'120 65 16 NO NO 1'246 1'456 48	11'248 54 35 591 528 2'266 266 0.043 NO NO 1'558 1'155 52	11'609 61 52 583 587 2'304 28 0.58 NO 13 1'688 1'107 48	11'606 93 NO 547 780 2'331 82 0.67 NO NO 1'692 1'265 30	10'485 81 NO 568 605 1'824 71 0.42 NO NO 1'704 1'121 24
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters Waste oil, fossil	TJ	12'339 75 58 1'052 1'713 2'912 37 25 NO 19 1'016 1'193 NO 884 746 NO	2015 11'348 87 45 622 1'267 2'856 411 20 NO 12 887 1'194 NO 1'083	2016 11'583 50 90 658 826 2'881 39 26 NO 11 890 1'397 NO 1'469	2017 11'476 56 59 574 938 2'694 34 21 NO 5.7 1'071 1'254 66 1'215 7600 NO	2018 11'524 63 NO 542 987 2'367 56 20 NO NO 5.4 1'319 1'238 61 1'239 7633 NO	11'416 43 63 552 8311 2'120 65 16 NO NO 1'246 1'456 48 1'359 760 NO	11'248 54 35 591 528 2'266 26 0.043 NO NO NO NO 1'558 1'155 52 1'353	11'609 61 522 583 587 2'304 28 0.58 NO 13 1'688 1'107 48 1'253 7266 NO	11'606 93 NO 547 780 2'331 82 0.67 NO NO 1'692 1'265 30 1'009	10'485 81 NO 568 605 1'824 71 0.42 NO NO 1'704 1'704 1'121 24 973
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters Waste oil, fossil Waste tyres and rubber, fossil	TJ	12'339 75 58 1'052 1'713 2'912 37 25 NO 1'93 1'016 1'193 NO 8844 746 NO 0 886	2015 11'348 87 45 622 1'267 2'856 41 200 NO 12 887 1'194 NO 1'083 699 NO 0 896	2016 11'583 50 90 658 826 2'881 39 266 NO 11 890 1'397 NO 1'469 694 NO 0 811	2017 11'476 56 59 574 938 2'694 34 21 1 NO 5.7 1'071 1'254 760 1'215 760 NO 0 840	2018 11'524 63 NO 542 987 2'367 56 200 NO 5.4 1'319 1'338 1'338 1'338 1'338 1'338 1'338 1'338 1'339 1'	11'416 43 63 552 831 2'120 65 16 NO NO 1'246 1'456 48 48 1'359 760	11'248 54 35 591 528 2'266 26 0.043 NO NO 1'558 1'155 52 2 2 1'353 743	11'609 61 52 583 587 2'304 2'8 2'304 2'8 0.58 NO 13 1'688 1'107 48 1'253 726	11'606 93 NO 547 780 2'331 82 0.67 NO NO 1'692 1'265 30 1'009 730	10'485 81 NO 568 605 1'824 71 0.42 NO 1'704 1'704 1'704 1'704 1'704 24 973 605
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters Waste oil, fossil Waste tyres and rubber, fossil Biogas Wood waste CSS, biogenic	TJ	12'339 75 58 1'052 2'912 37 25 NO 19 1'016 1'193 NO 884 746 NO 886 886 886 78	2015 11'348 87 622 1'267 2'856 41 2'0 NO 12 887 1'194 NO 1'083 699 NO 896 60	2016 11'583 50 90 658 826 2'881 39 26 2'881 39 26 NO 1'397 NO 1'469 694 NO 1'469 694 NO	2017 11'476 56 59 574 938 2'694 34 21 NO 5.7 1'071 1'254 66 6 1'215 760 NO 800 57	2018 11'524 63 NO 542 987 2'367 2'367 2'367 2'367 2'367 2'0 0 NO 5.4 1'319 1'339 1'338 611 1'239 763 NO 840 53	11'416 43 63 552 831 2'120 65 16 NO NO 1'246 1'456 1'456 48 1'359 760 NO 861 43	11'248 54 591 591 528 2'266 26 0.043 NO NO NO NO 1'558 1'155 522 1'353 743 NO 867 0.12	11'609 61 52 583 587 2'304 28 0.58 0.58 NO 13 1'688 1'107 48 1'253 726 NO 973 1.6	11'606 93 NO 547 780 2'331 82 0.67 NO NO 1'692 1'265 300 1'009 730 NO 962 1.8	10'485 81 NO 568 605 1'824 71 0.42 NO NO 1'704 1'124 973 605 NO 989 989
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters Waste oil, fossil Waste oil, fossil Waste oil, fossil Biogas Wood waste CSS, biogenic Agricultural waste	TJ	12'339 75 58 1'052 1'713 2'912 25 NO 19 1'016 1'193 NO 8884 746 NO 8866 788 NO	2015 11'348 87 45 622 1'267 2'856 41 20 NO 12 887 1'194 NO 1'083 699 NO 896 600 00 NO	2016 11'583 50 90 658 826 2'881 39 26 NO 1'1 890 1'397 NO 1'469 694 NO 811 72 NO	2017 11'476 56 59 574 938 2'694 21 NO 5.7 1'071 1'254 66 1'215 7600 NO 840 840 5.7 7 9.2	2018 11/524 63 NO 542 987 2'367 56 20 NO 5.4 1'319 1'238 61 1'239 7633 NO 840 53 NO	11'416 43 63 552 831 2'120 65 16 NO NO NO 1'246 1'456 48 1'359 760 NO NO 861 43 NO	11'248 54 591 5218 2'266 26 0.043 NO NO 1'558 1'155 52 52 52 52 53 743 NO 867 0.12 NO	11'609 61 52 583 587 2'304 28 0.58 NO 13 1'688 1'107 48 1'253 7266 NO 973 1.6 NO	11'606 93 NO 547 780 2'331 82 0.67 NO NO NO 1'092 1'265 30 1'009 730 NO 962 1.8 NO	10'485 81 NO 568 605 1'824 771 0.42 NO NO NO 1'704 1'121 24 973 605 NO 989 91.1.1 NO
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters Waste oil, fossil Waste tyres and rubber, fossil Biogas Wood waste CSS, biogenic	TJ	12'339 75 58 1'052 1'713 2'912 37 25 NO 19 1'016 1'193 NO 884 746 NO 886 78 886 78 NO 886 78 NO	2015 11'348 87 45 622 1'267 2'856 41 200 NO 12 887 1'194 NO 1'083 699 NO 1'083 699 NO 1'083 699 NO 1'083 699 NO 1'083 699 NO 1'285 1'267 1'27 1	2016 11/583 50 900 658 826 2'881 399 26 NO 111 890 1397 NO 1'469 694 NO 811 72 NO 811 72 NO	2017 11'476 56 59 574 938 2'694 34 21 1 NO 5.7 1'071 1'254 66 1'215 760 NO 840 840 57 9.22 470	2018 11'524 63 NO 542 987 2'367 56 200 NO 5.4 1'319 1'238 61 1'239 763 NO 840 53 NO 840 53 NO	11'416 43 63 552 831 2'120 65 16 NO NO 1'246 1'456 48 1'359 760 NO NO 861 43 NO NO 475	11'248 54 35 5911 528 2'266 26 0.043 NO 1'558 1'155 52 1'353 743 NO 867 0.12 NO 867 0.12 NO	11'609 61 52 583 587 2'304 2'304 2'304 2'304 1'307 1'688 1'107 4'8 1'1253 726 NO 973 1.6 NO 973	11'606 93 NO 547 780 2'331 82 0.67 NO NO 1'692 1'265 30 1'009 730 730 962 1.8 NO 317	10'485 81 NO 568 605 1'824 71 0.42 NO NO 1'704 1'121 1'704 1'121 1'704 1'121 1'704 973 605 NO 989 9.1.1 NO NO 246
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters Waste oin, fossil Waste tyres and rubber, fossil Biogas Wood waste CSS, biogenic Agricultural waste Animal meal Dry sewage sludge	TJ TJ <td>12'339 75 58 1'052 1'7'13 2'912 3'7 25 NO 1'99 1'016 1'1'93 NO 884 886 886 886 78 NO 4577 428</td> <td>2015 11'348 87 45 622 1'267 2'856 41 1 20 NO 122 887 1'194 NO 1083 699 NO 896 60 806 60 NO 412 422</td> <td>2016 11/583 50 900 658 826 2'881 39 26 NO 111 890 1'397 NO 1'397 NO 1'469 694 NO 811 72 NO 409 409 409</td> <td>2017 11'476 56 59 938 2'694 34 21 NO 5.7 1'071 1'254 66 57 760 NO 8400 57 9.2 4700</td> <td>2018 11'524 63 NO 542 987 2'367 56 20 NO 5.4 1'319 1'238 61 1'238 61 1'239 763 NO 53 NO 53 NO 532 519</td> <td>11'416 43 63 552 831 2'120 65 16 16 16 16 1456 1456 1456 1456 861 1359 760 NO 861 1435 861 43 NO 475 512</td> <td>11'248 54 35 5911 528 2'266 26 0.043 NO NO 1'558 1'155 52 1'353 743 743 743 NO 867 0.12 NO 867 0.12 NO</td> <td>11'609 61 525 883 587 2'304 288 0.58 NO 133 1'688 1'107 488 1'253 726 NO 973 1.6 NO 973 1.6 NO 454 4572</td> <td>11'606 93 NO 2'331 822 0.67 NO 1'692 1'265 30 1'692 1'265 30 730 NO 962 2.1.8 NO 317 578</td> <td>10'485 81 NO 568 605 1'824 711 0.42 NO 1'704 1'121 1'704 1'121 2'4 9'73 605 NO 989 9.1.1 NO 246 526</td>	12'339 75 58 1'052 1'7'13 2'912 3'7 25 NO 1'99 1'016 1'1'93 NO 884 886 886 886 78 NO 4577 428	2015 11'348 87 45 622 1'267 2'856 41 1 20 NO 122 887 1'194 NO 1083 699 NO 896 60 806 60 NO 412 422	2016 11/583 50 900 658 826 2'881 39 26 NO 111 890 1'397 NO 1'397 NO 1'469 694 NO 811 72 NO 409 409 409	2017 11'476 56 59 938 2'694 34 21 NO 5.7 1'071 1'254 66 57 760 NO 8400 57 9.2 4700	2018 11'524 63 NO 542 987 2'367 56 20 NO 5.4 1'319 1'238 61 1'238 61 1'239 763 NO 53 NO 53 NO 532 519	11'416 43 63 552 831 2'120 65 16 16 16 16 1456 1456 1456 1456 861 1359 760 NO 861 1435 861 43 NO 475 512	11'248 54 35 5911 528 2'266 26 0.043 NO NO 1'558 1'155 52 1'353 743 743 743 NO 867 0.12 NO 867 0.12 NO	11'609 61 525 883 587 2'304 288 0.58 NO 133 1'688 1'107 488 1'253 726 NO 973 1.6 NO 973 1.6 NO 454 4572	11'606 93 NO 2'331 822 0.67 NO 1'692 1'265 30 1'692 1'265 30 730 NO 962 2.1.8 NO 317 578	10'485 81 NO 568 605 1'824 711 0.42 NO 1'704 1'121 1'704 1'121 2'4 9'73 605 NO 989 9.1.1 NO 246 526
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters Waste oil, fossil Biogas Wood waste CSS, biogenic Agricultural waste Animal meal	TJ	12'339 75 58 1'052 1'713 2'912 377 25 NO 19 1'016 1'193 NO 8844 746 NO 8866 78 8 NO 4257 428 21	2015 11'348 87 45 622 1'267 2'856 2'856 2'856 NO 1'083 887 1'194 NO 1'083 699 NO 887 1'194 NO 1'083 699 NO 8860 600 NO 412 422	2016 11'583 50 90 658 826 2'881 39 9 26 NO 1'397 NO 1'469 890 1'397 NO 1'469 409 84 NO 1'409 7.9	2017 11'476 56 59 574 938 2'694 34 34 4 34 21 NO 5.7 1'071 1'254 66 1'215 760 NO 840 9 760 NO 840 9.2 470 499 499 5.6	2018 11'524 63 NO 542 987 2'367 566 20 NO 5.4 1'319 1'238 61 1'238 61 1'238 61 1'238 00 840 5.4	11'416 43 63 552 831 2'120 65 16 NO NO NO 1'246 1'456 1'456 48 1'359 760 NO 861 43 3 NO 475 512	11'248 54 35 591 528 2266 266 0.043 NO NO NO 1'558 1'155 52 1'353 743 NO 867 0.12 NO 867 0.12 NO 867 3,743 NO	11'609 61 52 583 587 2'304 2'304 2'304 2'304 1'307 1'688 1'107 4'8 1'1253 726 NO 973 1.6 NO 973	11'606 93 NO 547 780 2'331 82 0.67 NO NO 1'692 1'265 30 1'009 730 NO 962 1.265 30 1'009 730 NO 962 1.88 NO 317 578 578	10'485 81 NO 568 605 1'824 711 0.42 NO NO 1'704 1'121 24 973 605 NO 989 989 1.1 NO 246 526 526 197
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters Waste oin, fossil Waste tyres and rubber, fossil Biogas Wood waste CSS, biogenic Agricultural waste Animal meal Dry sewage sludge	TJ	12'339 75 58 1'052 1'713 2'912 37 25 NO 19 1'016 1'193 NO 8884 746 NO 8886 78 NO 457 428 211 343	2015 11'348 87 45 622 1'267 2'856 41 1 20 NO 122 887 1'194 NO 1083 699 NO 896 60 806 60 NO 412 422	2016 11/583 50 900 658 826 2'881 39 26 NO 111 890 1'397 NO 1'397 NO 1'469 694 NO 811 72 NO 409 409 409	2017 11'476 56 59 574 938 2'694 34 21 NO 5.7 1'071 1'254 66 1'215 7600 NO 8400 57 9.22 470 499 9.57	2018 11'524 63 NO 542 987 2'367 56 20 NO 5.4 1'319 1'238 61 1'238 61 1'239 763 NO 53 NO 53 NO 532 519	11'416 43 63 552 831 2'120 65 16 16 16 16 1456 1456 1456 1456 861 1359 760 NO 861 1435 861 43 NO 475 512	11'248 54 35 5911 528 2'266 26 0.043 NO NO 1'558 1'155 52 1'353 743 743 743 NO 867 0.12 NO 867 0.12 NO	11'609 61 525 883 587 2'304 288 0.58 NO 133 1'688 1'107 488 1'253 726 NO 973 1.6 NO 973 1.6 NO 454 4572	11'606 93 NO 2'331 822 0.67 NO 1'692 1'265 30 1'692 1'265 30 730 NO 962 2.1.8 NO 317 578	10'485 81 NO 568 605 1'824 711 0.42 NO 1'704 1'121 1'704 1'121 2'4 9'73 605 NO 989 9.1.1 NO 246 526
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste oil, fossil Waste oil, fossil Waste tyres and rubber, fossil Biogas Wood waste CSS, biogenic Animal meal Dry sewage sludge Other toimass Plastics, biogenic Solvents biogenic	TJ	12'339 75 588 1'052 1'7'13 2'912 3'7 25 NO 1'99 1'016 1'193 NO 884 746 NO 8866 788 NO 4577 428 21 3433 880	2015 11'348 87 45 622 1'267 2'856 41 20 NO 122 887 1'194 NO 1'083 699 NO 1'083 699 NO 1'083 699 NO 1'083 699 NO 1'083 699 NO 1'28 4'22 4'20 4'22 4'20 4'22 4'20 9'8	2016 11/583 50 900 658 826 2/881 39 26 2/881 39 26 2/881 39 26 90 409 694 811 72 NO 811 72 NO 811 72 NO 9409 409 409 9479 7.9 281 33	2017 11'476 56 59 574 938 2'694 34 2'694 34 2'694 34 2'694 0 5.7 1'071 1'254 66 1'215 760 NO 840 57 9.2 470 9.2 470 9.3 24 70 144	2018 11/524 63 NO 542 987 2'367 56 20 NO 5.4, 1'319 1'238 61 1'239 763 NO 840 533 NO 533 NO 54 4432 519 5.4	11'416 43 63 552 831 2'120 65 16 NO 1'246 1'456 48 1'359 760 NO 861 1 43 861 43 NO 861 1 3512 31 381 381 167	11'248 54 355 591 528 2'266 0.043 NO 1'558 1'155 522 1'353 743 NO 867 0.12 NO 867 0.12 NO 867 0.12 NO 441 553 36 476 476	11'609 61 525 883 587 2'304 28 0.58 0.58 0.58 1'307 48 1'253 726 NO 973 1.66 NO 973 1.66 NO 973 1.67 147 572 147 516	11'606 93 NO 2'331 82 0.67 NO 1'692 1'265 300 1'009 730 NO 962 1.8 NO 962 1.8 NO 962 1.8 NO 730 730 730 731 7578	10'485 81 NO 568 605 1'824 711 0.42 NO 1'704 1'121 1'704 1'121 24 973 605 NO 989 1.11 NO 998 91.11 NO 246 526 526 197 520
Total fuel consumption Gas oil Residual fuel oil Petroleum coke Other bituminous coal Lignite Natural gas CSS, fossil Mixed industrial waste Other fossil waste fuels Plastics, fossil Solvents and residues from distillation, fossil Waste coke from coke filters Waste oil, fossil Biogas Wood waste CSS, biogenic Animal meal Dry sewage sludge Other plastics, biogenic	TJ	12'339 75 58 1'052 1'713 2'912 37 25 NO 19 1'016 1'193 NO 8884 746 NO 8886 78 NO 457 428 211 343	2015 11'348 87 45 622 1'267 2'856 41 20 NO 1'083 699 NO 1'083 699 NO 887 1'194 NO 1'083 699 NO 412 420 412	2016 11'583 50 90 658 826 2'881 39 266 NO 1'397 NO 1'469 694 NO 1'397 NO 1'469 694 NO 1'397 NO 1'469 694 409 479 7.9 28	2017 11'476 56 59 574 938 2'694 34 21 NO 5.7 1'071 1'254 66 1'215 7600 NO 8400 57 9.22 470 499 9.57	2018 11/524 63 NOO 542 987 2'367 56 200 NOO 5.4 1'319 1'238 61 1'239 7633 NOO 840 533 NOO 5522 519 554 400	11'416 43 63 552 831 2'120 65 16 16 NO NO NO 1'246 1'456 48 1'359 760 NO NO 861 43 43 43 43 311 381	11'248 54 35 591 528 2'266 266 266 266 266 267 267 27 30 1'558 1'155 52 1'353 7433 NO 867 0.12 NO 867 0.12 NO 441 553 366 476	11'609 61 52 583 587 2'304 28 0.58 NO 13 1'688 1'107 48 1'253 7266 NO 973 1.66 NO 454 572 1477 516	11'606 93 NO 547 780 2'331 82 0.67 NO NO 1'092 1'265 30 1'009 7300 NO 962 1.8 NO 317 578 1755	10'485 81 NO 568 605 1'824 771 0.42 NO NO 0.42 NO 1'704 1'121 24 1'121 24 1'121 1'704 1'121 1'704 1'121 24 5 5 809 989 1.11 NO 5 6 8 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5

Table 3-56 Fuel consumption of cement industry (fossil without waste, fossil waste derived, and biomass waste derived).

In 2023, the Swiss cement industry used about two-thirds of waste derived fuels (fossil and biogenic) and one-third of standard fossil fuels. Today, fossil fuels used in cement industry are mainly lignite, plastics, solvents and residues from distillation, waste oil, whereas waste tyres, petroleum coke and other bituminous coal are less important. Biogenic wastes contain mainly wood waste, sewage sludge, (bio)plastics and animal residues (animal meal). The main fossil fuel used in 1990 was other bituminous coal, but residual fuel oil and waste oil were also of importance.

Fuel consumption in cement plants has decreased between 1990 and 2015 and remained rather constant since then. This is partly due to a decrease in production since 1990 and an increase in energy efficiency. In the period 1990-2019, the fuel mix has changed significantly from mainly standard fossil fuels to the above-mentioned mix of fuels.

Please note that all fossil waste derived fuels are reported as "Other fuels" in the emission reporting templates, whereas the biogenic waste derived fuels belong to "Biomass".

Container glass (1A2f)

Methodology

Today, there exists only one production plant for container glass in Switzerland. Therefore, emission factors and activity data are considered confidential and are available to reviewers on request.

Emission factors

For container glass production, emission factors of NO_x and PM2.5/PM10/TSP are based on various air pollution control measurements under the Ordinance on Air Pollution Control (EMIS 2025/1A2f Hohlglas Produktion) and partly on information from industry. The SO_x emission factor is based on air pollution control measurements from 2011. The emission factor of BC (% PM2.5) are taken from EMEP/EEA guidebook (EMEP/EEA 2023 chp. 1A4, table Liquid fuels (rounded mean value), Appendix E for residual fuel oil and Table 3-26 for natural gas).

Emission factors are derived based on air pollution control measurements at the production plants and therefore emission factors include both emission from fuel combustion as well as process emissions. Therefore, emissions from glass production are reported only in source category non-metallic minerals (1A2f). The same holds for tableware glass and glass wool.

Activity data

Activity data consist of annual production data provided by the industry (Table 3-55). Since 2008, activity data are available from monitoring reports of the Swiss ETS.

Since 1990, fuel consumption for container glass has drastically decreased due to reduction in production. Until 2003, only residual fuel oil was used. Since 2004, the share of natural gas has increased to reach a stable share between 2006 and 2012. In autumn 2013, the plant has switched its glass kiln completely to natural gas.

Tableware glass (1A2f)

Methodology

Today, there exists only one production plant for tableware glass in Switzerland after the other one ceased production in 2006. Therefore, emission factors and activity data are considered confidential and are available to reviewers on request.

Emission factors

For tableware glass production, emission factors of NO_x and PM2.5/PM10/TSP are based on various air pollution control measurements under the Ordinance on Air Pollution Control

whereas those of SO_x, NMVOC, CO are based on information from industry (EMIS 2025/1A2f Glas übrige Produktion). Emission factors of Pb and Cd are assumed proportional to the emissions of TSP. The emission factor of Hg is calculated proportional to the composition of fuels consumed in the production process (liquefied petroleum gas and residual fuel oil until 1995). The emission factors of BC (% PM2.5) are taken from EMEP/EEA guidebook (EMEP/EEA 2023, chp. 1A4, table Liquid fuels (rounded mean value), Appendix E for residual fuel oil and table 3-26 for liquefied petroleum gas).

Activity data

For tableware glass production, activity data are provided by monitoring reports of the Swiss ETS (Table 3-55). Activity data of tableware glass are considered confidential and are available to reviewers on request.

Fuel consumption for tableware glass currently includes only liquefied petroleum gas. Since 1990, fuel consumption for tableware glass strongly decreased because of the closure of one production plant in 2006. In addition, the consumption of residual fuel oil was eliminated in 1995.

Glass wool (1A2f)

Methodology

In Switzerland, glass wool is produced in two plants.

Emission factors

Table 3-54 shows product-specific emission factors for glass wool production. For glass wool, emission factors of NO_x and PM2.5/PM10/TSP are based on various air pollution control measurements under the Ordinance on Air Pollution Control (EMIS 2025/1A2f Glaswolle Produktion) and partly on information from industry. The emission factor for SO_x is based on measurements and analysis of fuel samples carried out by the Swiss Federal Laboratories for Materials Testing and Research (EMPA 1999). The emission factor of BC (% PM2.5) is taken from EMEP/EEA guidebook (EMEP/EEA 20123 chp. 1A4, table 3-26).

Activity data

Activity data consist of annual production data provided by monitoring reports from the industry (Table 3-55). Currently, fuel consumption for glass wool production includes only natural gas. Production of glass wool has increased since 1990, but the natural gas consumption decreased. This can be explained by an increase in energy efficiency in the production process.

Lime (1A2f)

Methodology

In Switzerland there is only one plant producing lime. Therefore, emission factors and activity data are considered confidential and are available to reviewers on request. Fossil fuels are used for the burning process (calcination) of limestone. The fuel consumption of two sugar plants that auto produce lime is reported in category 1A2e.

Emission factors

For lime production, emission factors of NO_x, SO_x, PM2.5/PM10/TSP and CO are based on various air pollution control measurements under the Ordinance on Air Pollution Control (Swiss Confederation 1985) between 1990 and 2011. Air pollution control measurements in 2017 led to revised emission factors of these pollutants for the natural gas operation of the kiln from 2014 onwards (EMIS 2025/1A2f). The emission factor of BC (% PM2.5) is taken from EMEP/EEA guidebook (EMEP/EEA 20123 chp. 1A4, table 3-18 for gas oil, table Liquid fuels (rounded mean value), Appendix E for residual fuel oil, table 3-23 for other bituminous coal and table 3-26 for natural gas), see EMIS 2025/1A2f Kalkproduktion Feuerung.

Activity data

Activity data consist of annual production data provided by the industry. Since 2008, activity data are available from monitoring reports of the Swiss ETS.

Between 1994 and 2012, fuel consumption in lime production was mainly based on residual fuel oil; gas oil was only used to start up the kilns. Up to 1995, also other bituminous coal was used and was the most important fuel (up to 1993). However, in 2013, the kiln was switched to natural gas.

Brick and Tile (1A2f)

Methodology

In Switzerland there are about 15 plants producing bricks and tiles. Mainly fossil fuels but also wood, paper pulp and animal fat are used for drying and burning of the clay blanks.

Emission factors

Table 3-54 shows emission factors for brick and tile production. Emission factors of NO_x, NMVOC, SO_x, PM2.5/PM10/TSP, CO, Pb, Cd und Hg are derived from air pollution control measurements as described in the EMIS database (EMIS 2025/1A2f Ziegeleien). The emission factors of BC (% PM2.5) are taken from EMEP/EEA guidebook (EMEP/EEA 2023, chp. 1A4, table 3-18 for gas oil, table Liquid fuels (rounded mean value), Appendix E for residual fuel oil, paper pulp and animal fat and table 3-26 for liquefied petroleum gas and natural gas).

Activity data

Activity data consist of annual production data provided by the industry (Table 3-55). Since 2013, for one large plant activity data are available from monitoring reports of the Swiss ETS.

Fuels used in the brick and tile production in 2023 are mainly natural gas as well as small amounts of liquefied petroleum gas and gas oil. Apart from a production recovery in the years around 2004, the production has gradually decreased since 1990, which is also represented in the overall fuel consumption decrease. Regarding the fuels used, there has been a considerable shift from residual fuel oil to natural gas from 1990 onwards as well as a minor shift from gas oil and liquefied petroleum gas to natural gas from 2004 onwards. Paper production residues, wood and animal fat are used since 2000. But the consumption of wood, paper production residues and animal fat is no longer reported in the monitoring reports since 2013, 2018 and 2021, respectively.

Fine Ceramics (1A2f)

Methodology

In Switzerland, the main production of fine ceramics is sanitary ware produced by one big and some small companies. In earlier years, also other ceramics were produced as for example glazed ceramics tiles, electrical porcelain and earthenware. Since 2001, only sanitary ware is produced.

Emission factors

Emission factors of NO_x, NMVOC, SO_x and CO are based on air pollution control measurements from 2001, 2005, 2009 and 2012. The emission factor of PM is based on production weighted air pollution control measurements from 2005 and 2009 and the share of PM2.5/PM10 is assumed 95 % and 60 % of total PM emissions, respectively. Emission factors of Pb and Cd are calculated based on the assumption that they are proportional to the TSP emissions. The emission factor of Hg and SO_x is assumed to be constant. The emission factors of BC (% PM2.5) are taken from EMEP/EEA guidebook (EMEP/EEA 2023 chp. 1A4, table 3-18 for gas oil and table 3-26 for natural gas), see EMIS 2025/1A2f Feinkeramik Produktion.

Activity data

Activity data consist of annual production data provided by monitoring reports of the industry. Activity data are considered confidential and are available to reviewers on request.

Since 2010, fuel consumption within fine ceramics production is natural gas only. In 2001 the fuel-mix consisted of natural gas and gas oil. Since then, fuel mix has continuously shifted to natural gas. Compared to the production of other fine ceramics, the production of sanitary ware is more energy intensive. Therefore, the specific energy use per tonne of produced fine ceramics has increased since 1990. This results in a lower reduction of fuel consumption compared to the reduction in production since 1990.

Rock Wool (1A2f)

Methodology

In Switzerland, there is one single producer of rock wool. Therefore, emission factors and activity data are considered confidential and are available to reviewers on request. Fossil fuels are used for the melting of rocks at a temperature of 1500°C in cupola furnaces.

Emission factors

All emission factors (e.g. NO_x , NH_3 , SO_x) for rock wool production are based on annual flux analysis from industry – except for the emission factors of BC (% PM2.5), which are taken from EMEP/EEA guidebook (EMEP/EEA 2023 chp. 1A4, table 3-18 for gas oil, table 3-23 for other bituminous coal and table 3-26 for liquefied petroleum gas and natural gas), see EMIS 2025/1A2f Steinwolle Produktion.

Activity data

Activity data consist of annual production data provided by the industry (monitoring reports of the Swiss ETS).

Currently, other bituminous coal and natural gas are used in the production process. Until 2004 also gas oil and liquefied petroleum gas were used. In 2005, these fuels were substituted by natural gas. Since 1990, there was a decrease in the specific energy consumption of rock wool production.

Mixed Goods (1A2f)

Methodology

The production of mixed goods mainly includes the production of bitumen for road paving. A total of 110 production sites are producing the mixed goods at stationary production sites.

Emission factors

Table 3-54 shows product-specific emission factors for production of mixed goods. Emission factors of NO_x, NMVOC, CO, PM2.5/PM10/TSP, Pb and Cd are based on air pollution control measurements from the time period between 2001 and 2015. This includes about 150 measurements from 55 out of 110 Swiss producers. As these measurements show no clear trend in the emission factors, a constant country-specific, average emission factor is used from 2001 onwards. Emission factors of SO_x, Hg and PCCD/PCDF are based on data from the industry association (Schweizerische Mischgut-Industrie) (EMIS 2025/1A2f Mischgut Produktion).

Activity data

Activity data consist of annual production data provided by the industry association (Schweizerische Mischgut-Industrie) (Table 3-55).

The main fuel types used are gas oil and natural gas. There has been a fuel switch from gas oil to natural gas in this time period.

3.2.3.2.8 Other (1A2gviii)

Methodology (1A2gviii)

Source category 1A2gviii Other covers fossil fuel combustion in boilers of manufacturing industries and construction mainly within non-metallic mineral industries as well as combustion of wood, wood waste and biogas in all manufacturing industries.

In addition, also the emissions from fibreboard production are reported in 1A2gviii. Please note that they are calculated based on fuel consumption and not on production data as for all other bottom-up industry processes. Fibreboard was produced in two plants in Switzerland until 2019, where thermal energy is used for heating and drying processes. Since 2020 only one plant is left.

Methodologically, the fossil fuel consumption in boilers comprises also all the residual entities of the industry installations that could not be allocated to any other industrial source categories 1A2a-f.

Emission factors (1A2gviii)

The emission factors for fossil fuel consumption in 1A2gviii in boilers and in fibreboard production are described in chp. 3.2.3.2.1 (see Table 3-42). For animal fat which was used as fuel in the fibreboard production (2001 - 2013) the same emission factors as of residual fuel are assumed for all air pollutants. Emission factors of consumption of wood waste in fibreboard production are documented in Table 3-24.

The emission factors of the individual wood and wood waste combustion installations are described in chp. 3.2.1.1.3 and listed in Table 3-24. The resulting weighted emission factors of wood and wood waste combustion in manufacturing industries and construction are given in Table 3-57.

1A2gviii Stationary combustion Other	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	СО	
		g/	g/	g/	g/	g/	g/	g/	g/	g/	
Wood and wood waste	GJ	108	5.9	9.2	3.2	12	13	14	0.74	146	
1A2gviii Stationary combustion Other	Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	НСВ	PCB
	Onit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
Wood and wood waste	GJ	46	1.4	2.0	55	1.6	1.6	1.1	1.1	1'658	10

Table 3-57 Emission factors (weighted average) for 1A2gviii Wood and wood waste combustion in manufacturing industries and construction in 2023.

Emission factors for stationary engines and gas turbines are based on INFRAS (2022a) as described in chp. 3.2.1.1.2.

Activity data (1A2gviii)

Activity data of fossil fuels is derived from the industry model and given in Table 3-44. Fuel consumption of wood and wood waste in in manufacturing industries and construction is based on the Swiss wood energy statistics (SFOE 2024b) (see also chp. 3.2.1.1.3) and is given in Table 3-58. Fuel consumption in stationary engines and gas turbines is as described in chapter 3.2.1.1.2.

Table 3-58 Fuel consumption of 1A2gviii Wood and wood waste combustion in manufacturing industries and construction.

1A2gviii Stationary combustion Other (Wood combustion)	Unit	1990	1995	2000	2005	2010					
Wood and wood waste	TJ	3'254	4'440	5'228	6'652	9'637					
1A2gviii Stationary combustion Other (Wood combustion)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Wood and wood waste	TJ	9'838	9'974	10'789	11'207	10'550	11'100	11'210	13'213	12'335	12'031

In source category fibreboard production, the fuels currently used are wood waste and natural gas (EMIS 2025/1A2giv). Since 1990, the production of fibreboard and thus the fuel consumption have increased significantly. The fuel mix has strongly shifted between 1990 and 2023 from fossil fuels to biomass (wood waste). Between 2001 and 2013, also animal fat was used

In 2023, fuel consumption of 1A2gviii Other comprises mainly wood/wood waste and natural gas. Overall, there has been a shift in fuel consumption between 1990 and 2023 from liquid and solid fuels to wood/wood waste and natural gas.

3.2.3.3 Category-specific recalculations for 1A2 Stationary combustion in manufacturing industries and construction

The following recalculations were implemented in submission 2025:

1A2: The emission factors of NO_x and CO for natural gas and gas oil boilers were updated for 2022 based on the evaluation of a large number of air pollution control measurements of combustion installations in numerous Swiss cantons. This has resulted in revised emission factors of NO_x and CO for all boilers fuelled with gas oil, liquefied petroleum gas and natural gas in source category 1A2 Stationary combustion in manufacturing industries and construction as well as 1A2c Cracker by-products, heating gas and 1A2gviii Fibreboard production (gas oil, natural gas) from 2011 onwards. The projected emission factor values for all particulate matter fractions (2035, PM2.5, PM10, TSP and BC) were also updated, resulting in changes to the linearly interpolated emission factors for 2021 and 2022.

- 1A2, activity data: Recalculations in all source categories 1A2a to 1A2g are due to reallocations of all fuel types in these sub-categories of 1A2 Manufacturing industries and construction in the year 2022. The reason is that during the surveys for the energy consumption statistics in the industry and services sectors for the most recent year, the reports from the previous year are reviewed again and, if necessary, adjusted retroactively. Generally, this only affects the disaggregation and not the total amount of fuels used in 1A2 Manufacturing industries and construction for that year. However, additional recalculations were introduced in the overall energy statistics with regard to the total fuel consumption in the industry sector for the following fuel types: Natural gas (2021, 2022), bituminous coal and lignite (2019–2022).
- 1A2, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A2a: A typing error in the activity data 2022 of source category 1A2a Iron foundries, cupola furnaces was corrected.
- 1A2d: The activity data of 1A2d Gas turbines (years 1992-2015, see Table 3-18) increased by a factor of 2 due to a calculation error. It will be corrected in the next submission.
- 1A2f: For source category 1A2f Cement production, the quantity of waste tyres burned was updated due to a change in the underlying statistics.
- 1A2gviii: The activity data 2022 of 1A2gviii Boiler, other bituminous coal and 1A2gviii
 Boiler, natural gas were revised due to corrections of a typing error in the activity data
 (other bituminous coal) of source category 1A2a Iron foundries, cupola furnaces and in
 the activity data (natural gas) of source category 1A2f Container glass.
- 1A2gviii: The Swiss statistics of energy consumption (SFOE 2024) has recalculated the amount of other bituminous coal used in industry for the years 2019-2022. This leads to recalculation in other industrial boilers of source category 1A2gviii Other.
- 1A2gviii: Activity data of automatic wood combustion installations (≥ 50 kW) in source category 1A2gviii were revised for 2019-2022 due to recalculations in the Swiss wood energy statistics (SFOE 2024b), with the largest changes occurring in 2022. In addition, a typing error in the activity data 2022 of plants for renewable waste from wood products was corrected.
- 1A2gviii: Due to new model-runs, there are small recalculations of activity data for all stationary engines and gas turbines 1990-2022.

3.2.4 Source category 1A4 - Stationary combustion in other sectors (commercial, residential, agriculture and forestry)

3.2.4.1 Source category description for 1A4 Stationary combustion in other sectors (commercial, residential, agriculture and forestry)

The source category 1A4 Stationary combustion in other sectors comprises all emissions from the combustion of fuels in stationary boilers and cogeneration in facilities within processes in commerce and institutions, households, agriculture and forestry. This includes use of conventional fossil fuels as well as biomass. Within this category, only activities involving fuel combustion are taken into account. Note that information regarding fuel combustion in source category 1A4 Non-road and machinery in other sectors are provided in chapter 3.2.7.

Table 3-59 Specification of source category 1A4 Stationary combustion in other sectors.

1A4	Source category Specification								
1A4ai	Commercial/institutional: Stationary	Stationary fuel combustion in commercial and institutional buildings as different wood combustions, boilers and engines with combined heat and power generation unit, engines and gas turbines at biogas and sewage plants, emergency generators							
1A4bi	Residential: Stationary	Stationary fuel combustion in households, including different wood combustion installations, boilers and engines							
1A4ci	Agriculture/Forestry/Fishing: Stationary	Stationary fuel combustion in agriculture, including different wood combustion installations, engines at biogas plants, emergency generators, heating of greenhouses and grass drying							

Table 3-60 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1A4 Stationary combustion in other sectors.

NFR code	Source category	Pollutant	Identification criteria
1A4ai	Commercial/institutional: stationary	NOx	L1, L2, T1, T2
1A4ai	Commercial/institutional: stationary	SOx	T1, T2
1A4ai	Commercial/institutional: stationary	PM2.5	L1, L2, T1
1A4ai	Commercial/institutional: stationary	PM10	L1, L2
1A4bi	Residential: stationary plants	NOx	L1, L2
1A4bi	Residential: stationary plants	NMVOC	L1, L2
1A4bi	Residential: stationary plants	SOx	L1, L2, T1, T2
1A4bi	Residential: stationary plants	PM2.5	L1, L2, T1, T2
1A4bi	Residential: stationary plants	PM10	L1, L2, T1, T2
1A4ci	Agriculture/forestry/fishing: stationary	SOx	L2
1A4ci	Agriculture/forestry/fishing: stationary	PM2.5	L1

3.2.4.2 Methodological issues for 1A4 Stationary combustion in other sectors (commercial, residential, agriculture and forestry)

Methodology (1A4 ai/bi/ci stationary)

For the calculation of the emissions from the use of gas oil and natural gas, the following sources are differentiated: (a) heat only boilers, (b) combined heat and power production in turbines and (c) combined heat and power production in engines. A considerable part (10-20 %) of the fuel consumption consists of wood and wood wastes. Source category 1A4ai also includes emissions from mobile pellet combustion installations (from 2017 onwards) that are used for temporary applications such as construction drying, events in large marquees or as emergency solutions in the event of heating failures. Beside the main energy sources, also the use of other bituminous coal, charcoal use and bonfires are considered in source

category 1A4bi. Emissions from 1A4ci originate from fuel combustion for the heating of greenhouses and grass drying, as well as for heating in agriculture and forestry.

The methodology to estimate emissions from stationary combustion in source categories 1A4ai, 1A4bi and 1A4ci, follows a Tier 2 approach according to the decision tree for small combustion, Figure 3-1 in chapter 1A4 small combustion in the EMEP/EEA guidebook (EMEP/EEA 2023). Emission factors and activity data are specified for different technologies. Direct emission measurements are not available.

Emission factors (1A4 ai/bi/ci stationary)

Table 3-61, Table 3-62 and Table 3-63 present the emission factors applied for source categories 1A4ai, 1A4bi and 1A4ci, respectively. Please note the following additional information:

- For boilers, the emission factors of NO_x and CO for natural gas, biogas and gas oil are based on a study by Leupro (2012) for the years 1990-2010, and Zotter and Nussbaumer (2025) for 2022 (and the projections). Within those studies, measurements from the control of combustion installations in eight and eleven Swiss cantons and the city of Zurich, respectively, were analysed. Emission factors are thus country specific.
- For boilers, the emission factors for PM10, PM2.5 and TSP for natural gas, biogas and gas oil are based on a study by Leupro (2012).
- For boilers, the emission factors for NMVOC are documented in SAEFL (2000).
- For boilers with natural gas or biogas, the emission factors for Pb, Cd, Hg and PAH are taken from the EMEP/EEA guidebook (EMEP/EEA 2019, chp. 1.A.4 Small combustion) as follows. 1A4ai: natural gas/biogas boilers table 3-26, 1A4bi: natural gas boilers table 3-16, 1A4ci: natural gas/biogas boilers table 3-26.
- For boilers with gas oil, the emission factors for Pb, Cd and Hg are taken from table 3-18 in the EMEP/EEA guidebook (EMEP/EEA 2023), PAHs are from table 3-31 and 3-9 (Tier 1 emission factors for NFR source category 1.A.4.a/c, 1.A.5.a, using liquid fuels), respectively, as stated in the EMEP/EEA guidebook representing average of Tier 2 emission factors for commercial/institutional liquid fuel combustion for all technologies. These PAH emission factor values have been taken since the proposed values in table 3-18 are based on a relatively old reference from 1995 and are rather high compared to other PAH values within the guidebook.
- For boilers with other bituminous coal in 1A4bi, Hg emission factors stem from table 3-23 in the EMEP/EEA guidebook (EMEP/EEA 2019, chp. 1A4) allocated to non-residential sources (automatic boilers) burning coal fuels and not from table 3-15 in the EMEP/EEA guidebook (EMEP/EEA 2019) allocated to residential boilers burning solid fuels. This choice was made because table 3-15 provides for Hg with 6 g/TJ a lower value than table 3-23 with 16 g/TJ for advanced technology.
- For boilers using gaseous and liquid fuels, the HCB emission factors are based on the approach of the Danish Emission Inventory for hexachlorobenzene and polychlorinated biphenyls (Nielsen et al. 2013).
- For boilers with solid and liquid fossil fuels as well as of wood and wood waste combustion, the emission factors of PCB are taken from the Danish emission inventory for HCB and PCBs (Nielsen et al. 2013).
- Emission factors for SO_x are described in chp. 3.2.1.2.
- Wood combustion in1A4ai/bi/ci: The country-specific emission factor model for wood energy is described in chp. 3.2.1.1.3. For mobile pellet combustion installations in source

category 1A4ai, the same emission factors are assumed as for the installation category (stationary) automatic pellet boilers 50-300 kW.

- Emission factors for combined heat and power generation in turbines and engines are based on INFRAS (2022a) as described in chapter 3.2.1.1.2.
- Bonfires and use of charcoal (within 1A4bi): Emission factors of NO_x, NMVOC, SO_x, NH₃, PM2.5/PM10, TSP, CO, Pb, Cd, Hg, PCDD/PCDF, PAH and HCB are taken from EMEP/EEA guidebook, Tier 2 level of source category open fireplaces burning biomass (EMEP/EEA 2023, chp.1A4, Table 3-39) as shown in Table 3-62. According to the EMEP/EEA guidebook (EMEP/EEA 2023, chp.1A4, Table 3-39), the values for particulate matter correspond to total particles including both filterable and condensable particulate matter. More details are described in EMIS 2025/1A4bi Lagerfeuer and EMIS 2025/1A4bi Holzkohle Verbrauch.
- 1A4ci Emission factors for grass drying are based on air pollution control measurements (NO_x since 2002, NMVOC since 1990, TSP and CO since 2000).

1A4ai Commercial/Instituti	anal Stationany	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	CO	
	onal Stationally	Unit	g/	g/	g/	g/	g/	g/	g/	g/	g/	
Boilers	Gas oil	GJ	28	6.0	0.84	0.0010	0.19	0.19	0.19	0.0074	5.3	
Engines	Gas oil	GJ	819	50	0.84	1.5	16	16	16	2.3	137	
Engines	Liquefied petroleum gas	GJ	135	89	0.50	NA	2.0	2.0	2.0	0.0050	56	
Boilers	Natural gas	GJ	13	2.0	0.23	0.0010	0.090	0.090	0.090	0.0049	8.7	
Engines	Natural gas	GJ	72	89	0.23	2.5	2.0	2.0	2.0	0.0041	54	
Turbines	Natural gas	GJ	53	1.6	0.23	NA	0.20	0.20	0.20	0.00050	25	
Engines	Biodiesel fossil	GJ	295	50	0.30	5.8	30	30	30	2.3	134	
Engines	Biodiesel biogenic	GJ	295	50	0.30	5.8	30	30	30	2.3	134	
Engines	Biogas	GJ	99	89	0.50	3.7	2.0	2.0	2.0	0.0039	130	
Wood combustion	Wood and wood waste	GJ	109	33	5.0	2.5	26	28	29	6.6	482	
Boilers	Sewage gas	GJ	13	2.0	0.50	0.0010	0.090	0.090	0.090	0.0049	8.7	
Engines	Sewage gas	GJ	101	89	0.50	2.0	2.0	2.0	2.0	0.0042	141	
Turbines	Sewage gas	GJ	48	1.6	0.50	NA	0.23	0.23	0.23	0.00050	10.0	
1A4ai Commercial/Instituti	onal Stationary	Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
	onal otationary	onit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
Boilers	Gas oil	GJ	0.012	0.0010	0.12	1.8	0.0019	0.015	0.0017	0.0015	220	0.11
Engines	Gas oil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
Engines	Liquefied petroleum gas	GJ	0.040	0.0030	0.10	0.57	0.0013	0.0090	0.0017	0.0018	NA	NA
Boilers	Natural gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
Engines	Natural gas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA
Turbines	Natural gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
Engines	Biodiesel fossil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
Engines	Biodiesel biogenic	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
Engines	Biogas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA
Wood combustion	Wood and wood waste	GJ	18	1.1	2.0	97	7.0	7.0	4.3	4.3	2'659	15
Boilers	Sewage gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
Engines	Sewage gas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA
Turbines	Sewage gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA

Table 3-61 Emission factors for 1A4ai for 2023. All fuels not listed are "NO".

Table 3-62 Emission factors for 1A4bi (including charcoal and bonfires) for 2023. All fuels not listed are "NO".
--

1A4bi Residential Statio	2021	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	CO	
TA4DI Residential Statio	inary	Unit	g/	g/	g/	g/	g/	g/	g/	g/	g/	
Boilers	Gas oil	GJ	26	6.0	0.84	0.0010	0.19	0.19	0.19	0.0074	7.6	
Engines	Gas oil	GJ	137	50	0.84	8.9	30	30	30	2.3	136	
Engines	Liquefied petroleum gas	GJ	135	89	0.50	NA	2.0	2.0	2.0	0.0050	56	
Boilers	Other bituminous coal	GJ	65	100	350	1.6	66	66	96	4.2	1'000	
Boilers	Natural gas	GJ	11	4.0	0.23	0.0010	0.090	0.090	0.090	0.0049	10	
Engines	Natural gas	GJ	71	89	0.23	2.5	2.0	2.0	2.0	0.0041	54	
Engines	Biodiesel fossil	GJ	407	50	0.30	3.5	30	30	30	2.3	132	
Engines	Biodiesel biogenic	GJ	407	50	0.30	3.5	30	30	30	2.3	132	
Engines	Biogas	GJ	96	89	0.50	2.5	2.0	2.0	2.0	0.0041	86	
Wood combustion	Wood and wood waste	GJ	94	88	7.5	2.9	47	50	52	22	1'183	
Use of charcoal	Charcoal	GJ	50	600	11	8.0	820	840	880	57	4'000	
Bonfires	Wood (bonfires)	GJ	50	600	11	8.0	820	840	880	57	4'000	
			Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
1A4bi Residential Statio	nary	Unit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
Boilers	Gas oil	GJ	0.012	0.0010	0.12	1.8	0.0019	0.015	0.0017	0.0015	220	0.11
Engines	Gas oil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
Engines	Liquefied petroleum gas	GJ	0.040	0.0030	0.10	0.57	0.0013	0.0090	0.0017	0.0018	NA	NA
Boilers	Other bituminous coal	GJ	200	3.0	16	500	270	250	100	90	620	66
Boilers	Natural gas	GJ	0.0015	0.00025	0.10	1.5	0.00056	0.00084	0.00084	0.00084	NA	NA
Engines	Natural gas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA
Engines	Biodiesel fossil	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
Engines	Biodiesel biogenic	GJ	0.15	0.010	0.11	0.99	0.0019	0.015	0.0017	0.0015	220	0.11
Engines	Biogas	GJ	0.040	0.0030	0.10	0.57	0.0012	0.0090	0.0017	0.0018	NA	NA
Wood combustion	Wood and wood waste	GJ	18	1.0	2.0	202	20	20	11	11	3'972	26
Use of charcoal	Charcoal	GJ	27	13	0.56	800	121	111	42	71	5'000	60
Bonfires	Wood (bonfires)	GJ	27	13	0.56	800	121	111	42	71	5'733	60

Table 3-63 Emission factors for 1A4ci for 2023. All fuels not listed are "NO".

1A4ci Agriculture/forestry/ fishing	Unit of activity	NOx	NMVOC	SOx	NH ₃	PM2.5	PM10	TSP	BC	со	
	data	g/	g/	g/	g/	g/	g/	g/	g/	g/	
Drying of grass	GJ	79	107	89	NA	304	304	304	14	609	
Heating of greenhouses	GJ										
(weighted average)	GJ	18	2.0	0.44	0.0013	0.12	0.12	0.12	0.0057	7.5	
Gas oil	GJ	28	2.0	0.84	0.0020	0.19	0.19	0.19	0.0074	5.3	
Natural gas	GJ	13	2.0	0.23	0.0010	0.090	0.090	0.090	0.0049	8.7	
Other fossil combustion (weighted	GJ	942	50	0.84	0.10	27	27	27	2.3	137	
average)	GJ	942	50	0.64	0.10	21	21	21	2.3	157	
Gas oil (engines)	GJ	942	50	0.84	0.10	27	27	27	2.3	137	
Natural gas (engines)	GJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	
Other biomass combustion	GJ										
(weighted average)	GJ	102	67	2.1	2.9	13	13	14	1.6	226	
Biogas (engines)	GJ	97	89	0.50	3.2	2.0	2.0	2.0	0.0038	108	
Wood and wood waste (various	<u></u>					05	07		1.0	170	
furnaces)	GJ	111	21	5.6	2.1	35	37	39	4.9	476	
1A4ci Aariculture/forestry/ fishing	Unit of	Pb	Cd	Hg	PCDD/	BaP	BbF	BkF	IcdP	HCB	PCB
TA4CI Agriculture/forestry/fishing	activity	FD	Ca	пу	PCDD/ PCDF	Dar	DUF	DKF	ICUP	псь	FCB
	data	mg/		,		mg/	m a/				
					ng LTEO/				ma/	na/	
Druing of grass			mg/	mg/	ng I-TEQ/		mg/	mg/	mg/	ng/	ng/
Drying of grass	GJ	6.6	mg/ 1.3	mg/ 0.69	ng I-TEQ/ NE	NE	NE	mg/ NE	mg/ NE	ng/ NE	ng/ NE
Heating of greenhouses		6.6	1.3	0.69	NE	NE	NE	NE	NE	NE	NE
Heating of greenhouses (weighted average)	GJ GJ	6.6 0.0051	1.3 0.00050	0.69	0.94	0.0010	0.0056	0.0011	0.0011	NE 75	NE 0.037
Heating of greenhouses (weighted average) Gas oil	GJ GJ	6.6 0.0051 0.012	1.3 0.00050 0.0010	0.69 0.11 0.12	0.94 1.8	0.0010 0.0019	0.0056 0.015	0.0011 0.0017	0.0011 0.0015	NE 75 220	0.037 0.11
Heating of greenhouses (weighted average) Gas oil Natural gas	GJ GJ GJ	6.6 0.0051	1.3 0.00050	0.69	0.94	0.0010	0.0056	0.0011	0.0011	NE 75	NE 0.037
Heating of greenhouses (weighted average) Gas oil Natural gas Other fossil combustion (weighted	GJ GJ	6.6 0.0051 0.012	1.3 0.00050 0.0010	0.69 0.11 0.12	0.94 1.8	0.0010 0.0019	0.0056 0.015	0.0011 0.0017	0.0011 0.0015	NE 75 220	0.037 0.11
Heating of greenhouses (weighted average) Gas oil Natural gas Other fossil combustion (weighted average)	GJ GJ GJ GJ GJ	6.6 0.0051 0.012 0.0015 0.15	1.3 0.00050 0.0010 0.00025 0.010	0.69 0.11 0.12 0.10 0.11	NE 0.94 1.8 0.50 0.99	NE 0.0010 0.0019 0.00056 0.0019	NE 0.0056 0.015 0.00084 0.015	NE 0.0011 0.0017 0.00084 0.0017	NE 0.0011 0.0015 0.00084 0.0015	NE 75 220 NA 220	NE 0.037 0.11 NA 0.11
Heating of greenhouses (weighted average) Gas oil Natural gas Other fossil combustion (weighted average) Gas oil (engines)	C1 C1 C1 C1 C1 C1 C1	6.6 0.0051 0.012 0.0015 0.15 0.15	1.3 0.00050 0.0010 0.00025 0.010 0.010	0.69 0.11 0.12 0.10 0.11 0.11	NE 0.94 1.8 0.50 0.99 0.99	NE 0.0010 0.0019 0.00056 0.0019 0.0019	NE 0.0056 0.015 0.00084 0.015 0.015	NE 0.0011 0.00017 0.00084 0.0017 0.0017	NE 0.0011 0.0015 0.00084 0.0015 0.0015	NE 75 220 NA 220 220	NE 0.037 0.11 NA 0.11 0.11
Heating of greenhouses (weighted average) Gas oil Natural gas Other fossil combustion (weighted average) Gas oil (engines) Natural gas (engines)	GJ GJ GJ GJ GJ GJ	6.6 0.0051 0.012 0.0015 0.15	1.3 0.00050 0.0010 0.00025 0.010	0.69 0.11 0.12 0.10 0.11	NE 0.94 1.8 0.50 0.99	NE 0.0010 0.0019 0.00056 0.0019	NE 0.0056 0.015 0.00084 0.015	NE 0.0011 0.0017 0.00084 0.0017	NE 0.0011 0.0015 0.00084 0.0015	NE 75 220 NA 220	NE 0.037 0.11 NA 0.11
Heating of greenhouses (weighted average) Gas oil Natural gas Other fossil combustion (weighted average) Gas oil (engines) Natural gas (engines) Other biomass combustion	C1 C1 C1 C1 C1 C1 C1	6.6 0.0051 0.012 0.0015 0.15 0.15 NO	1.3 0.00050 0.0010 0.00025 0.010 0.010 NO	0.69 0.11 0.12 0.10 0.11 0.11 NO	NE 0.94 1.8 0.50 0.99 0.99 NO	0.0010 0.0019 0.00056 0.0019 0.0019 0.0019 NO	NE 0.0056 0.015 0.00084 0.015 0.015 NO	NE 0.0011 0.0017 0.00084 0.0017 0.0017 NO	NE 0.0011 0.0015 0.00084 0.0015 0.0015 NO	NE 75 220 NA 220 220 NO	NE 0.037 0.11 NA 0.11 0.11 NO
Heating of greenhouses (weighted average) Gas oil Natural gas Other fossil combustion (weighted average) Gas oil (engines) Natural gas (engines) Other biomass combustion (weighted average)	6J 6J 6J 6J 6J 6J 6J	6.6 0.0051 0.012 0.0015 0.15 0.15 NO 5.7	1.3 0.00050 0.0010 0.00025 0.010 0.010 NO 0.34	0.69 0.11 0.12 0.10 0.11 0.11 NO 0.71	NE 0.94 1.8 0.50 0.99 0.99 NO 25	NE 0.0010 0.0019 0.00056 0.0019 0.0019 NO 2.2	NE 0.0056 0.015 0.0084 0.015 0.015 NO 2.2	NE 0.0011 0.0017 0.00084 0.0017 0.0017 NO 1.1	NE 0.0011 0.0015 0.00084 0.0015 0.0015 NO 1.1	NE 75 220 NA 220 220 NO 3'335	NE 0.037 0.11 NA 0.11 0.11 NO 12
Heating of greenhouses (weighted average) Gas oil Natural gas Other fossil combustion (weighted average) Gas oil (engines) Natural gas (engines) Other biomass combustion	GJ GJ GJ GJ GJ GJ	6.6 0.0051 0.012 0.0015 0.15 0.15 NO	1.3 0.00050 0.0010 0.00025 0.010 0.010 NO	0.69 0.11 0.12 0.10 0.11 0.11 NO	NE 0.94 1.8 0.50 0.99 0.99 NO	0.0010 0.0019 0.00056 0.0019 0.0019 0.0019 NO	NE 0.0056 0.015 0.00084 0.015 0.015 NO	NE 0.0011 0.0017 0.00084 0.0017 0.0017 NO	NE 0.0011 0.0015 0.00084 0.0015 0.0015 NO	NE 75 220 NA 220 220 NO	NE 0.037 0.11 NA 0.11 0.11 NO

Activity data (1A4 ai/bi/ci stationary)

Activity data on consumption of gas oil, residual fuel oil, natural gas and biomass are calculated by the energy model (see chp. 3.1.6.2 for further information) and the Energy model for wood combustion (see chp. 3.2.1.1.3). For other energy sources such as other bituminous coal, activity data are provided directly by the Swiss overall energy statistics (SFOE 2024).

The activity data on fuel consumption in 1A4ai Mobile pellet combustion installations used for temporary applications are based on information from the Swiss wood energy statistics publication (SFOE 2024b, chp. 1.4). However, this is not part of the wood energy statistics model.

Charcoal is only used for barbecues. The total charcoal consumption under 1A4bi is very small compared to other fuels used for heating purposes. The activity data are the sum of charcoal production under 1A1c, and net imports provided by the Swiss overall energy statistics (SFOE 2024).

As the Swiss wood energy statistics (SFOE 2024b) cover wood used for heating and energy purposes only, no figures are available on wood burnt in source category 1A4bi Bonfires. The activity data of bonfires are thus expert judgements based on a per capita consumption. Two types of bonfires are considered: (public) traditional bonfires such as on national day and (private) bonfires for barbecuing. The number of traditional bonfires has declined, as fewer communities are holding national day bonfires. With the increasing use of gas barbecues, there has also been a decrease in bonfires for barbecuing. Overall, a constant wood consumption was therefore assumed for bonfires due to the declining per capita consumption and increasing population (EMIS 2025/1A4bi Lagerfeuer).

Activity data for grass drying in source category 1A4ci are reported by the Swiss association of grass drying plants VSTB (as standard tonne of dried grass, confidential report), see also illustrations Figure 3-12 and Figure 3-16.

Since submission 2015, data on fuel consumption for grass drying are available and used for emission calculations (see EMIS 2025/1A4ci Grastrocknung). The use of gas oil and natural gas for grass drying in 1A4ci is subtracted from boilers in 1A4ai.

The fuel consumption for the heating of greenhouses is extrapolated from the information provided by the Energy Agency of the Swiss Private Sector (EnAW) as documented in the EMIS database (EMIS 2025/1A4ci Gewächshäuser).

1A4ai Commercial/Institutio	onal Stationary	Unit	1990	1995	2000	2005	2010					
Total fuel consumption		TJ	73'725	81'713	78'706	85'366	81'751					
Boilers	Gas oil	TJ	52'548	53'823	47'804	50'261	45'940					
Engines	Gas oil	TJ	427	554	971	935	583					
Engines	Liquefied petroleum gas	TJ	2.4	39	108	95	109					
Boilers	Natural gas	TJ	16'196	20'597	21'497	24'205	23'281					
Engines	Natural gas	TJ	355	1'408	2'170	2'597	2'090					
Turbines	Natural gas	TJ	NO	0.23	0.073	NO	0.019					
Engines	Biodiesel fossil	TJ	NO	NO	1.3	0.39	2.5					
Engines	Biodiesel biogenic	TJ	NO	NO	25	7.5	54					
Engines	Biogas	TJ	NO	29	82	143	394					
Wood combustion	Wood and wood waste	TJ	2'940	3'870	4'451	5'427	7'533					
Boilers	Sewage gas	TJ	468	448	429	410	392					
Engines	Sewage gas	TJ	610	775	1'100	1'284	1'351					
	0	TJ	179	169	66	NO	18					
Turbines	Sewage gas	15	175	105	00	110	10					
Turbines 1A4ai Commercial/Institutio	•	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	•	-				-	-	2019 64'346	2020 61'597	2021 70'377	2022 57'438	2023 56'546
1A4ai Commercial/Institutio	•	Unit	2014	2015	2016	2017	2018					
1A4ai Commercial/Institution	onal Stationary	Unit TJ	2014 63'561	2015 69'557	2016 72'926	2017 70'414	2018 63'895	64'346	61'597	70'377	57'438	56'546
1A4ai Commercial/Institution Total fuel consumption Boilers	Gas oil	Unit TJ TJ	2014 63'561 32'491	2015 69'557 34'661	2016 72'926 35'957	2017 70'414 33'727	2018 63'895 30'414	64'346 29'793	61'597 27'126	70'377 30'881	57'438 25'152	56'546 24'942
1A4ai Commercial/Institutio Total fuel consumption Boilers Engines	Gas oil Gas oil	Unit TJ TJ TJ	2014 63'561 32'491 499	2015 69'557 34'661 490	2016 72'926 35'957 481	2017 70'414 33'727 493	2018 63'895 30'414 463	64'346 29'793 478	61'597 27'126 468	70'377 30'881 466	57'438 25'152 464	56'546 24'942 459
1A4ai Commercial/Institution Total fuel consumption Boilers Engines Engines	Gas oil Gas oil Liquefied petroleum gas	Unit TJ TJ TJ TJ	2014 63'561 32'491 499 97	2015 69'557 34'661 490 87	2016 72'926 35'957 481 121	2017 70'414 33'727 493 44	2018 63'895 30'414 463 29	64'346 29'793 478 23	61'597 27'126 468 23	70'377 30'881 466 23	57'438 25'152 464 23	56'546 24'942 459 23
1A4ai Commercial/Institution Total fuel consumption Boilers Engines Engines Boilers	Gas oil Gas oil Liquefied petroleum gas Natural gas	Unit TJ TJ TJ TJ TJ TJ	2014 63'561 32'491 499 97 18'624	2015 69'557 34'661 490 87 21'564	2016 72'926 35'957 481 121 22'909	2017 70'414 33'727 493 44 22'680	2018 63'895 30'414 463 29 20'062	64'346 29'793 478 23 20'806	61'597 27'126 468 23 20'125	70'377 30'881 466 23 23'187	57'438 25'152 464 23 17'361	56'546 24'942 459 23 16'156
1A4ai Commercial/Institutie Total fuel consumption Boilers Engines Boilers Boilers Engines	Gas oil Gas oil Gas oil Liquefied petroleum gas Natural gas	Unit TJ TJ TJ TJ TJ TJ TJ	2014 63'561 32'491 499 97 18'624 1'670	2015 69'557 34'661 490 87 21'564 1'597	2016 72'926 35'957 481 121 22'909 1'481	2017 70'414 33'727 493 44 22'680 1'336	2018 63'895 30'414 463 29 20'062 1'159	64'346 29'793 478 23 20'806 999	61'597 27'126 468 23 20'125 964	70'377 30'881 466 23 23'187 986	57'438 25'152 464 23 17'361 1'026	56'546 24'942 459 23 16'156 1'017
1A4ai Commercial/Institutie Total fuel consumption Boilers Engines Boilers Engines Turbines	Gas oil Gas oil Liquefied petroleum gas Natural gas Natural gas	Unit TJ TJ TJ TJ TJ TJ TJ TJ	2014 63'561 32'491 499 97 18'624 1'670 0.027	2015 69'557 34'661 490 87 21'564 1'597 0.029	2016 72'926 35'957 481 121 22'909 1'481 0.25	2017 70'414 33'727 493 44 22'680 1'336 0.23	2018 63'895 30'414 463 29 20'062 1'159 0.24	64'346 29'793 478 23 20'806 999 0.23	61'597 27'126 468 23 20'125 964 0.21	70'377 30'881 466 23 23'187 986 0.20	57'438 25'152 464 23 17'361 1'026 0.20	56'546 24'942 459 23 16'156 1'017 0.19
1A4ai Commercial/Institutie Total fuel consumption Boilers Engines Boilers Engines Engines Turbines Engines	Gas oil Gas oil Liquefied petroleum gas Natural gas Natural gas Natural gas Biodiesel fossil	Unit TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	2014 63'561 32'491 499 97 18'624 1'670 0.027 2.7	2015 69'557 34'661 490 87 21'564 1'597 0.029 2.6	2016 72'926 35'957 481 121 22'909 1'481 0.25 2.2	2017 70'414 33'727 493 44 22'680 1'336 0.23 2.0	2018 63'895 30'414 463 29 20'062 1'159 0.24 1.9	64'346 29'793 478 23 20'806 999 0.23 1.6	61'597 27'126 468 23 20'125 964 0.21 1.7	70'377 30'881 466 23 23'187 986 0.20 1.8	57'438 25'152 464 23 17'361 1'026 0.20 1.9	56'546 24'942 459 23 16'156 1'017 0.19 1.9
1A4ai Commercial/Institutie Total fuel consumption Boilers Engines Boilers Engines Turbines Engines Engines	Gas oil Gas oil Liquefied petroleum gas Natural gas Natural gas Natural gas Biodiesel fossil Biodiesel biogenic	Unit TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	2014 63'561 32'491 499 97 18'624 1'670 0.027 2.7 48	2015 69'557 34'661 490 87 21'564 1'597 0.029 2.6 46	2016 72'926 35'957 481 121 22'909 1'481 0.25 2.2 47	2017 70'414 33'727 493 44 22'680 1'336 0.23 0.23 2.0 43	2018 63'895 30'414 463 29 20'062 1'159 0.24 1.9 43	64'346 29'793 478 20'806 999 0.23 1.6 35	61'597 27'126 468 23 20'125 964 0.21 1.7 34	70'377 30'881 466 23 23'187 986 0.20 1.8 34	57'438 25'152 464 23 17'361 1'026 0.20 1.9 34	56'546 24'942 459 23 16'156 1'017 0.19 1.9 33
1A4ai Commercial/Institutie Total fuel consumption Boilers Engines Boilers Engines Turbines Engines Engines Engines Engines	Gas oil Gas oil Liquefied petroleum gas Natural gas Natural gas Natural gas Biodiesel fossil Biodiesel fossil Biodesel biogas	Unit TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	2014 63'561 32'491 97 18'624 1'670 0.027 2.7 48 701	2015 69'557 34'661 490 87 21'564 1'597 0.029 2.6 46 738	2016 72'926 35'957 481 121 22'909 1'481 0.25 2.2 47 780	2017 70'414 33'727 493 44 22'680 1'336 0.23 0.23 2.0 43 807	2018 63'895 30'414 463 29 20'062 1'159 0.24 1.9 43 818	64'346 29'793 478 20'806 999 0.23 1.6 35 813	61'597 27'126 468 23 20'125 964 0.21 1.7 34 838	70'377 30'881 466 23 23'187 986 0.20 1.8 34 821	57'438 25'152 464 23 17'361 1'026 0.20 1.9 34 934	56'546 24'942 459 23 16'156 1'017 0.19 1.9 33 948
1A4ai Commercial/Institutie Total fuel consumption Boilers Engines Boilers Engines Turbines Engines Engines Engines Engines Wood combustion	Gas oil Gas oil Liquefied petroleum gas Natural gas Natural gas Natural gas Biodiesel fossil Biodiesel fossil Biodiesel biogenic Biogas Wood and wood waste	Unit TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	2014 63'561 32'491 97 18'624 1'670 0.027 2.7 48 701 7'720	2015 69'557 34'661 490 87 21'564 1'597 0.029 2.6 46 738 8'702	2016 72'926 35'957 481 121 22'909 1'481 0.25 2.2 47 780 9'516	2017 70'414 33'727 493 44 22'680 1'336 0.23 2.0 43 807 9'642	2018 63'895 30'414 463 29 20'062 1'159 0.24 1.9 43 818 9'258	64'346 29'793 478 23 20'806 999 0.23 1.6 35 813 9'763	61'597 27'126 468 23 20'125 964 0.21 1.7 34 838 10'367	70'377 30'881 466 23 23'187 986 0.20 1.8 34 821 12'320	57'438 25'152 464 23 17'361 1'026 0.20 1.9 34 934 10'833	56'546 24'942 459 23 16'156 1'017 0.19 1.9 33 948 11'365

Table 3-64 Activity data of 1A4ai Commercial/institutional. All fuels not listed are "NO".

Table 3-65 Activity	data of 1A4bi Resid	dential. All fuels n	ot listed are "NO".
---------------------	---------------------	----------------------	---------------------

1A4bi Residential Stationa	ry	Unit	1990	1995	2000	2005	2010				
Total fuel consumption		TJ	185'560	189'596	170'753	186'291	182'299				
Boilers	Gas oil	TJ	136'882	133'529	116'231	123'964	111'712				
Engines	Gas oil	TJ	4.9	19	64	60	20				
Engines	Liquefied petroleum gas	TJ	0.26	4.0	11	11	12				
Boilers	Other bituminous coal	TJ	630	460	130	400	400				
Boilers	Natural gas	TJ	26'075	34'234	36'270	42'555	48'195				
Engines	Natural gas	TJ	39	156	241	288	232				
Engines	Biodiesel fossil	TJ	NO	NO	NO	0.035	0.15				
Engines	Biodiesel biogenic	TJ	NO	NO	NO	0.69	3.3				
Engines	Biogas	TJ	NO	NO	NO	NO	NO				
Wood combustion	Wood and wood waste	TJ	21'457	20'741	17'353	18'540	21'222				
Use of charcoal	Charcoal	TJ	311	291	292	313	344				
Bonfires	Wood (bonfires)	TJ	160	160	160	160	160				
1A4bi Residential Stationa	ry	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022
Total fuel consumption		TJ	135'296	145'010	151'174	145'048	133'301	134'208	124'773	140'012	114'671
Boilers	Gas oil	TJ	75'126	79'398	81'332	76'104	67'896	66'635	59'369	66'042	51'241
Boilers Engines	Gas oil Gas oil	TJ TJ	75'126 9.7		-	76'104 8.4	67'896 4.8	66'635 6.4	59'369 6.2	66'042 6.1	51'241 6.2
				79'398	81'332						-
Engines	Gas oil	TJ TJ TJ	9.7	79'398 8.5	81'332 7.4	8.4	4.8	6.4	6.2	6.1	6.2
Engines Engines	Gas oil Liquefied petroleum gas	TJ TJ	9.7 11	79'398 8.5 9.6	81'332 7.4 14	8.4 4.9	4.8 3.3	6.4 2.6	6.2 2.5	6.1 2.5	6.2 2.6
Engines Engines Boilers	Gas oil Liquefied petroleum gas Other bituminous coal	TJ TJ TJ	9.7 11 200	79'398 8.5 9.6 200	81'332 7.4 14 200	8.4 4.9 100	4.8 3.3 100	6.4 2.6 100	6.2 2.5 100	6.1 2.5 100	6.2 2.6 50
Engines Engines Boilers Boilers	Gas oil Liquefied petroleum gas Other bituminous coal Natural gas	TJ TJ TJ TJ TJ TJ TJ	9.7 11 200 42'369	79'398 8.5 9.6 200 46'118	81'332 7.4 14 200 48'862	8.4 4.9 100 48'380	4.8 3.3 100 45'992	6.4 2.6 100 47'671	6.2 2.5 100 47'308	6.1 2.5 100 53'185	6.2 2.6 50 45'411
Engines Engines Boilers Boilers Engines	Gas oil Liquefied petroleum gas Other bituminous coal Natural gas Natural gas	TJ TJ TJ TJ TJ TJ	9.7 11 200 42'369 185	79'398 8.5 9.6 200 46'118 177	81'332 7.4 14 200 48'862 163	8.4 4.9 100 48'380 147 0.12	4.8 3.3 100 45'992 128	6.4 2.6 100 47'671 110	6.2 2.5 100 47'308 106	6.1 2.5 100 53'185 109	6.2 2.6 50 45'411 113
Engines Engines Boilers Boilers Engines Engines	Gas oil Liquefied petroleum gas Other bituminous coal Natural gas Natural gas Biodiesel fossil	TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	9.7 11 200 42'369 185 0.16	79'398 8.5 9.6 200 46'118 177 0.15	81'332 7.4 14 200 48'862 163 0.12	8.4 4.9 100 48'380 147 0.12	4.8 3.3 100 45'992 128 0.097	6.4 2.6 100 47'671 110 0.098	6.2 2.5 100 47'308 106 0.10	6.1 2.5 100 53'185 109 0.11	6.2 2.6 50 45'411 113 0.12
Engines Engines Boilers Engines Engines Engines Engines	Gas oil Liquefied petroleum gas Other bituminous coal Natural gas Natural gas Biodiesel fossil Biodiesel biogenic	TJ TJ TJ TJ TJ TJ TJ TJ TJ	9.7 11 200 42'369 185 0.16 2.9	79'398 8.5 9.6 200 46'118 177 0.15 2.6	81'332 7.4 14 200 48'862 163 0.12 2.5	8.4 4.9 100 48'380 147 0.12 2.6	4.8 3.3 100 45'992 128 0.097 2.2	6.4 2.6 100 47'671 110 0.098 2.1	6.2 2.5 100 47'308 106 0.10 2.1	6.1 2.5 100 53'185 109 0.11 2.1	6.2 2.6 50 45'411 113 0.12 2.1
Engines Engines Boilers Engines Engines Engines Engines Engines	Gas oil Liquefied petroleum gas Other bituminous coal Natural gas Natural gas Biodiesel fossil Biodiesel biogenic Biogas	TJ TJ TJ TJ TJ TJ TJ TJ TJ TJ	9.7 11 200 42'369 185 0.16 2.9 NO	79'398 8.5 9.6 200 46'118 177 0.15 2.6 NO	81'332 7.4 14 200 48'862 163 0.12 2.5 NO	8.4 4.9 100 48'380 147 0.12 2.6 NO	4.8 3.3 100 45'992 128 0.097 2.2 NO	6.4 2.6 100 47'671 110 0.098 2.1 NO	6.2 2.5 100 47'308 106 0.10 2.1 3.5	6.1 2.5 100 53'185 109 0.11 2.1 3.7	6.2 2.6 50 45'411 113 0.12 2.1 4.1

Table 3-66 Activity data of 1A4ci Agriculture / forestry / fishing. All fuels not listed are "NO".

1A4ci Other sectors (stationary):	Unit	1990	1995	2000	2005	2010					
Agriculture/forestry/fishing											
Total fuel consumption	TJ	6'387	6'110	5'804	5'531	5'656					
Drying of grass	TJ	1'895	1'544	1'223	994	739					
Gas oil	TJ	1'156	942	746	607	451					
Residual fuel oil	TJ	NO	NO	NO	NO	NO					
Natural gas	TJ	739	602	477	388	288					
Biomass (crop residues, fat, wood)	TJ	NO	NO	NO	NO	NO					
Heating of greenhouses	TJ	4'000	4'000	4'000	3'735	3'677					
Gas oil	TJ	3'490	3'490	3'490	3'133	1'803					
Natural gas	TJ	510	510	510	601	1'874					
Other fossil combustion	TJ	4.86	3.41	4.57	4.46	2.12					
Gas oil (engines)	TJ	2.1	2.12	2.12	2.12	2.12					
Natural gas (engines)	TJ	2.7	1.29	2.45	2.34	NO					
Other biomass combustion	TJ	487	563	577	797	1'239					
Biogas (engines)	TJ	59	49	62	128	497					
Wood and wood waste (various		428	514	515	669	741					
furnaces)	TJ	420	514	515	669	741					
1A4ci Other sectors (stationary):	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Agriculture/forestry/fishing											
Total fuel consumption	TJ	4'764	4'937	5'442	5'962	5'488	5'824	5'943	6'375	5'536	5'577
Drying of grass	TJ	524	431	492	610	545	684	721	630	559	495
Gas oil	TJ	104	89	86	118	116	124	148	94	99	150
Residual fuel oil	TJ	20	22	18	25	13	NO	NO	NO	NO	NO
Natural gas	TJ	264	233	279	338	296	427	435	410	347	221
Biomass (crop residues, fat, wood)	TJ	136	88	109	129	120	132	138	126	113	124
Heating of greenhouses	TJ	2'800	2'900	2'899	3'238	2'754	2'732	2'537	2'753	2'114	2'125
Gas oil	TJ	1'095	1'165	1'066	1'145	930	916	788	861	717	720
Natural gas	TJ	1'705	1'735	1'834	2'093	1'824	1'816	1'749	1'892	1'397	1'405
Other fossil combustion	TJ	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Gas oil (engines)	TJ	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
					NO	NO	NO	NO	NO	NO	NO
Natural gas (engines)	TJ	NO	NO	NO	NO	110			110	1101	
	TJ TJ	NO 1'438	NO 1'605	NO 2'048	2'112	2'187	2'406	2'682	2'989	2'862	2'954
Natural gas (engines)	-	-	-	-	-	-	2'406 1'612	-	-	-	2'954 2'003
Natural gas (engines) Other biomass combustion	TJ	1'438	1'605	2'048	2'112	2'187		2'682	2'989	2'862	

3.2.4.3 Category-specific recalculations for 1A4 Stationary combustion in other sectors (commercial, residential, agriculture and forestry)

The following recalculations were implemented in submission 2025:

2023 111'183 49'794

6.0 2.5 50 42'992 112 0.11 2.1 4.4 17'704 356 160

- 1A4: Activity data of automatic wood combustion installations (≥ 50 kW) in source categories 1A4ai, 1A4bi and 1A4ci were revised for 2019-2022 due to recalculations in the Swiss wood energy statistics (SFOE 2024b).
- 1A4: The emission factors of NO_x and CO for natural gas and gas oil boilers were updated for 2022 based on the evaluation of a large number of air pollution control measurements of combustion installations in numerous Swiss cantons. This has resulted in revised emission factors of NO_x and CO for all boilers fuelled with gas oil and natural gas in source categories 1A4ai Commercial/Institutional and 1A4bi Residential as well as 1A4ai Boiler, sewage gas, 1A4ai Statistical difference, biogas, and 1A4ci Greenhouses (gas oil, natural gas) from 2011 onwards. In addition, the values of the NO_x and CO emission factors for the years 1990–2010 were also adjusted for 1A4ai Boiler, sewage gas, and 1A4ci Greenhouses (gas oil, natural gas) based on their nominal heat output. The projected emission factor values for all particulate matter fractions (2035, PM2.5, PM10, TSP and BC) were also updated, resulting in changes to the linearly interpolated emission factors for 2021 and 2022.
- 1A4: Due to new model-runs, there are small recalculations of activity data for all stationary engines and gas turbines 1990-2022 in source categories 1A4ai, 1A4bi and 1A4ci.
- 1A4, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A4ai: Activity data of mobile pellet combustion installations were revised for 2021 and 2022 due to recalculations in the Swiss wood energy statistics publication (SFOE 2024b, chp. 1.3).
- 1A4ai: The Swiss statistic of energy consumption (SFOE 2024) has newly added the amount of Liquefied Natural Gas (LNG) used to the total amount of natural gas used for the years 2020-2022. This leads to small recalculations mainly in source categories 1A3b Road transportation, 1A4ai Commercial/institutional (stationary) and 1B2b Natural gas losses.

3.2.5 Source category 1A2 - Mobile Combustion in manufacturing industries and construction

3.2.5.1 Source category description for 1A2 Mobile combustion in manufacturing industries and construction

Table 3-67 Specification of source category 1A2 Mobile combustion in manufacturing industries and construction.

1A2	Source category	Specification
1A2gvii	industries and construction	Industry sector: forklifts and snow groomers etc. Construction machines: excavators, loaders, dump trucks, mobile compressors etc.

Table 3-68 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1A2 Combustion in manufacturing industries and construction (mobile only).

NFR code	Source category	Pollutant	Identification criteria
1A2gvii	Mobile combustion in manufacturing industries and construction	NOx	T1
1A2gvii	Mobile combustion in manufacturing industries and construction	PM2.5	L1, L2, T1, T2
1A2gvii	Mobile combustion in manufacturing industries and construction	PM10	L1, L2, T1, T2

3.2.5.2 Methodological issues for 1A2 Mobile combustion in manufacturing industries and construction

Methodology (1A2gvii)

Based on the decision tree Fig. 3.1 in chapter Non-road mobile sources and machinery of the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions of industry and construction vehicles and machinery are calculated by a Tier 3 method with the non-road transportation model described in chapter 3.2.1.1.1.

Emission factors (1A2gvii)

The general sources for the emission factors of the non-road model are described in chp. 3.2.1.1.1. Power class and emission standard-specific emission factors are shown in Table 3-69 to Table 3-72. Implied emission factors for the reporting year are shown in Table 3-73. For the greenhouse gas inventory under UNFCCC the fossil carbon fraction of biodiesel is estimated based on the method described in chapter 3.2.1.1.1. For technical reasons in our database, there is a split of the whole biodiesel amount in fossil and biogenic biodiesel and not only for the carbon fraction and CO₂. Therefore, there are two lines with biodiesel, one with "biodiesel fossil" and one with "biodiesel biogenic".

engine power	Pre-EU A	Pre-EU B	EU I	EU II	EU IIIA	EU IIIB	EU IV	EU V
				g/k ^v	Wh			
Carbon monoxid	le (CO)							
<18 kW	6.71	6.71	2.90	2.90	2.90	2.90	2.90	2.90
18–37 kW	6.71	6.71	2.76	2.42	2.06	1.76	1.50	1.50
37–56 kW	4.68	4.68	1.87	1.63	1.39	1.19	1.01	1.01
56–75 kW	4.68	4.68	1.87	1.63	1.39	1.19	1.01	1.01
75–130 kW	3.62	3.62	1.28	1.01	0.86	0.73	0.62	0.62
130–560 kW	3.62	3.62	1.04	0.91	0.77	0.66	0.50	0.50
>560 kW	3.62	3.62	1.04	0.91	0.77	0.66	0.50	0.50
Hydrocarbons (H	IC)							
<18 kW	2.28	2.28	1.60	1.00	0.59	0.59	0.59	0.53
18–37 kW	2.41	2.41	0.92	0.56	0.37	0.37	0.37	0.37
37–56 kW	1.33	1.33	0.65	0.46	0.33	0.33	0.33	0.33
56–75 kW	1.33	1.33	0.65	0.46	0.33	0.13	0.13	0.13
75–130 kW	0.91	0.91	0.45	0.35	0.28	0.17	0.17	0.13
130–560 kW	0.91	0.91	0.43	0.30	0.22	0.17	0.17	0.13
>560 kW	0.91	0.91	0.43	0.30	0.22	0.17	0.17	0.13
Nitrogen oxides					•	••••	••••	
<18 kW	10.31	8.20	5.95	5.95	5.95	5.95	5.95	5.95
18–37 kW	10.31	8.20	6.34	6.34	6.34	6.34	6.34	6.34
37–56 kW	12.40	9.87	8.95	6.56	3.90	3.90	3.90	3.90
56–75 kW	12.40	9.87	8.95	6.56	3.90	3.30	0.40	0.40
75–130 kW	12.52	9.96	8.44	5.67	3.32	3.30	0.40	0.40
130–560 kW	12.52	9.96	8.19	5.66	3.38	2.00	0.40	0.40
>560 kW	12.52	9.96	8.19	5.66	5.66	5.66	5.66	3.50
Particulate matte	er (PM)							
<18 kW	1.51	1.18	1.00	0.80	0.70	0.60	0.60	0.40
18–37 kW	1.20	0.94	0.74	0.60	0.54	0.54	0.54	0.01
37–56 kW	1.09	0.85	0.47	0.32	0.32	0.03	0.03	0.01
56–75 kW	1.09	0.85	0.47	0.32	0.32	0.03	0.03	0.01
75–130 kW	0.61	0.47	0.35	0.24	0.24	0.03	0.03	0.01
130–560 kW	0.61	0.47	0.22	0.16	0.16	0.03	0.03	0.01
>560 kW	0.61	0.47	0.22	0.16	0.16	0.16	0.16	0.05
Fuel consumption	on							
<18 kW	248	248	248	248	248	248	248	248
18–37 kW	248	248	248	248	248	248	248	248
37–75 kW	248	248	248	248	248	248	248	248
75–130 kW	223	223	223	223	223	223	223	223
>130 kW	223	223	223	223	223	223	223	223

Table 3-69 Emission factors for diesel-powered machinery (1A2gvii) per emission standard.

Table 3-70 Emission factors for gasoline-powered machinery (4-stroke engines) (1A2gvii) per emission standard. cc: cubic centimetres

Capacity range	Pre-EU A	Pre-EU B	Pre-EU C	EU I	EU II	EU V
Carbon monoxid	e (CO)					
<66 cc	470	470	470	467	467	467
66–100 cc	470	470	470	467	467	467
100–225 cc	470	470	470	467	467	467
>225 cc	470	470	470	467	467	467
Hydrocarbons (H	C)					
<66 cc	60	60	60	41	41	8
66–100 cc	40	40	40	32	32	8
100–225 cc	20	20	20	12	12	8
>225 cc	20	20	20	10	9	6
Nitrogen oxides	(NO _x)					
<66 cc	1.5	2.0	3.0	4.5	4.5	0.9
66–100 cc	1.5	2.0	3.0	3.6	3.6	0.9
100–225 cc	3.5	3.5	3.5	2.8	2.8	0.9
>225 cc	3.5	3.5	3.5	2.2	1.9	0.72
Fuel consumptio	n (FC)					
<66 cc	500	500	500	480	480	460
66–100 cc	480	480	480	470	470	460
100–225 cc	460	460	460	450	450	450
>225 cc	460	460	460	450	450	450
Assumptions reg	arding introduc	ction of emission	on stages			
<66 cc	<1996	1996	2000	2004	2005	2019
66–100 cc	<1996	1996	2000	2004	2005	2019
100–225 cc	<1996	1996	2000	2004	2009	2019
>225 cc	<1996	1996	2000	2004	2007	2019

Table 3-71 Emission factors for gasoline-powered machinery (2-stroke engines) (1A2gvii) per emission standard. cc: cubic centimetres

Capacity range	Pre-EU A	Pre-EU B	Pre-EU C	EU I	EU II	EU V
Carbon monoxide	e (CO)					
<20 cc	650	640	620	600	600	500
20–50 cc	650	640	620	600	600	500
>50 cc	650	640	620	540	540	500
Hydrocarbons (H0	C)					
<20 cc	260	250	150	100	41	41
20–50 сс	260	250	150	100	41	41
>50 cc	260	250	150	100	58	58
Nitrogen oxides (NO _x)					
<20 cc	1.5	2.0	3.0	4.8	4.5	4.5
20–50 cc	1.5	2.0	3.0	4.8	4.5	4.5
>50 cc	1.5	2.0	3.0	4.8	6.3	6.3
Fuel consumption	า					
<20 cc	660	650	550	500	440	410
20–50 cc	660	650	550	500	440	410
>50 cc	660	650	550	500	460	410
Assumptions rega	arding the introc	luction of emi	ssion stages			
<20 cc	<1996	1996	2000	2004	2009	2019
20–50 cc	<1996	1996	2000	2004	2009	2019
>50 cc	<1996	1996	2000	2004	2011	2019

Table 3-72 Emission factors for gas-operated machinery (1A2gvii).

Pollutant	Without catalyst	With oxidation	50% with 3-way	100% with 3-way
		catalysts	catalysts	catalysts
		g/k	Wh	
CO	10	0.2	0.2	0.2
HC	8	0.5	0.5	0.5
NOx	10	10	6	2
PM	0.02	0.01	0.01	0.01
Fuel consumption	450	450	455	460
Assumptions reg	arding introduction	on of emission sta	iges	
All capacities		1980	1994	2000

Table 3-73 Implied emission factor	ors for 1A2gvii in 2023.
------------------------------------	--------------------------

1A2gvii Mobile combustion in manufacturing industries	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx
and construction		g/	g/	g/	g/	g/	g/	g/	g/
Gasoline	GJ	NA	NA	0.19	NA	NA	NA	NA	NA
Diesel oil	GJ	NA	NA	0.30	NA	NA	NA	NA	NA
Biodiesel fossil	GJ	169	18	0.30	0.17	3.9	NA	3.9	NA
Biodiesel biogenic	GJ	169	18	0.30	0.17	3.9	NA	3.9	NA
Bioethanol	GJ	58	305	0.19	0.091	0.29	NA	0.29	NA
Working hours gasoline	h	4.0	26	NA	0.0040	0.058	NA	0.058	NA
Working hours diesel oil	h	48	5.0	NA	0.048	1.1	NA	1.1	NA
Working hours LPG	h	16	1.5	NA	0.037	0.081	NA	0.081	NA
Working hours (for non-exhaust only)	h	NA	NA	NA	NA	NA	2.4	NA	16
1A2gvii Mobile combustion in manufacturing industries	Unit	TSP ex	TSP nx	BC ex	BC nx	CO	Pb	Cd	Hg
and construction	Unit	g/	g/	g/	g/	g/	mg/	mg/	mg/
Gasoline	GJ	NA	NA	NA	NA	NA	16	NA	NA
Diesel oil	GJ	NA	NA	NA	NA	NA	NA	NA	NA
Biodiesel fossil	GJ	3.9	NA	1.8	NA	86	0.89	2.1	0.11
Biodiesel biogenic	GJ	3.9	NA	1.8	NA	86	0.89	2.1	0.11
Bioethanol	GJ	0.29	NA	0.014	NA	18'557	0.59	2.3	0.20
Working hours gasoline	h	0.058	NA	0.0029	NA	889	0.027	0.10	0.0090
Working hours diesel oil	h	1.1	NA	0.52	NA	24	0.25	0.59	0.032
Working hours LPG	h	0.081	NA	0.0041	NA	4.2	NA	0.040	NA
Working hours (for non-exhaust only)	h	NA	24	NA	0.0030	NA	NA	NA	NA
1A2gvii Mobile combustion in manufacturing industries	Unit	PCDD/ PCDF	BaP	BbF	BkF	IcdP			
and construction		ng I- Teq/	mg/	mg/	mg/	mg/			
Gasoline	GJ	NA	NA	NA	NA	NA			
Diesel oil	GJ	NA	NA	NA	NA	NA			
Biodiesel fossil	GJ	1.5	0.64	1.1	0.79	0.18			
Biodiesel biogenic	GJ	1.5	0.64	1.1	0.79	0.18			
Bioethanol	GJ	2.7	1.0	1.0	0.099	0.30			
Working hours gasoline	h	0.12	0.046	0.046	0.0045	0.014			
Working hours diesel oil	h	0.42	0.18	0.30	0.22	0.051			
Working hours LPG	h	NA	0.00075	NA	0.00075	0.00075			
Working hours (for non-exhaust only)	h	NA	NA	NA	NA	NA			

Activity data (1A2gvii)

Table 3-74 shows the activity data of 1A2gvii taken from FOEN (2015j). Diesel oil is the main fuel type consumed in this category. Data on biofuels are provided by the statistics of renewable energies (SFOE 2024a).

Detailed activity data can be downloaded from the online database INFRAS (2015a).

Table 3-74 Activity data for 1A2gvii.

1A2gvii Mobile combustion in manufacturing industries and construction	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	5'721	6'852	7'636	8'169	8'779					
Gasoline	TJ	196	224	227	225	220					
Diesel oil	TJ	5'359	6'380	7'108	7'630	8'259					
Liquefied petroleum gas	TJ	165	248	294	290	269					
Biodiesel fossil	TJ	NO	NO	0.41	1.2	1.4					
Biodiesel biogenic	TJ	NO	NO	7.5	23	30					
Bioethanol	TJ	NO	NO	NO	NO	0.0029					
1A2gvii Mobile combustion in manufacturing industries	Unit	0044		1						1	
and construction	Offic	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
and construction Total fuel consumption	TJ	2014 8'906	2015 8'938		-	2018 8'958		2020 8'971	2021 8'974	2022 8'977	2023 8'981
		_			-		8'964				
Total fuel consumption	TJ	8'906	8'938	8'945 181	8'951 179	8'958	8'964 173	8'971	8'974 170	8'977	8'981
Total fuel consumption Gasoline	TJ TJ	8'906 191	8'938 184	8'945 181	8'951 179	8'958 176	8'964 173	8'971 171	8'974 170 8'225	8'977 169 8'273	8'981 169
Total fuel consumption Gasoline Diesel oil	TJ TJ TJ	8'906 191 8'384	8'938 184 8'416	8'945 181 8'368	8'951 179 8'321	8'958 176 8'273	8'964 173 8'226 180	8'971 171 8'178 168	8'974 170 8'225	8'977 169 8'273	8'981 169 8'320
Total fuel consumption Gasoline Diesel oil Liquefied petroleum gas	TJ TJ TJ TJ TJ	8'906 191 8'384 235	8'938 184 8'416 226	8'945 181 8'368 215	8'951 179 8'321 203	8'958 176 8'273 192	8'964 173 8'226 180 18	8'971 171 8'178 168 21	8'974 170 8'225 142 21	8'977 169 8'273 115 20	8'981 169 8'320 88

3.2.5.3 Category-specific recalculations for 1A2 Mobile combustion in manufacturing industries and construction

The following recalculations were implemented in submission 2025:

- 1A2gvii: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A2gvii: An update of the fuel mix and consumption from non-road machineries leads to small recalculations in all source categories affected by the non-road transportation model and for all years 1990-2022.

3.2.6 Source category 1A3 - Transport

3.2.6.1 Source category description for 1A3 Transport

The source category 1A3 Transport includes all emissions from fuel combustion in transport processes in the air, on road, on railways, water and pipelines.

1A3	Source category	Specification
1A3ai(i)	International aviation LTO (civil)	LTO: Landing/Take-off emissons from international flights
1 4 2 0 ((ii)	International existion CP (aivil)	CR: Cruise emissions of international flights
1A3ai(ii)	International aviation CR (civil)	Memo item – not to be included in national total
1A3aii(i)	Domestic aviation LTO (civil)	LTO: Landing/Take-off emissions from domestic flights
TASali(I)	Domestic aviation ETO (Civil)	Large (jet, turboprop) & small (piston) aircrafts, helicopters
		CR: Cruise emissions from domestic flights
1A3aii(ii)	Domestic aviation CR (civil)	Large (jet, turboprop) & small (piston) aircrafts, helicopters
		Memo item – not to be included in national total
1A3bi	Road transportation: Passenger cars	Emissions from passenger cars
1A3bii	Road transportation: Light duty vehicles	Emissions from light duty vehicles
1A3biii	Road transportation:	Emissions from boowy duty vehicles, accepted and buses
TASDIII	Heavy duty vehicles and buses	ehicles Emissions from light duty vehicles Emissions from heavy duty vehicles, coaches and buses
1A3biv	Road transportation: Mopeds & motorcycles	Emissoins from 2-stroke and 4-stroke motorcycles
1A3bv	Road transportation: Gasoline evaporation	NMVOC emissions from gasoline evaporation
1A3bvi	Road transportation:	Non-exhaust emissions from road transportation
TASDVI	Automobile tyre and brake wear	Non-exhaust emissions from road transportation
1A3bvii	Road transportation:	Not reported separately but included in non-exhaust emissions
TASOVII	Automobile road abrasion	reported in 1A3bvi
1A3c	Railways	Diesel locomotives, abrasion by merchandise and person traffic
		Shipping leaving Switzerland on the river Rhine and on Lake
1A3di(ii)	International maritime navigation	Geneva and Lake Constance
		Memo item - not to be included in national total
1A3dii	National payingtion (chipping)	Passenger ships, motor and sailing boats on the Swiss lakes and
IASUII	National navigation (shipping)	the river Rhine
1A3ei	Pipeline transport	Gas turbines at the compressor station in Ruswil (canton Lucerne)
1A3EI		for the Swiss gas network.

Table 3-75 Specification of source category 1A3 Transport.

Note that emissions from cruise in civil aviation (see also Table 3-6; 1A3ai(ii) International aviation CR and 1A3aii(ii) Domestic aviation CR) as well as emissions from international inland waterways are reported under "memo items" and not considered for the national total.

NFR code	Source category	Pollutant	Identification criteria
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	NOx	L1, T1, T2
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	SOx	L1, T1, T2
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NOx	L1, L2, T1, T2
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NMVOC	L1, L2, T1, T2
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	NOx	L1, L2, T1, T2
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	NOx	L1, L2, T1, T2
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	SOx	T1, T2
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	PM2.5	T1
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	PM10	T1
1A3biv(fu)	Road transportation: mopeds and motorcycles (fuel used)	NMVOC	L2, T2
1A3bv(fu)	Road transportation: gasoline evaporation (fuel used)	NMVOC	L1, T1, T2
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	PM2.5	L1, L2, T1, T2
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	PM10	L1, L2, T1, T2
1A3c	Railways	PM2.5	L1, T1, T2
1A3c	Railways	PM10	L1, L2, T1, T2
1A3dii	National navigation (shipping)	NOx	T1

Table 3-76 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1A3, Transport.

3.2.6.2 Methodological issues for 1A3 Transport

3.2.6.2.1 Civil aviation (1A3a)

Methodology (1A3a)

According to the decision tree Figure 3-1 in chapter 1A3a Aviation in the EMEP/EEA guidebook (EMEP/EEA 2023), Switzerland uses a Tier 3 approach because data on start and final destination are available by aircraft type. Emission factors are also used on a detailed level stratified by engine type.

All civil flights from and to Swiss airports are separated into domestic (national, 1A3aii) and international (1A3ai) flights. The Landing/Take-off (LTO) emissions of domestic and international flights are reported under category 1A3a. The emissions of domestic and international cruise are reported as memo item and are therefore not accounted for in the national total.

A complete emission modelling (LTO and cruise emissions for domestic and international flights) has been carried out by FOCA for 1990, 1995, 2000, 2002, 2004, 2005, 2007-2023. The results of the emission modelling have been transmitted from FOCA to FOEN in an aggregated form (FOCA 2006, 2006a, 2007a, 2008-2024). Years in-between are interpolated. Further details of emission modelling are described in Switzerland's National Inventory Document (FOEN 2025).

Emission factors (1A3a)

The emission factors used are country-specific or taken from the ICAO engine emissions database from the EMEP/EEA guidebook (EMEP/EEA 2023), Swedish Defence Research Agency (FOI) and Swiss FOCA measurements. Emission factors are case sensitive and for that reason separated into emission factors concerning the LTO cycle and cruise phase. Values of emission factors (EF) see Table 3-77.

 NO_x, SO_x, VOC, CO are differentiated by engine type and by phases of a flight (taxi, takeoff etc.)

- NMVOC is calculated as fraction of VOC. For LTO $EF_{NMVOC} = 0.47 * EF_{VOC}$, whereas for cruise $EF_{NMVOC} = EF_{VOC}$ i.e, there is no emission of CH₄ for the cruise phase.
- PM10 and PM2.5 have been determined by the Federal Office of Civil Aviation (FOCA 2016b). For exhaust emissions, PM10 exhaust = PM2.5 exhaust = PM exhaust is assumed. During the high-power operating state of the engines, PM exhaust is equal to BC, during other operating states PM exhaust also contains volatile compounds. FOCA recommends to set *EF*_{PM2.5 exhaust} = 2 * *EF*_{BC}, see also chapter 1.A.3.a, 1.A.5.b * Aviation of the EMEP/EEA guidebook (EMEP/EEA 2023, notes to table 3.11 on p.28.
- For non-exhaust emissions as tyre, break and airstrip abrasion, the findings the FOCA provide the weighted non-exhaust emission factor of 0.1 g per LTO-cycle, which is based on 0.08 g per landing of a short-distant flight and 0.27 g per landing of a long-distant flight.
- The emission of Pb from leaded aviation fuel is assumed to be equal to the maximal allowed content of Pb in the fuel, which is 0.794 g Pb / kg fuel. Emission factors of Pb shown in Table 3-77 are implied emission factors as they are based on the Pb emissions from leaded aviation fuels divided with the sum of leaded aviation fuels and unleaded jet kerosene. The share of leaded aviation fuels in comparison to total kerosene consumption is less than 1%.

LTO

The Swiss FOCA engine emissions database consists of more than 520 individual engine data sets. Jet engine factors for engines above 26.7 kN thrust (emission certificated) are identical to the ICAO engine emissions database. Emission factors for lower thrust engines, piston engines and helicopters are taken from manufacturers or from own (FOCA) measurements. Emission factors for turboprops could be obtained in collaboration with the Swedish Defence Research Agency (FOI).

Cruise

Aircraft cruise emission factors are dependent on representative flight distances per aircraft type. A load factor of 65 % is assumed. Part of the cruise factors are also taken from former CROSSAIR (FOCA 1991). The whole Airbus fleet (which accounts for a large share of the Swiss inventory) has been modelled on the basis of real operational aircraft data from flight data recorders (FDR) of Swiss International Airlines.

Some of the old or missing aircraft cruise factors had to be modelled on the basis of the ICAO engine emissions database. For piston engine aircraft, FOCA has produced its own data, which were measured under real flight conditions.

1A3a Aviation		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx	
			g/	g/	g/	g/	g/	g/	g/	g/	l
1A3ai(i) International aviation LTO (civil)	Jet kerosene fossil	GJ	332	21	23	NA	2.4	0.0020	2.4	0.0020	
A3ai(i) International aviation LTO (civil)	Jet kerosene biogenic	GJ	349	21	23	NA	2.3	0.0021	2.3	0.0021	
A3aii(i) Domestic aviation LTO (civil)	Jet kerosene fossil	GJ	231	129	20	NA	7.1	0.0012	7.1	0.0012	
1A3ai(ii) International aviation cruise (civil)	Jet kerosene fossil	GJ	426	3.7	23	NA	0.74	NA	0.74	NA	
A3ai(ii) International aviation cruise (civil)	Jet kerosene biogenic	GJ	447	3.6	23	NA	0.61	NA	0.61	NA	
A3aii(ii) Domestic aviation cruise (civil)	Jet kerosene fossil	GJ	252	82	22	NA	3.9	NA	3.9	NA	
A3a Aviation		Unit	TSP ex	TSP nx	BC ex	BC nx	CO	Pb	Cd ex	Cd nx	
		Onit	g/	g/	g/	g/	g/	mg/	mg/	mg/	r
A3ai(i) International aviation LTO (civil)	Jet kerosene fossil	GJ	2.4	0.0020	0.92	NA	260	5.8	NA	NA	
A3ai(i) International aviation LTO (civil)	Jet kerosene biogenic	GJ	2.3	0.0021	0.81	NA	253	0.80	NA	NA	
A3aii(i) Domestic aviation LTO (civil)	Jet kerosene fossil	GJ	7.1	0.0012	1.8	NA	3'591	2'798	NA	NA	
A3ai(ii) International aviation cruise (civil)	Jet kerosene fossil	GJ	0.74	NA	0.74	NA	43	4.9	NA	NA	
		<u></u>	0.61	NA	0.61	NA	39	0.50	NA	NA	
	Jet kerosene biogenic	GJ	0.01								
1A3ai(ii) International aviation cruise (civil) 1A3aii(ii) Domestic aviation cruise (civil)	3	GJ	3.9		3.9	NA	764	1'028	NA	NA	

Table 3-77 Emission factors for 1A3a Civil aviation, year 2023. (LTO: Landing take-off cycle, CR: cruise.). Sustainable aviation fuels (SAF) are referred to as jet kerosene biogenic.

1A3aii(ii) Dor 1A3a Aviation Unit ng Img/... mg/.. mg/.. mg/.. ng/. ng/.. Tea/ 1A3ai(i) International aviation LTO (civil) Jet kerosene fossil GJ N. N/ N/ NA N N/ NA NA NA NA 1A3ai(i) International aviation LTO (civil) Jet kerosene biogeni GJ NA NA N/ 1A3aii(i) Domestic aviation LTO (civil) Jet kerosene fossil G.I NA NA NA NA NA NA NA 1A3ai(ii) International aviation cruise (civil) Jet kerosene fossil NA NA NA NA NA NA NA 1A3ai(ii) International aviation cruise (civil) Jet kerosene biogeni GJ NA NA NA NA NA N/ NA 1A3aii(ii) Domestic aviation cruise (civil) Jet kerosene fossil

Activity data (1A3a)

Activity data are derived from detailed movement statistics by FOCA. The statistics distinguish between scheduled and charter aviation as well as non-scheduled, non-charter and general aviation (including helicopters).

Scheduled and charter aviation

The statistical basis has been extended after 1996. Therefore, the modelling details are not exactly the same for the years 1990/1995 as for the subsequent years. The source for the 1990 and 1995 modelling are the movement statistics, which record for every movement information on airline, number of seats, Swiss airport, arrival/departure, origin/destination, number of passengers, distance. From 1996 onwards, every movement in the FOCA statistics also contains the individual aircraft tail number (aircraft registration). This is the key variable to connect airport data and aircraft data. All annual aircraft movements recorded are split into domestic and international flights.

Non-scheduled, non-charter and general aviation (including helicopters)

Airports and most of the airfields report individual aircraft data (aircraft registration). FOCA is therefore able to compute also the inventory for small aircraft with a Tier 3 approach. However, for 1990 and 1995, the emissions for non-scheduled, non-charter and general aviation (helicopters etc.) could not be calculated with a Tier 3 approach. Its fuel consumption is estimated to be 10 % of the domestic fuel consumption. Data were taken from two studies by FOCA (FOCA 1991, FOCA 1991a). Since 2000, all movements from airfields are registered, which allows a more detailed modelling of the emissions.

Helicopter flights which do not take off from an official airport or airfield such as transport flights, flights for lumbering, animal transports, supply of alpine huts, heli-skiing and flight trainings in alpine regions cannot be recorded with the movement data base from airports and airfields. Although these helicopter movements only account for 0.1 % of the total domestic aviation emissions, these emissions are taken into account using the statistics of

the Swiss Helicopter Association (Unternehmensstatistik der Schweizer

Helikopterunternehmen). These statistics are officially collected by FOCA and updated annually (see FOCA 2004 as illustrative example for all subsequent years). Since 2007, the data of these statistics are included electronically in the data warehouse of the model and undergo first some plausibility checks (E-plaus software). In order to distinguish between single engine helicopters and twin engine helicopters a fix split of 87 % for single engine helicopters and 13 % for twin engine helicopters is applied for the entire commitment period based on investigations in 2004 (FOCA 2004). Note that all emissions from helicopter flights without using an official airport or an official airfield are considered as domestic emissions. There is also a helicopter base in the Principality of Liechtenstein consuming a very small amount of fuel contained in the Swiss statistics. Thus, its consumption leads to domestic instead of international bunker emissions. FOCA and FOEN decided to report these emissions as Swiss-domestic since it is a very small amount and the effort for a separation would be considerable.

Table 3-78 summarises the activity data for civil aviation. Note that the cruise emissions are included in international bunkers and reported as memo items (1A3ai(ii) and 1A3aii(ii). The increase in energy consumption from 1990 to 2019 is due to an increasing number of flights. In 2020 and 2021, the COVID-19 pandemic led to a strong reduction of energy consumption compared to 2019 due to significantly reduced number of flights. Since 2022, flight activities and thus the energy consumption increased again. However, the energy consumption remains lower than pre-pandemic level. Since 2021, sustainable aviation fuels (SAF) are reported from Zurich airport and attributed to international flights. The amount is very small compared to the amount of fossil jet fuel.

Table 3-78 Jet kerosene consumption of domestic and international aviation in TJ. Note that domestic and international LTO emissions are reported and included in the national total for the entire territory (based on fuel sold), whereas domestic and international cruise emissions are reported under memo items only. Sustainable aviation fuels (SAF) are referred to as jet kerosene biogenic.

1A3a Aviation		Unit	1990	1995	2000	2005	2010					
Total fuel consumption		TJ	45'334	52'993	66'267	49'477	60'028					
Total, 1990 = 100 %		%	100	117	146	109	132					
1A3ai(i) International aviation LTO (civil)	Jet kerosene fossil	TJ	4'277	5'097	6'507	4'878	5'643					
1A3ai(i) International aviation LTO (civil)	Jet kerosene biogeni	тJ	NO	NO	NO	NO	NO					
1A3aii(i) Domestic aviation LTO (civil)	Jet kerosene fossil	TJ	1'050	935	773	518	464					
1A3ai(ii) International aviation cruise (civil)	Jet kerosene fossil	TJ	37'608	44'821	57'219	42'896	52'691					
1A3ai(ii) International aviation cruise (civil)	Jet kerosene biogeni	тJ	NO	NO	NO	NO	NO					
1A3aii(ii) Domestic aviation cruise (civil)	Jet kerosene fossil	TJ	2'401	2'139	1'768	1'184	1'230					
1A3a Aviation		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption		TJ	66'927	69'220	72'534	74'465	78'793	79'767	29'250	32'683	58'443	69'786
Total, 1990 = 100 %		%	148	153	160	164	174	176	65	70	129	45.4
1A3ai(i) International aviation LTO (civil)								110	00	72	129	154
	Jet kerosene fossil	TJ	6'142	6'459	6'529	6'728	6'953	6'963	2'395	2'718	5'129	154 5'915
1A3ai(i) International aviation LTO (civil)	Jet kerosene fossil Jet kerosene biogeni		6'142 NO	6'459 NO	6'529 NO	6'728 NO					-	
							6'953	6'963	2'395	2'718	5'129	5'915
1A3ai(i) International aviation LTO (civil)	Jet kerosene biogeni	сTJ	NO	NO	NO	NO	6'953 NO	6'963 NO	2'395 NO	2'718 2.0	5'129 0.029	5'915 1.4
1A3ai(i) International aviation LTO (civil) 1A3aii(i) Domestic aviation LTO (civil)	Jet kerosene biogeni Jet kerosene fossil	TJ TJ TJ	NO 525	NO 387	NO 421	NO 384	6'953 NO 346	6'963 NO 321	2'395 NO 170	2'718 2.0 183	5'129 0.029 227	5'915 1.4 236

3.2.6.2.2 Road transportation (1A3b)

Methodology (1A3b)

- The exhaust air pollutant emissions are calculated by a Tier 3 method based on the decision trees Fig. 3.1 in the chapters 1A3bi-iv Road transport 2024 in the EMEP/EEA guidebook (EMEP/EEA 2023).
- The non-exhaust air pollutant emissions are calculated by a Tier 2 method based on the decision trees Fig. 3.1 in the chapters 1A3bi-iv Road transport 2024 in the EMEP/EEA guidebook (EMEP/EEA 2023).

The total emissions are reported in two versions, the first one based on fuel used to account to the national total for compliance assessment and the second version based on fuel sold to be shown in the reporting tables and thereby contributing to the national total (but not for compliance assessment). See also chapter 3.1.6.1 on system boundaries.

The emission computation is based on emission factors and activity data. For general methods see INFRAS (2017c), updated emission factors see INFRAS (2019a), Matzer et al. (2019) and Notter et al. (2022). Emission factors are expressed as specific emissions in grams per unit, where the unit depends on the set of traffic activity data: vehicle kilometres travelled (hot emissions, evaporation running losses), number of starts/stops and vehicle stock (cold start, evaporation soak and diurnal emissions from gasoline passenger cars, light duty vehicles and motorcycles only) or fuel consumption per vehicle category.

For all years up to 2023, statistical data was used for calculating activity data from 1A3b Road transportation (ex-post). Emissions are calculated as follows:

٠	Hot emissions:	$E_{hot} = VKT \cdot EF_{hot}$
•	Cold start excess emissions:	$E_{start} = N_{start} \cdot EF_{start}$
•	Evaporation soak and diurnal NMVOC emissions:	$E_{evap,i} = N_{evap,i} \cdot EF_{evap,i}$
•	Evaporation running NMVOC losses:	$E_{evap-RL} = VKT \cdot EF_{Evap-RL}$

with

- *EF*_{hot}, EF_{start}, *EF*_{evap}: Emission factors for ordinary driving conditions (hot engine), cold start and evaporative (VOC) emissions (after stops, running losses, diurnal losses)
- *VKT:* Vehicle km travelled
- *N_{start}:* Number of starts
- N_{evap,i}: Number of stops, or number of vehicles and day. *i* runs over two evaporation categories:

a) evaporation soak emissions, i.e. emissions after stopping when the engine is still hot; and b) evaporation diurnal emissions, i.e. emissions due to daily air temperature differences. For a) the corresponding activity is number of stops, for b) number of vehicles multiplied by the number of days in the reported period (i.e. 365 for annual emissions).

• Emission factors are differentiated by fuel types: Gasoline (4-stroke), gasoline (2-stroke), diesel oil, liquefied petroleum gas, bioethanol, biodiesel, (compressed) natural gas, biogas, and by emission standard (in terms of percentage of vehicles with evaporation control, average tank and canister size, canister purge rates, and percentage of vehicles with mono- vs. multi-layered tanks).

Emission factors (1A3b)

Emission factors in 1A3b originate from the following sources:

Emission factors for exhaust pollutants NO_x, NMVOC, NH₃, CO, PM2.5, and PM10 are country-specific and have been derived from "emission functions" determined from a compilation of measurements from various European countries with programs using similar driving cycles (legislative as well as standardized real-world cycles, like "Common Artemis Driving Cycle" (CADC). The method has been developed in 1990-1995 and has been extended and updated in 2000, 2004, 2010, 2017, 2019 and 2022 (INFRAS 2017c, INFRAS 2019a, Notter et al. 2022). These emission factors are compiled in a database called "Handbook of Emission Factors for Road Transport" (INFRAS 2022). Version 4.2 is presented and documented on the website http://www.hbefa.net/. The resulting emission

factors are differentiated by so-called "traffic situations", which represent characteristic patterns of driving behaviour (i.e. speed profiles) and which serve as a key to the disaggregation of the activity data. They are defined by spatial characteristics (urban/rural areas, 7 gradient classes (0, +/-2, +/-4, +/-6%), road type, speed limit) and temporal features (levels of service, i.e. traffic density, from free flow to heavy stop-and-go). The underlying database contains a dynamic fleet compositions model simulating the release of new exhaust technologies and the fading out of old technologies. Corrective factors are provided to account for future technologies. Considering the measuring procedure and the maximum temperature of 52°C, it can be assumed that PM condensables are also included in the measurements. The installed technology also plays a role in this context (petrol engines with/without catalytic converter, diesel engines with/without particulate filter, etc.).

- Emission factors for Pb, Cd exhaust, Zn exhaust, Hg, PCDD/PCDF (except for natural gas engines, see below), PAH and PCB are taken from the EMEP/EEA guidebook (EMEP/EEA 2019, chapter 1.A.3.b.i-iv Road transport 2019).
- SO_x emission factors are based upon the sulphur content of fuels and are country- and fuel-specific (see chp. 3.2.1.2).
- Emission factor for PCDD/PCDF emissions from natural gas engines is taken from Rentz et al. (2008).
- Emission factors for BC and Cd stem from the Handbook of Emission Factors for Road Transport as well as non-exhaust emissions of particulate matter (TSP, PM10, PM2.5), which are based on Düring and Schmidt (2016); their integration into the Handbook of Emission Factors for Road Transport is described in INFRAS (2019a). Details to nonexhaust emission factors can be found in EMIS 2025/1A3b-Strassenverkehr.
- Note that there is still no HCB emission factor available in the EMEP/EEA guidebook (EMEP/EEA 2019). Therefore, these emissions are still NE for the years 1990-2023.

For biofuels, the respective air pollutant emission factors of 1A3b for fossil fuels are used as follows: for biodiesel and vegetable/waste oil the ones from diesel oil, for bioethanol the ones from gasoline and for biogas the ones from (compressed) natural gas use. Table 3-79 shows a selection of implied emission factors (emissions divided by specific fuel consumption per source category) for 2023.

Table 3-79 Implied emission fac	ors for road transportation in 2023	3 ((fu) means fuel used approach).
---------------------------------	-------------------------------------	------------------------------------

Ubblic Processor and model 31 43 6 5 7 7 6 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	1A3b(fu) Road Transportation	NOx	NMVOC	SO _x	NH ₃	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx	TSP ex	TSP nx	BC ex	BC nx
Vibbolic Jurging diversion: etc. Bit	(Gasoline, Bioethanol)			1									
Observed													
Discription Ed. 310 0 1 2 No. 4 No. 4 No. 4 No. Mo						2.6	NA						
Vacual Coording conjugation NB Court of the second of the													
Like Work Name													
Name Name <th< td=""><td></td><td>10/3</td><td>21</td><td></td><td>1473</td><td>1474</td><td>10/1</td><td>1.07</td><td>147.</td><td>107</td><td></td><td></td><td>1474</td></th<>		10/3	21		1473	1474	10/1	1.07	147.	107			1474
Gasoline, Journal J. Image Image </td <td>break wear</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>5.2</td> <td>NA</td> <td>14</td> <td>NA</td> <td>14</td> <td>NA</td> <td>0.52</td>	break wear	NA	NA	NA	NA	NA	5.2	NA	14	NA	14	NA	0.52
Gasoline, Journal J. Image Image </td <td>4 A2k/() Deed Trenenestetion</td> <td></td> <td>Dh</td> <td>Callery</td> <td></td> <td>Ll.e.</td> <td>BCDD/</td> <td>BeD</td> <td>DFC</td> <td>DLE</td> <td>DealD</td> <td>HCB</td> <td>DCD</td>	4 A2k/() Deed Trenenestetion		Dh	Callery		Ll.e.	BCDD/	BeD	DFC	DLE	DealD	HCB	DCD
Barry Decampositie NoTIO PTJ			PD	Caex	Canx	нg		БаР	БОГ	DKF	ICOP	псь	РСБ
CASULD Seesurger cm 2.89 0.50 0.500 0.501 0.11 0.12 0.17 M8 0.18 0.10 0.12 0.17 M8 0.17 M8 0.17 M8 0.18 0.10 0.12 0.12 0.17 M8 0.17 M8 0.17 M8 0.18 0.10 0.17 M8 0.17 M8 0.18 0.10 0.12 0.16 0.17 M8 0.17 M8 0.18 0.10 0.11 0.11 0.11 0.11 0.11 M8	(Gasoline, Bioernanol)	ka/TJ		a/1	IJ				a/	TJ		ng/T	J
Naching Lange day, weindes 2466 0.004 0.004 0.003 0.13 0.14 0.10 0.16 NM 0.00 Nachol Massed Andres 0.00 <td>1A3bi(fu) Passenger cars</td> <td></td> <td>0.59</td> <td></td> <td></td> <td>0.20</td> <td></td> <td>0.14</td> <td></td> <td></td> <td>0.17</td> <td></td> <td>619</td>	1A3bi(fu) Passenger cars		0.59			0.20		0.14			0.17		619
Stability Stability of Survey of Survey Su			0.59	0.0041	NA	0.20		0.13	0.14	0.10	0.15		657
No. 10. Schult description NA NA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NE</td></th<>													NE
Name NA NA NA Out NA													3'072
Deter Average NO		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
No. NVCC So. Nh, PM 25 ex. PM 10 ex. PM 10 ex. TSP ex. BC ex. </td <td></td> <td></td> <td></td> <td></td> <td>0.44</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					0.44								
Direct. Biodescip Direct. Direct. <thdirect.< th=""> Direct. <thdirect.< th=""></thdirect.<></thdirect.<>	Dreak wear	INA	INA	INA	0.44	INA	INA	INA	INA	INA	INA	NA	INA
Direct. Biodescip Direct. Direct. <thdirect.< th=""> Direct. <thdirect.< th=""></thdirect.<></thdirect.<>	1A3b Road Transportation	NO ₂	NMVOC	SO _v	NHa	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx	TSP ex	TSP nx	BC ex	BCnx
Classify Distance of the sensorie constraints Distance of the sensorie constraints <thdistance constraints<="" of="" sensorie="" th="" the=""> <thd< td=""><td></td><td></td><td>MINTOO</td><td>001</td><td>14113</td><td>1 112.0 CA</td><td></td><td></td><td>T MITO IIX</td><td>TOP CA</td><td>TOT IIX</td><td>DOCA</td><td>DO IIX</td></thd<></thdistance>			MINTOO	001	14113	1 112.0 CA			T MITO IIX	TOP CA	TOT IIX	DOCA	DO IIX
CARDING Ling Ling Ling Ling 224 1.16 0.30 1.15 3.0 NA 3.0 NA 3.0 NA 1.5 NA	1A3bi(fu) Passenger cars	201	3.3	0.30	2.0	0.81			NA	0.81	NA	0.34	NA
NABBIE 115 22 0.33 12 1.3 NM 1.3 NM 0.40 NM 0.40 NM													NA
NAX-0010 NAX NA	1A3biii(fu) Heavy duty vehicles	105	2.6	0.30	1.2	1.3	NA	1.3	NA	1.3	NA	0.46	NA
break ward NA NA NA NA NA A.6 NA 1.3 NA 1.5 NA 0.6 143b Road Transportation (Devel, Boddow) 071		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Charles Road Transportation CO Pb Cd sx Hg PCD0/ (p1) BaP BbF IcdP HCP PCD (bible) Standing Instanger can 44 0.91 0.011 NA 0.12 0.0118 0.06 0.40 0.04 0.001 NA 0.12 0.0018 0.06 0.40 0.04 0.04 0.012 0.0018 0.06 0.01 0.01 NA 0.01 0.001 0.0													
Dises: Biodesion Image: Dises: PCDE PCDE <td>break wear</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>4.6</td> <td>NA</td> <td>13</td> <td>NA</td> <td>13</td> <td>NA</td> <td>0.46</td>	break wear	NA	NA	NA	NA	NA	4.6	NA	13	NA	13	NA	0.46
Dises: Biodesion Image: Dises: PCDE PCDE <td>1A3h Road Transportation</td> <td>0</td> <td>Ph</td> <td>Cdev</td> <td>Cdiny</td> <td>Ha</td> <td>PCDD/</td> <td>BaP</td> <td>BhF</td> <td>BFE</td> <td>IcdD</td> <td>HCB</td> <td>PCP</td>	1A3h Road Transportation	0	Ph	Cdev	Cdiny	Ha	PCDD/	BaP	BhF	BFE	IcdD	HCB	PCP
spr. spr.1			ru	ouex	GUIIX	ng		Dar	DUP	DKP	icur		r vb
NABHOD Passenger care 44 0.01 0.001 NA 0.12 0.008 0.066 0.074 0.08 0.066 0.074 0.08 0.066 0.074 0.08 0.06 0.07 0.03 0.01 <th< td=""><td>(Dicsel, Diouiesel)</td><td>ka/T.J</td><td></td><td>n/1</td><td>J</td><td></td><td></td><td></td><td>a/</td><td>TJ</td><td>1</td><td>na/T.</td><td>J</td></th<>	(Dicsel, Diouiesel)	ka/T.J		n/1	J				a/	TJ	1	na/T.	J
Chabrid Optimization	1A3bi(fu) Passenger cars		0.91			0.12					0.62		365
Abbit Heavy day vehicles 43 0.91 0.010 NA 0.21 0.0011 0.04 NO	1A3bii(fu) Light duty vehicles	49	0.91	0.0011	NA	0.12	0.0022	0.53	0.59	0.46	0.49	NE	437
Alzburght NA	1A3biii(fu) Heavy duty vehicles												22
brack veer NA		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Abs Road Transportation (dss. Blogas) No. NMVOC SO. NH PM2.5 nx. PM10 nx. FM10 nx. FSP nx. BC ex. BC nx. Abs/Rolf Dissenger cars so (Ass.Blogas) 13 0.30 0.11 17 NA 1.7 NA 1.7 NA 0.20 NA 0.23 NA 0.25 NA 0.25 NA 0.25 NA 0.25 NA 0.42 NA NA 0.40 NA <													
Gas, Biogan Image: Construct of the second sec	break wear	NA	NA	NA	0.49	NA	NA	NA	NA	NA	NA	NA	NA
Gas, Biogan Image: Construct of the second sec	1A3b Road Transportation	NO ₂	NMVOC	SO _v	NH ₂	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx	TSP ex	TSP nx	BC ex	BC nx
Abbit(b) Description 24 1.3 0.30 9.1 1.7 NA 0.42 NA 0.41 0.03 NO	(Gas, Biogas)			00,		1 11210 04			1 11 10 114	101 04		20 04	2011
Abalic(I) Description S2 1.5 0.30 NE 0.42 NA NA <td>1A3bi(fu) Passenger cars</td> <td>24</td> <td>1.3</td> <td>0.30</td> <td>9.1</td> <td>1.7</td> <td></td> <td></td> <td>NA</td> <td>1.7</td> <td>NA</td> <td>0.25</td> <td>NA</td>	1A3bi(fu) Passenger cars	24	1.3	0.30	9.1	1.7			NA	1.7	NA	0.25	NA
Abbit NO					7.7								NA
Atabu(f) Automobile tyre and break wear NA													NA
break wear NA NA NA NA NA A T NA 15 NA 15 NA 0.47 13b Road Transportation (Ges, Biogas) CO Pb Cd ex Pd PCDP BP BbF EkF IcdP HCB PCB OUT mg/T m		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
TA3b Road Transportation (Ges, Bioges) CO Pb Cd ex Cd nx Hg PCDU/ PCD BaP BbF BkF IcdP HCB PCB T/30 NA NA <td></td>													
(Gas, Biogas) kgTJ 0TJ	Dreak wear	NA	NA	NA	NA	NA	4.7	NA	15	NA	15	NA	0.47
kpTJ pTJ mg TZ mg	1A3b Road Transportation	CO	Pb	Cd ex	Cdny	Ha	PCDD/	BaP	BbF	BkF	IcdP	HCB	PCB
A3bit(u) Passenger cars 170 NA NA NA 0.19 0.029 0.15 0.17 0.13 0.19 NE NA A3bit(u) passenger cars 1242 NA NA NA 0.19 0.0023 0.013 0.14 0.10 0.15 NE NA A3bit(u) followy duty vehicles 54 NA NA </td <td></td> <td></td> <td></td> <td></td> <td>ounix</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					ounix								
Abaliful Light dury vehicles 1242 NA	(Gas, Biogas)					5	PCDF						
Adduit(i) Heavy duty vehicles 54 NA NA NA NA NE 0.003 0.0035 0.0028 0.0021 NE NA Adduit(i) Automabile tyre and break wear NA NA </td <td></td> <td>kg/TJ</td> <td></td> <td>g/1</td> <td>J</td> <td></td> <td>PCDF mg I-TEQ/TJ</td> <td></td> <td></td> <td></td> <td>0.40</td> <td></td> <td></td>		kg/TJ		g/1	J		PCDF mg I-TEQ/TJ				0.40		
1A3br(ft) Mutorcycles NO NO </td <td>1A3bi(fu) Passenger cars</td> <td>kg/TJ 170</td> <td></td> <td>g/1 NA</td> <td>-J NA</td> <td>0.19</td> <td>PCDF mg I-TEQ/TJ 0.0029</td> <td>0.15</td> <td>0.17</td> <td>0.13</td> <td></td> <td>NE</td> <td>NA</td>	1A3bi(fu) Passenger cars	kg/TJ 170		g/1 NA	-J NA	0.19	PCDF mg I-TEQ/TJ 0.0029	0.15	0.17	0.13		NE	NA
Adds/rt(i) Aux NA	1A3bi(fu) Passenger cars 1A3bii(fu) Light duty vehicles	kg/TJ 170 1242	NA	g/T NA NA	TJ NA NA	0.19	PCDF mg I-TEQ/TJ 0.0029 0.0023	0.15	0.17 0.14	0.13	0.15	NE	NA NA
break wear NA	1A3bi(fu) Passenger cars 1A3bii(fu) Light duty vehicles 1A3biii(fu) Heavy duty vehicles	kg/TJ 170 1242 54	NA NA	g/T NA NA NA	J NA NA NA	0.19 0.19 NE	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013	0.15 0.13 0.0035	0.17 0.14 0.0055	0.13 0.10 0.0028	0.15	NE NE NE	NA NA NA
Liquefied perceise kg/TJ kg/TJ 1A3bi(h) Passenger cars 23 1,7 0,50 7,2 NA <	1A3bi(fu) Passenger cars 1A3bii(fu) Light duty vehicles 1A3bii(fu) Heavy duty vehicles 1A3biv(fu) Motorcycles	kg/TJ 170 1242 54	NA NA	g/T NA NA NA	J NA NA NA	0.19 0.19 NE	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013	0.15 0.13 0.0035	0.17 0.14 0.0055	0.13 0.10 0.0028	0.15	NE NE NE	NA NA
Liquefied perceise kg/TJ kg/TJ 1A3bi(h) Passenger cars 23 1,7 0,50 7,2 NA <	1A3bi(fu) Passenger cars 1A3bii(fu) Light duty vehicles 1A3bii(fu) Heavy duty vehicles 1A3biv(fu) Motorcycles	kg/TJ 170 1242 54 NO	NA NA NO	g/T NA NA NA NO	J NA NA NO	0.19 0.19 NE NO	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO	0.15 0.13 0.0035 NO	0.17 0.14 0.0055 NO	0.13 0.10 0.0028 NO	0.15 0.0021 NO	NE NE NO	NA NA NA
IA3bit(U) Passenger cars 23 1.7 0.50 7.2 NA	1A3bi(t)) Passenger cars 1A3bi(t)) Light duty vehicles 1A3bi(i(t)) Heavy duty vehicles 1A3biv(i(t)) Motorcycles 1A3bv(i(t)) Automobile tyre and break wear	kg/TJ 170 1242 54 NO NA	NA NA NO NA	g/T NA NA NA NO	-J NA NA NO 0.51	0.19 0.19 NE NO	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NA	0.15 0.13 0.0035 NO NA	0.17 0.14 0.0055 NO NA	0.13 0.10 0.0028 NO NA	0.15 0.0021 NO NA	NE NE NO NA	NA NA NO NA
IA3bit(i) Light duy vehicles NO <	1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation	kg/TJ 170 1242 54 NO NA	NA NA NO NA	g/T NA NA NA NO	-J NA NA NO 0.51	0.19 0.19 NE NO	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx	0.15 0.13 0.0035 NO NA PM10 ex	0.17 0.14 0.0055 NO NA	0.13 0.10 0.0028 NO NA	0.15 0.0021 NO NA	NE NE NO NA	NA NA NO NA
NO NO<	1A3bi(IU) Passenger cars 1A3bi(IU) Light duty vehicles 1A3bi(IU) Heavy duty vehicles 1A3bi(IU) Motorcycles 1A3bi(V(U) Motorcycles 1A3bi(V) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas)	kg/TJ 170 1242 54 NO NA	NA NA NO NA	g/ NA NA NA NO NA SO _X	J NA NA NO 0.51 NH ₃	0.19 0.19 NO NA PM2.5 ex	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/	0.15 0.13 0.0035 NO NA PM10 ex	0.17 0.14 0.0055 NO NA	0.13 0.10 0.0028 NO NA TSP ex	0.15 0.0021 NO NA	NE NE NO NA BC ex	NA NA NO NA BC nx
1A3brit(i) Motorcycles NO NO <td>1A3bi(tu) Passenger cars 1A3bi(tu) Light duty vehicles 1A3bi(i(tu) Heavy duty vehicles 1A3biv(tu) Motorcycles 1A3bv(i(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bi(tu) Passenger cars</td> <td>kg/TJ 170 1242 54 NO NA NO_X</td> <td>NA NA NO NA NMVOC</td> <td>9/1 NA NA NA NO NA SO_X</td> <td>-J NA NA NA NO 0.51 NH₃ 7.2</td> <td>0.19 0.19 NE NO NA PM2.5 ex</td> <td>PCDF mg I-TEQ/TJ 0.0023 0.0013 NO NA PM2.5 nx kg/ NA</td> <td>0.15 0.13 0.0035 NO NA PM10 ex TJ</td> <td>0.17 0.14 0.0055 NO NA PM10 nx</td> <td>0.13 0.10 0.0028 NO NA TSP ex</td> <td>0.15 0.0021 NO NA TSP nx</td> <td>NE NE NO NA BC ex</td> <td>NA NA NO NA BC nx NA</td>	1A3bi(tu) Passenger cars 1A3bi(tu) Light duty vehicles 1A3bi(i(tu) Heavy duty vehicles 1A3biv(tu) Motorcycles 1A3bv(i(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bi(tu) Passenger cars	kg/TJ 170 1242 54 NO NA NO _X	NA NA NO NA NMVOC	9/1 NA NA NA NO NA SO _X	-J NA NA NA NO 0.51 NH ₃ 7.2	0.19 0.19 NE NO NA PM2.5 ex	PCDF mg I-TEQ/TJ 0.0023 0.0013 NO NA PM2.5 nx kg/ NA	0.15 0.13 0.0035 NO NA PM10 ex TJ	0.17 0.14 0.0055 NO NA PM10 nx	0.13 0.10 0.0028 NO NA TSP ex	0.15 0.0021 NO NA TSP nx	NE NE NO NA BC ex	NA NA NO NA BC nx NA
1A3br(iii) Automobile tyre and break wear NA NA </td <td>1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles</td> <td>kg/TJ 170 1242 54 NO NA NO_X 23 NO</td> <td>NA NA NA NA NMVOC 1.7 NO</td> <td>9/7 NA NA NA NO NA SO_X 0.50 NO</td> <td>-J NA NA NA NO 0.51 NH₃ 7.2 NO</td> <td>0.19 0.19 NE NO PM2.5 ex NA NO</td> <td>PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO</td> <td>0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO</td> <td>0.17 0.14 0.0055 NO NA PM10 nx NA NO</td> <td>0.13 0.10 0.0028 NO NA TSP ex NA NO</td> <td>0.15 0.0021 NO NA TSP nx NA</td> <td>NÉ NE NO NA BC ex NA NO</td> <td>NA NA NO NA BC nx NA</td>	1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles	kg/TJ 170 1242 54 NO NA NO _X 23 NO	NA NA NA NA NMVOC 1.7 NO	9/7 NA NA NA NO NA SO _X 0.50 NO	-J NA NA NA NO 0.51 NH ₃ 7.2 NO	0.19 0.19 NE NO PM2.5 ex NA NO	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO	0.17 0.14 0.0055 NO NA PM10 nx NA NO	0.13 0.10 0.0028 NO NA TSP ex NA NO	0.15 0.0021 NO NA TSP nx NA	NÉ NE NO NA BC ex NA NO	NA NA NO NA BC nx NA
break wear NA NA NA NA NA NA A	1A3bi(tu) Passenger cars 1A3bi(tu) Light duty vehicles 1A3bii(tu) Heavy duty vehicles 1A3bii(tu) Heavy duty vehicles 1A3biv(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bi(tu) Passenger cars 1A3bii(tu) Light duty vehicles 1A3bii(tu) Heavy duty vehicles	kg/TJ 170 1242 54 NO NO NO NO NO	NA NA NA NMVOC 1.7 NO NO	9/7 NA NA NA NO NA SO _X 0.50 NO NO	-J NA NA NA NO 0.51 NH ₃ 7.2 NO NO	0.19 0.19 NE NO NA PM2.5 ex NA NO NO	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO	0.15 0.035 NO NA PM10 ex TJ NA NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA NO NO	0.13 0.10 0.0028 NO NA TSP ex NA NO NO	0.15 0.0021 NO NA TSP nx NA NO NO	NE NE NO NA BC ex NA NO NO	NA NA NA NA BC nx BC nx NA NO
Image: constraint of the set of	1A3bi(tu) Passenger cars 1A3bi(tu) Light duty vehicles 1A3bi(ifu) Heavy duty vehicles 1A3biv(tu) Motorcycles 1A3bv(fu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bi(tu) Passenger cars 1A3bi(ifu) Jight duty vehicles 1A3bii(tu) Light duty vehicles 1A3bii(tu) Motorcycles	kg/TJ 170 1242 54 NO NO NO NO NO	NA NA NA NMVOC 1.7 NO NO	9/7 NA NA NA NO NA SO _X 0.50 NO NO	-J NA NA NA NO 0.51 NH ₃ 7.2 NO NO	0.19 0.19 NE NO NA PM2.5 ex NA NO NO	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO	0.15 0.035 NO NA PM10 ex TJ NA NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA NO NO	0.13 0.10 0.0028 NO NA TSP ex NA NO NO	0.15 0.0021 NO NA TSP nx NA NO NO	NE NE NO NA BC ex NA NO NO	NA NA NO NA BC nx NA
Image: constraint of the set of	1A3bi(tu) Passenger cars 1A3bi(tu) Light duty vehicles 1A3bi(ifu) Heavy duty vehicles 1A3biv(tu) Motorcycles 1A3bv(fu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bi(tu) Passenger cars 1A3bi(ifu) Jight duty vehicles 1A3bii(tu) Light duty vehicles 1A3bii(tu) Motorcycles	kg/TJ 170 1242 54 NO NO X 23 NO NO NO	NA NA NO NA NMVOC 1.7 NO NO NO	9/7 NA NA NA NA NA SO _x 0.50 NO NO NO	⁻ J NA NA NA NO 0.51 NH ₃ 7.2 NO NO NO	0.19 0.19 NE NO NA PM2.5 ex NA NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA NO NO	0.13 0.10 0.0028 NO NA TSP ex NA NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO	NE NE NO NA BC ex NA NO NO NO	NA NA NA NA BC nx BC nx NA NO
kg/TJ g/TJ mg I-TEO/TJ g/TJ ng/TJ ng/TJ 1A3bit(lp) Bassenger cars 325 NA NA NA 0.19 NA 0.12 0.14 0.098 0.15 NA NA 1A3bit(lp) Light duty vehicles NO	1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear	kg/TJ 1700 1242 54 NO NO 23 NO NO NO NO	NA NA NO NA NMVOC 1.7 NO NO NO	9/7 NA NA NA NA NA SO _X 0.50 NO NO NO NO	-J NA NA NA 0.51 NH₃ 7.2 NO NO NO NO	0.19 0.19 NE NA PM2.5 ex NA NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO NO	0.15 0.033 0.0035 NO NA PM10 ex TJ NA NO NO NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA NO NO NO	0.13 0.10 0.0028 NO NA TSP ex NA NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO NO	NÉ NE NO NO NO NO NO NO NO NO	NA NA NA NO NA BC nx NA NO NO NO
NA3bi(fu) Passenger cars 325 NA NA NA O.19 NA O.12 O.14 O.098 O.15 NA NA NA 1A3bii(fu) Light(u) Vehicles NO	1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3bil(IU) Light duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bvi(IU) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(IU) Passenger cars 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Motorcycles 1A3bvi(IU) Motorcycles 1A3bvi(IU) Automobile tyre and break wear	kg/TJ 1700 1242 54 NO NO 23 NO NO NO NO	NA NA NO NA NMVOC 1.7 NO NO NO	9/7 NA NA NA NA NA SO _X 0.50 NO NO NO NO	-J NA NA NA 0.51 NH₃ 7.2 NO NO NO NO	0.19 0.19 NE NA PM2.5 ex NA NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NA NO NO NO NO	0.15 0.033 0.0035 NO NA PM10 ex TJ NA NO NO NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA NO NO NO	0.13 0.10 0.0028 NO NA TSP ex NA NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO NO	NÉ NE NO NO NO NO NO NO NO NO	NA NA NA NO NA BC nx NA NO NO NO
NO NO<	1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear	kg/TJ 1700 1242 54 NO NA NO X NO NO NO NO NO NO	NA NA NO NA NMVOC 1.7 NO NO NO	0/7 NA NA NA NO NA SO _X 0.50 NO NO NO NO NO Cd ex	-J NA NA NA NO 0.51 NH ₃ 7.2 NO NO NO NO NO Cd nx	0.19 0.19 NE NA PM2.5 ex NA NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ NA NA NO NO NO A.6 PCDD/ PCDD/ PCDF	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA NO NO NO 12 BbF	0.13 0.10 0.0028 NO NA TSP ex NA NO NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO NO	NĒ NE NO NA BC ex NA NO NO NO NO NA	NA NA NA NO NA BC nx NA NO NO NO O.46 PCB
NO NO<	1A3bi(fu) Passenger cars 1A3bi(fu) Light duty vehicles 1A3bii(fu) Heavy duty vehicles 1A3biv(fu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bi(fu) Passenger cars 1A3bii(fu) Light duty vehicles 1A3bii(fu) Light duty vehicles 1A3bii(fu) Light duty vehicles 1A3bii(fu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas)	kg/TJ 1700 1242 54 NO NO NO NO NO NO NO NO NO NO Kg/TJ	NA NA NA NA NA NA NO NO NO NO NA Pb	9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	-J NA NA NA NO 0.51 NH ₃ -7.2 NO NO NO NO NO NO	0.19 0.19 NE PM2.5 ex NA NO NO NO NA Hg	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO NO NO NO NO NO PCDD/ PCDF mg1-TEQ/TJ	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NA BaP	0.17 0.14 0.0055 NO NA PM10 nx PM10 nx NA NO NO NO 12 BbF	0.13 0.10 0.0028 NO NA TSP ex NA NO NO NO NO NA BkF	0.15 0.0021 NA TSP nx NA NO NO 12 IcdP	NE NE NO NA BC ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NO NA BC nx NA NO NO NO O.46 PCB
NA NA <th< td=""><td>1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Automobile tyre and break wear</td><td>kg/TJ 170 1242 544 NO NA NOx 233 NO ROT</td><td>NA NA NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>J NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>0.19 0.19 NE NO NO NA PM2.5 ex NA NO NO NO NO NO NO</td><td>PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO A.6 PCDD/ PCDF mg I-TEQ/TJ NA NO</td><td>0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO</td><td>0.17 0.14 0.065 NO NO NA PM10 nx NA NO NO NO NO 12 BbF g/ 0.14 0.14 NO</td><td>0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO</td><td>0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP 0.15 NO</td><td>NË NE NO NO NO NA BC ex NA NO NO NO NA HCB ngT. NA</td><td>NA NA NA NO NA BC nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td></th<>	1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear	kg/TJ 170 1242 544 NO NA NOx 233 NO ROT	NA NA NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NO 0.51 NH ₃ 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE NO NO NA PM2.5 ex NA NO NO NO NO NO NO	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO A.6 PCDD/ PCDF mg I-TEQ/TJ NA NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO	0.17 0.14 0.065 NO NO NA PM10 nx NA NO NO NO NO 12 BbF g/ 0.14 0.14 NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP 0.15 NO	NË NE NO NO NO NA BC ex NA NO NO NO NA HCB ngT. NA	NA NA NA NO NA BC nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO
break wear NA	1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3bil(U) Light duty vehicles 1A3bil(U) Heavy duty vehicles 1A3bil(U) Motorcycles 1A3bil(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Heavy duty vehicles 1A3bil(U) Heavy duty vehicles 1A3bil(U) Motorcycles 1A3bil(U) Motorcycles 1A3bil(U) Motorcycles 1A3bil(U) Motorcycles 1A3bil(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3bil(U) Heavy duty vehicles 1A3bil(U) Heavy	kg/TJ 170 1242 54 4 NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NO NA NMVOC 1.7 NO NO NO NO NO NO NO NA РЬ	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NA ZCd nx ZJ NA A NO NO NO	0.19 0.19 NE NO NO NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA PM2.5 nx kg/ NA NO NO NO PCDF mg1-TEQ/TJ NA NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NA BaP 0.12 NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA PM10 nx NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NA TSP ex NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP	NË NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NO NO NA BC nx NA NO 0.46 PCB J NA NO NO NO NO NO NO NO NO
NOx NMVOC SOx NH3 PM2.5 ex PM10 ex PM10 nx TSP ex TSP nx BC ex	1A3bil(u) Passenger cars 1A3bil(u) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bvi(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Passenger cars 1A3bil(tu) Passenger cars 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Passenger cars 1A3bil(tu) Passenger cars 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Ight duty vehicles	kg/TJ 170 1242 54 4 NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NO NA NMVOC 1.7 NO NO NO NO NO NO NA РЬ	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NA ZCd nx ZJ NA A NO NO NO	0.19 0.19 NE NO NO NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA PM2.5 nx kg/ NA NO NO NO PCDF mg1-TEQ/TJ NA NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NA BaP 0.12 NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA PM10 nx NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NA TSP ex NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP	NË NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NO NA BC nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO
Kg/TJ kg/TJ 1A3bit(tu) Passenger cars NA NA <td>1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and 1A3bil(tu) Automobile tyre and</td> <td>kg/TJ 1700 1242 544 NO NA NO NO</td> <td>NA NA NA NA NA NA NO NO NO NO NO NO</td> <td>9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td> <td>J NA NA NA NA NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NA Cd nx 'J NO NO NO</td> <td>0.19 0.19 NE PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO</td> <td>PCDF mg I-TEO/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ VMA NO PM2.5 nx kg/ MA NO NO NO 4.6 PCDD/ PCDF mg I-TEQ/TJ NA NO NO NO NO NO</td> <td>0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO</td> <td>0.17 0.14 0.055 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO</td> <td>0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO</td> <td>0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP IcdP 0.15 NO NO</td> <td>NË NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO</td> <td>NA NA NA NO NA BC nx NA NO NO NO NO NO NO NO NO NO NO NO NO</td>	1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and 1A3bil(tu) Automobile tyre and	kg/TJ 1700 1242 544 NO NA NO	NA NA NA NA NA NA NO NO NO NO NO NO	9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NA Cd nx 'J NO NO NO	0.19 0.19 NE PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg I-TEO/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ VMA NO PM2.5 nx kg/ MA NO NO NO 4.6 PCDD/ PCDF mg I-TEQ/TJ NA NO NO NO NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO	0.17 0.14 0.055 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP IcdP 0.15 NO NO	NË NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NO NA BC nx NA NO NO NO NO NO NO NO NO NO NO NO NO
Kg/TJ kg/TJ 1A3bit(tu) Passenger cars NA NA <td>1A3bil(u) Passenger cars 1A3bil(u) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bvi(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Passenger cars 1A3bil(tu) Passenger cars 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Passenger cars 1A3bil(tu) Passenger cars 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Ight duty vehicles</td> <td>kg/TJ 1700 1242 544 NO NA NO NO</td> <td>NA NA NA NA NA NA NO NO NO NO NO NO</td> <td>9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td> <td>J NA NA NA NA NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NA Cd nx 'J NO NO NO</td> <td>0.19 0.19 NE PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO</td> <td>PCDF mg I-TEO/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ VMA NO PM2.5 nx kg/ MA NO NO NO 4.6 PCDD/ PCDF mg I-TEQ/TJ NA NO NO NO NO NO</td> <td>0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO</td> <td>0.17 0.14 0.055 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO</td> <td>0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO</td> <td>0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP IcdP 0.15 NO NO</td> <td>NË NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO</td> <td>NA NA NA NO NO NA BC nx NA NO 0.46 PCB J NA NA NO NO NO</td>	1A3bil(u) Passenger cars 1A3bil(u) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bvi(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Passenger cars 1A3bil(tu) Passenger cars 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Motorcycles 1A3bil(tu) Passenger cars 1A3bil(tu) Passenger cars 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Ight duty vehicles	kg/TJ 1700 1242 544 NO NA NO	NA NA NA NA NA NA NO NO NO NO NO NO	9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NA Cd nx 'J NO NO NO	0.19 0.19 NE PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg I-TEO/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ VMA NO PM2.5 nx kg/ MA NO NO NO 4.6 PCDD/ PCDF mg I-TEQ/TJ NA NO NO NO NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO	0.17 0.14 0.055 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP IcdP 0.15 NO NO	NË NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NO NO NA BC nx NA NO 0.46 PCB J NA NA NO NO NO
1A3bit(fu) Light duty vehicles NA	1A3bil(u) Passenger cars 1A3bil(u) Light duty vehicles 1A3bil(u) Heavy duty vehicles 1A3bil(u) Motorcycles 1A3bv(u) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(u) Passenger cars 1A3bil(u) Motorcycles 1A3bil(u) Motorcycles 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Passenger cars 1A3bil(u) Passenger cars 1A3bil(u) Passenger cars 1A3bil(u) Motorcycles 1A3bil(u) Motorcycles 1A3bil(u) Motorcycles 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Automobile tyre and break wear	kg/TJ 170 1242 54 NO NA NO NA Co kg/TJ 3255 NO NO NA	NA NA NA NO 1.7 NO NO NO NO NA Pb NA NO NO NO NA Pb NA NO NO NO NA	9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NA	"J NA NA NO 0.51 NH₅ 7.2 NO NO NO NO Cd nx "J NA Cd nx "J NA NO NO 0.38	0.19 0.19 NE PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ NA NO NO NO A.6 PCDD/ PCDF mg1-TEQ/TJ NA NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NA BaP	0.17 0.14 0.0655 NO NO NO NO NO 12 BbF g/ 0.14 NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO 12 IcdP 1cdP NO NO NO NO	NE NE NE NO NA BC ex NO	NA NA NA NO NA BC nx NA NO NO 0.46 PCB J NA NO NO NO NO NO
1A3bit(u) Meavy duty vehicles NA	1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and 1A3bil(tu) Automobile tyre and	kg/TJ 170 1242 54 NO NA NO NA Co kg/TJ 3255 NO NO NA	NA NA NA NO 1.7 NO NO NO NO NA Pb NA NO NO NO NA Pb NA NO NO NO NA	9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NA	"J NA NA NO 0.51 NH₅ 7.2 NO NO NO NO Cd nx "J NA Cd nx "J NA NO NO 0.38	0.19 0.19 NE PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO	PCDF mg I-TEO/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ VA NO NO NO PM2.5 nx kg/ MA NO NO NO PCDF mg I-TEQ/TJ MA NO NO NO A.6 PCDD/ PCDF mg I-TEQ/TJ NA NO NO NO NO NO MA NO PCDF mg I-TEQ/TJ NA NO NA NO NA NO NA NO NA NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.0655 NO NO NO NO NO 12 BbF g/ 0.14 NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO 12 IcdP 1cdP NO NO NO NO	NE NE NE NO NA BC ex NO	NA NA NA NO NO NO NO O.46 PCB J NA NO NO NO NO NO NO NO
1A3biv(fu) Motorcycles NA	1A3bil(u) Passenger cars 1A3bil(u) Light duty vehicles 1A3bil(u) Heavy duty vehicles 1A3bil(u) Motorcycles 1A3bv(u) Motorcycles 1A3bv(u) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(u) Light duty vehicles 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Light duty vehicles 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Light duty vehicles 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Passenger cars 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Passenger cars 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Motorcycles 1A3bil(u) Motorcycles 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Automobile tyre and break wear 1A3bil(u) Passenger cars 1A3bil(u) Automobile tyre and break wear	kg/TJ 170 1242 544 NO NA NO NA	NA NA NA NO 1.7 NO NO NO NO NO NO NO NO NO NA Pb NA NO NO NO NO NA NO NO NO NO NA	9/1 NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NO 0.51 NH ₃ 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg I-TEQ/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ PM2.5 nx kg/ MA NO NO NO QUART A.6 PCDD/ PCDF mg I-TEQ/TJ NA NO NO NO NO NO NO PCDF MA NO NO NO NO NA NO NA NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.065 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO 12 IcdP IcdP NO NO NO NO NO NO NO	NE NE NE NE NO NA BC ex NO NO	NA NA NA NO NO NO NO 0.46 PCB J NO NO NO NO NO NO NO NO NO NO NO NO NO
1A3bril(tu) Automobile tyre and break wear NA NA<	1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3bil(U) Motorcycles 1A3bil(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Light duty vehicles 1A3bil(U) Motorcycles 1A3bil(U) Motor	kg/TJ 1700 1242 544 NO NA NO NA NA	NA NA NO NA NMVOC 1.7 NO NA Pb NA NO NO NO NO NO NO NO NO NO NA	9/1 NA NA NA NA NO NA SO _x 0.50 NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NO 0.51 NH ₃ 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO NO NO NO NO NO PCDF mg1-TEQ/TJ NA NO NO NO NO NO NO NO NO NO NA NO NO NO NO NO NO NO NO NO NA NA	0.15 0.13 0.0035 NO NA TJ TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.055 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP IcdP NO NO NO NO NO NO NO NO NO NO NO NO NO	NË NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NO NO NO NO NO O AO NO NO NO NO NO NO NO NO NO NO NO NO NO
break wear NA NA NA NA NA NA NA 14.8 NA 39 NA 39 NA 1.5 1A3b Road Transportation (Electricity, Hydrogen) CO Pb Cd ex Cd nx Hg PCDP BaP BbF BkF IcdP HCB PCB 1A3b Road Transportation (Electricity, Hydrogen) g/TJ mg I-TEC/TJ g/TJ ng/TJ	1A3bil(U) Passenger cars 1A3bil(U) Light duty vehicles 1A3bil(U) Heavy duty vehicles 1A3biv(U) Motorcycles 1A3bv(I) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3bil(U) Motorcycles 1A3biv(U) M	kg/TJ 170 1242 54 NO NA NO NA NA NA	NA NA NA NO 1.7 NO 1.7 NO NO NO NO NO NO NO NA Pb NA NO NO NO NO NA NA NA NA NA NA NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NO 0.51 NH3 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE PM2.5 ex NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO A.6 PCDD/ PCDF mg1-TEQ/TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.0655 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO	NĒ NE NE NE NE NE NO NA BC ex NA NO NO NO NO NO NA HCB ng/T. NA NO NO NO NO NO NA BC ex NA NA NA	NA NA NA NO NO NO NO 0.46 PCB J NA NO NO NO NO NO NO NO NO NO NO NO NO NO
Co Pb Cd ex Cd nx Hg PCDD/ PCDF BaP BbF BkF IcdP HCB PCB (Electricity, Hydrogen) kg/TJ g/TJ mg I-TEO/TJ g/TJ ng/TJ	1A3bil(tu) Passenger cars 1A3bil(tu) Light duty vehicles 1A3bil(tu) Heavy duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Electricity, Hydrogen) 1A3bil(tu) Automobile tyre and break wear 1A3b Road Transportation (Electricity, Hydrogen) 1A3bil(tu) Light duty vehicles 1A3bil(tu) Automobile tyre and break wear	kg/TJ 170 1242 54 NO NA NO NA NA NA	NA NA NA NO 1.7 NO 1.7 NO NO NO NO NO NO NO NA Pb NA NO NO NO NO NA NA NA NA NA NA NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NO 0.51 NH3 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE PM2.5 ex NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO A.6 PCDD/ PCDF mg1-TEQ/TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.0655 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO	NĒ NE NE NE NE NE NO NA BC ex NA NO NO NO NO NO NA HCB ng/T. NA NO NO NO NO NO NA BC ex NA NA NA	NA NA NA NO NO NO NO 0.46 PCB J NA NO NO NO NO NO NO NO NO NO NO NO NO NO
(Electricity, Hydrogen) kg/J g/L mg / L mg / L g/L mg / L g/L mg / L mg / L g/L mg / L mg / L g/L mg / L g/L mg / L g/L mg / L g/L mg / L mg / L g/L mg / L g/L mg / L mg / L mg / L g/L mg / L m	A3bil(U) Passenger cars IA3bil(U) Light duty vehicles IA3bil(IU) Light duty vehicles IA3bil(IU) Automobile tyre and break wear IA3b Koad Transportation (Liquefied petroleum gas) IA3bil(IU) Passenger cars IA3bil(IU) Heavy duty vehicles IA3bil(IU) Light duty vehicles IA3bil(IU) Light duty vehicles IA3bil(IU) Automobile tyre and break wear	kg/TJ 170 1242 54 NO NA NO NA NO NA NA NA NA NA	NA NA NA NO 1.7 NO 1.7 NO NO NO NO NO NO NA Pb NA NO NA NA NA NA NA NA NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NO NA NO NO NO NA NO NO NO NO NO NO NO NO NO NO NO NA NA NA NA NA NA	0.19 0.19 NE NO NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO PM2.5 nx kg/ NA NO NO 4.6 PCDD/ PCDF mg1-TEQ/TJ NA NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.0055 NO NA PM10 nx NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NA TSP ex NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO 12 IcdP IcdP 0.15 NO NO NO NO NO NO NO NO NO NO NO NO NO	NË NE NE NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO
kg/TJ g/TJ g/TJ g/TJ g/TJ ng/TJ 1A3bi(fu) Passenger cars NA	1A3bil(U) Passenger cars 1A3bil(U) Light duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Motorcycles 1A3bil(IU) Motorcycles 1A3bil(IU) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(IU) Light duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Notorcycles 1A3bil(IU) Motorcycles 1A3bil(IU) Passenger cars 1A3bil(IU) Motorcycles 1A3bil(IU) Passenger cars 1A3bil(IU) Passenger cars 1A3bil(IU) Motorcycles 1A3bil(IU) Automobile tyre and break wear	kg/TJ 170 1242 54 NO NA NO NA NA NA NA NA	NA NA NA NA NA NA I.7 NO 1.7 NO NO NO NA Pb NA NO NO NO NO NO NO NO NO NO NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NO NA NO NA NO NA NO NO NO NO NO NA NA NA NA NA NA NA NA	0.19 0.19 NE NO NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO PM2.5 nx kg/ NA NO NO 4.6 PCDD/ PCDF mg1-TEQ/TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NA TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP IcdP 12 IcdP NO NO NO NO NO NO NO NO NO NO NO NO NO	NË NE NE NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO
1A3bit(fu) Passenger cars NA	1A3bil(U) Passenger cars 1A3bil(U) Light duty vehicles 1A3bil(U) Heavy duty vehicles 1A3bvi(U) Motorcycles 1A3bvi(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3bil(U) Motorcycles 1A3bil(U)	kg/TJ 170 1242 54 NO NA NO NA NA NA NA NA	NA NA NA NA NA NA I.7 NO 1.7 NO NO NO NA Pb NA NO NO NO NO NO NO NO NO NO NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NO NA NO NA NO NA NO NO NO NO NO NA NA NA NA NA NA NA NA	0.19 0.19 NE NO NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO 4.6 PCDD/ PCDD/ PCDF mg1-TEQ/TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.0055 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NA TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP IcdP 12 IcdP NO NO NO NO NO NO NO NO NO NO NO NO NO	NË NE NE NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO
1A3bii(fu) Light duty vehicles NA	1A3bil(U) Passenger cars 1A3bil(U) Light duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Motorcycles 1A3bil(IU) Motorcycles 1A3bil(IU) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(IU) Light duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Heavy duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Light duty vehicles 1A3bil(IU) Notorcycles 1A3bil(IU) Motorcycles 1A3bil(IU) Passenger cars 1A3bil(IU) Motorcycles 1A3bil(IU) Passenger cars 1A3bil(IU) Passenger cars 1A3bil(IU) Motorcycles 1A3bil(IU) Automobile tyre and break wear	kg/TJ 1700 1242 544 NO NA NO NA Kg/TJ 3255 NO NO NO NO NO NO NO NO NA	NA NA NA NA NA NA I.7 NO 1.7 NO NO NO NA Pb NA NO NO NO NO NO NO NO NO NO NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NO 0.51 NH ₃ 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE NO NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ MA NO PCDD/ PCDF PCDF PCDF MA NO NO NO 4.6 PCDD/ PCDF MA NO NO NO NO MA NA NA NO NO NO HTEQ/TJ NA NA NO NA NA NA NA <	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.055 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NO NO NO 12 IcdP IcdP 12 IcdP NO NO NO NO NO NO NO NO NO NO NO NO NO	NE NE NE NE NE NO NA BC ex NO NO NO NO NO NO NO NO NA HCB NO NA	NA NA NA NO NO NO NO 0.46 PCB J NO NO NO NO NO NO NO NO NO NO NO NO NO
1A3bit(10) Heavy duty vehicles NA NA <t< td=""><td>1A3bil(U) Passenger cars 1A3bil(U) Light duty vehicles 1A3bil(U) Light duty vehicles 1A3biv(U) Motorcycles 1A3bvi(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3biv(U) Motorcycles 1A3biv(U) Motorcycles 1A3biv(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3biv(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Light duty vehicles 1A3biv(U) Motorcycles 1A3biv(U) Motorcycle</td><td>kg/TJ 170 1242 544 NO NA NO NA NO NA NA N</td><td>NA NA NA NA NA NA NA NMVOC 1.7 NO NO NO NA Pb NA NO NA NA NO NO NA NA</td><td>9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>J NA NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>0.19 0.19 NE NO NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO A PCDD/ PCDF mg1-TEQ/TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>0.17 0.14 0.0655 NO NO NO NO NO NO 12 BbF g/ 0.14 NO NO NO NO NO NO NO NO NO NO</td><td>0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>0.15 0.0021 NA TSP nx NA NA NO NO NO 12 IcdP 12 IcdP NO NO NO NO NO NO NO NO NO NO NO NO NO</td><td>NË NE NE NE NE NA NO NO NO NO NO NO NA BC ex NA NA NA HCB NA NA HCB NA NA</td><td>NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO</td></t<>	1A3bil(U) Passenger cars 1A3bil(U) Light duty vehicles 1A3bil(U) Light duty vehicles 1A3biv(U) Motorcycles 1A3bvi(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Passenger cars 1A3bil(U) Passenger cars 1A3biv(U) Motorcycles 1A3biv(U) Motorcycles 1A3biv(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3biv(U) Automobile tyre and break wear 1A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Light duty vehicles 1A3biv(U) Motorcycles 1A3biv(U) Motorcycle	kg/TJ 170 1242 544 NO NA NO NA NO NA NA N	NA NA NA NA NA NA NA NMVOC 1.7 NO NO NO NA Pb NA NO NA NA NO NO NA NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NO 0.51 NH₃ 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE NO NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO NA PM2.5 nx kg/ NA NO NO A PCDD/ PCDF mg1-TEQ/TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.0655 NO NO NO NO NO NO 12 BbF g/ 0.14 NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NA NO NO NO 12 IcdP 12 IcdP NO NO NO NO NO NO NO NO NO NO NO NO NO	NË NE NE NE NE NA NO NO NO NO NO NO NA BC ex NA NA NA HCB NA NA HCB NA NA	NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO
1A3biv(fu) Motorcycles NA NA<	A3bil(U) Passenger cars A3bil(U) Light duty vehicles A3bil(U) Heavy duty vehicles A3biv(U) Motorcycles A3biv(U) Automobile tyre and break wear A3b Road Transportation (Liquefied petroleum gas) 1A3bil(U) Passenger cars A3bil(U) Light duty vehicles 1A3bil(U) Automobile tyre and break wear A3bil(U) Light duty vehicles 1A3bil(U) Automobile tyre and break wear A3bil(U) Light duty vehicles 1A3bil(U) Light duty vehicles 1A3bil(U) Automobile tyre and break wear A3bil(U) Automobile tyre and break wear A3bil(U) Light duty vehicles 1A3bil(U) Light duty vehicles 1A3bil(U) Light duty vehicles 1A3bil(U) Automobile tyre and break wear A3bil(U) Automobile tyre and break wear A3bil(U) Light duty vehicles 1A3bil(U) Light duty vehicles 1A3bil(U) Light duty vehicles 1A3bil(U) Automobile tyre and break wear A3bil(U) Automobile tyre and break wear	kg/TJ 1700 1242 544 NO NA NO NA NA	NA NA NA NA NA NA NMVOC 1.7 NO NO NO NO NA Pb NA NO NA NO NO NA NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NA NO 0.51 NH₃ Cd nx J NO NA NA	0.19 0.19 NE NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO	PCDF mg I-TEO/TJ 0.0029 0.0023 0.0013 NO NO PM2.5 nx kg/ Kg/ NA PM2.5 nx kg/ PCDD/ PCDF mg I-TEQ/TJ NA NO NO PCDF NA NA NA NA NA PM2.5 nx kg/ NA NA PM2.5 nx kg/ NA NA PCDF MA NA NA NA NA PM2.5 nx kg/ NA NA NA NA PCDF NA	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.065 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NO NA TSP nx NA NO NO NO 12 IcdP 0.15 NO NO NO NO NO NO NO NO NO NO NO NO NO	NE NE NE NE NE NO NA BC ex NO NA	NA NA NA NA BC nx NO NO NO 0.46 PCB J NA BC nx NO NO NO NO NO NO NO NO NO NO NO NO NO
1A3bvi(fu) Automobile tyre and	A3bil(U) Passenger cars IA3bil(U) Light duty vehicles IA3bil(IU) Light duty vehicles IA3bil(IU) Automobile tyre and break wear IA3b Koad Transportation (Liquefied petroleum gas) IA3bil(IU) Passenger cars IA3bil(IU) Passenger cars IA3bil(IU) Light duty vehicles IA3bil(IU) Heavy duty vehicles IA3bil(IU) Passenger cars IA3bil(IU) Passenger cars IA3bil(IU) Passenger cars IA3bil(IU) Heavy duty vehicles IA3bil(IU) Light duty vehicles IA3bil(IU) Heavy duty vehicles IA3bil(IU) Passenger cars IA3bil(IU) Light dut	kg/TJ 1700 1242 544 NO NA NO NA	NA NA NA NA NA NA NA NA NO NO NO NO NO NO NO NA Pb NA NO NO NO NA	9/1 NA NA NA NA NA SO _X 0.50 NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NA NO 0.51 NH ₃ 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO PM2.5 nx kg/ NA NO NO 4.6 PCDD/ PCDF mg1-TEQ/TJ NA NA NO NO NO NO A 4.6 PCDD/ PCDF mg1-TEQ/TJ A NA NA NA NA NA NA NA NA NA NA NA NA N	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.17 0.14 0.055 NO NA PM10 nx NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NA TSP nx NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	NË NE NE NE NE NE NO NO NO NA HCB BC ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	NA NA NA NA BC nx NO NO 0.46 PCB J NA NO NO NO NO NO NO NO NO NO NO NO NO NO
	A3bil(U) Passenger cars IA3bil(U) Light duty vehicles IA3bil(U) Heavy duty vehicles IA3biv(U) Motorcycles IA3bv(I) Automobile tyre and break wear IA3b Notar Transportation (Liquefied petroleum gas) IA3bil(U) Passenger cars IA3bil(U) Passenger cars IA3bil(U) Light duty vehicles IA3biv(U) Motorcycles IA3	kg/TJ 170 1242 54 NO NA NO NA NO NA	NA NA NA NO 1.7 NO 1.7 NO NO NO NA Pb NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NO 0.51 NH3 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO PM2.5 nx kg/ NA NO NO A4.6 PCDD/ PCDF mg1-TEQ/TJ NA NO NO NO NO NO A4.6 PCDD/ PCDF Mg1-TEQ/TJ NA NA NA NA NA NA NA NA NA NA NA NA NA	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NA BaP C.12 NA NA PM10 ex TJ NA NA NA NA NA	0.17 0.14 0.0655 NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NO NA TSP nx IcdP 1cdP 0.15 NO NO NO NO NO NO NO NO NO NO NO NO NO	NĒ NE NE NE NE NE NE NO NA BC ex NA NO NO NO NO NO NO NO NO NO NA BC ex NA	NA NA NA NA BC nx NO NO NO 0.46 PCB J NA NO NO NO NO NO NO NO NO NO NO NO NO NO
	A3bil(U) Passenger cars IA3bil(U) Light duty vehicles IA3bil(IU) Light duty vehicles IA3bil(IU) Automobile tyre and break wear IA3b Koad Transportation (Liquefied petroleum gas) IA3bil(IU) Passenger cars IA3bil(IU) Passenger cars IA3bil(IU) Light duty vehicles IA3bil(IU) Heavy duty vehicles IA3bil(IU) Passenger cars IA3bil(IU) Passenger cars IA3bil(IU) Passenger cars IA3bil(IU) Heavy duty vehicles IA3bil(IU) Light duty vehicles IA3bil(IU) Heavy duty vehicles IA3bil(IU) Passenger cars IA3bil(IU) Light dut	kg/TJ 170 1242 54 NO NA NO NA NO NA	NA NA NA NO 1.7 NO 1.7 NO NO NO NA Pb NA	9/1 NA NA NA NA NO NO NO NO NO NO NO NO NO NO NO NO NO	J NA NA NA NO 0.51 NH3 7.2 NO NO NO NO NO NO NO NO NO NO NO NO NO	0.19 0.19 NE NO NA PM2.5 ex NA NO NO NO NO NO NO NO NO NO NO	PCDF mg1-TEQ/TJ 0.0029 0.0023 0.0013 NO PM2.5 nx kg/ NA NO NO A4.6 PCDD/ PCDF mg1-TEQ/TJ NA NO NO NO NO NO A4.6 PCDD/ PCDF Mg1-TEQ/TJ NA NA NA NA NA NA NA NA NA NA NA NA NA	0.15 0.13 0.0035 NO NA PM10 ex TJ NA NO NO NO NO NO NA BaP C.12 NA NA PM10 ex TJ NA NA NA NA NA	0.17 0.14 0.0655 NO NO NO NO NO NO NO NO NO NO	0.13 0.10 0.0028 NO NO TSP ex NA NO NO NO NO NO NO NO NO NO NO NO NO NO	0.15 0.0021 NO NA TSP nx IcdP 1cdP 0.15 NO NO NO NO NO NO NO NO NO NO NO NO NO	NĒ NE NE NE NE NE NE NO NA BC ex NA NO NO NO NO NO NO NO NO NO NA BC ex NA	NA NA NA NA BC nx NO NO 0.46 PCB J NA NO NO NO NO NO NO NO NO NO NO NO NO NO

Activity data (1A3b)

The activity data are derived from different data sources:

- Vehicle stock: The federal vehicle registration database IVZ (run by the Federal Roads Office FEDRO) contains vehicle stock data including all parameters needed for the emission modelling (vehicle category, engine capacity, fuel type, total weight, vehicle age and exhaust technology). The data are not public, but the ordinary vehicle stock numbers are published by the Swiss Federal Statistical Office (FSO 2024e). With the help of a fleet turnover model, the vehicle categories are assigned emission standards based on age and thereby split up into "sub-segments", which are used to link with the specific emission factors of the same categorisation (vehicle category, size class, fuel type, emission standard ["Euro classes"]).
- The specific mileage per vehicle category is an input from Swiss Federal Statistical Office (FSO 2024e, 2024f). It is based on periodical surveys/Mikrozensus (ARE 2002, ARE/SFSO 2005, ARE/SFSO 2012, ARE/SFSO 2017). By means of the vehicle stock data (see paragraph above), the average specific mileage per vehicle category can be derived (SFOE 2024e, INFRAS 2017). The relative differences in specific mileage between vehicles of different technologies and ages within a vehicle category are based on the odometer readings at periodical technical inspections (PTI), which are recorded in the IVZ database (see above).
- Numbers of starts/stops: Derived from vehicles stock and periodical surveys/Mikrozensus (ARE/SFSO 2005, 2012 and 2017).
- Also, the consumption of biofuels for 1A3b Road transportation is reported. Fuel types involved, emission factors and activity data are summarised in a comment to the EMIS database (EMIS 2025/1A3bi-viii "Strassenverkehr"), Consumption of biofuels is provided by the statistics of renewable energies (SFOE 2024a).
- For the greenhouse gas inventory under UNFCCC the fossil carbon fraction of biodiesel is estimated based on the method described in Sebos (2022). While all carbon in HVO (Hydrotreated Vegetable Oil) is of biogenic origin, FAME (Fatty Acid Methyl Esters) contains a fossil fraction due to the use of methanol from fossil sources in its production. The shares of FAME and HVO in biodiesel are available from the Swiss overall energy statistics (SFOE 2024). The fossil fraction of FAME depends on the feedstock it is derived from (e.g. rapeseed, soy, palm oil); since the feedstock shares are not captured in the Swiss energy statistics, they are based on European average values from HBEFA 4.1. The resulting overall fossil fraction of biodiesel varies over time around 4.0 to 5.4 % of total biodiesel are reported under "fossil liquid fuels" as "biodiesel fossil". For technical reasons in our database, there is a split of the whole biodiesel amount in fossil and biogenic biodiesel and not only for the carbon fraction and CO₂.

The total mileage of each vehicle category is differentiated by "traffic situations" (characteristic patterns of driving behaviour) and gradients, which serve as a key to select the appropriate emission factor and which are also available per traffic situation and gradient (see above). The relative shares of the traffic situations and gradients are derived from a national road traffic model (operated by the Federal Office of Spatial Development, see ARE 2022). The traffic model is based on an origin-destination matrix that is assigned to a detailed network of about 600'000 road segments. The model is calibrated partly bottom-up and partly top-down: bottom-up by a number of traffic counts from the national traffic-counter network, and top-down by the total of the mileage per vehicle category. The assignment of traffic situations and gradients to the modelled mileage is described in INFRAS (2017). The traffic model in combination with consumption factors (per vehicle category, size class, fuel type, emissions standard and per traffic situation) allows to calculate the territorial road traffic consumption of gasoline and diesel oil.

The mileage driven serves as activity data in the national traffic model. Table 3-80 shows the mileage per vehicle category. Numbers hold for the version "fuel used" and represent the vehicle kilometres driven within the Swiss territory.

Table 3-80 Mileages in millions of vehicle kilometres. PC: passenger cars, LDV: light duty vehicles, HDV: heavy duty vehicles.

Veh. category	1990	1995	2000	2005	2010					
		milli	on vehicle	-km						
PC	47'186	44'945	50'407	51'696	56'026					
LDV	2'775	2'786	2'970	3'260	3'595					
HDV	1'880	1'800	1'989	2'050	2'239					
Coaches and urban buses	266	258	261	323	367					
2-Wheelers	2'260	1'724	1'910	1'957	2'039					
Sum	54'366	51'512	57'537	59'287	64'266					
(1990=100%)	100%	95%	106%	109%	118%					
Veh. category	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
					million ve	hicle-km				
PC	59'103	57'713	58'531	60'388	61'632	62'200	55'569	57'744	59'682	61'613
LDV	4'015	3'949	4'025	4'189	4'408	4'512	4'754	4'728	4'707	4'830
HDV	2'208	2'099	2'068	2'099	2'148	2'120	2'155	2'148	2'074	2'053
Coaches and urban buses	394	383	386	394	416	424	418	428	431	454
2-Wheelers	2'119	2'070	2'119	2'188	2'230	2'269	2'070	2'104	2'043	2'117
	2119	2010	= 110	2.00						
Sum	67'839	66'213	67'128	69'258	70'833	71'524	64'965	67'152	68'937	71'068

Since 1990, the total mileage has been increasing by about 1 per cent per year on an average. This trend was halted in 2020 and 2021, as total mileages decreased compared to the years before due to the restrictions related to the COVID-19 pandemic. Since 2022 total mileages have increased again to pre-pandemic levels. The overwhelming part of vehicle kilometres was driven by passenger cars. In the whole reporting period on-road fuel consumption increased less strongly, indicating improved fuel efficiency. This effect is also reflected in Table 3-81 that depicts the specific fuel consumption per vehicle-km. For most vehicle categories, the specific consumption has decreased in the period 1990–2023.

Table 3-81 Specific fuel consumption of road transportation. Data are adopted from the territorial road
transportation model. They include excess fuel consumption by cold starts.

Veh. Category	Fuel	1990	1995	2000	2005	2010					
			Ν	/IJ / veh-km	า						
PC	Gasoline	3.15	3.24	3.30	3.21	3.06					
	Diesel oil	3.36	3.18	3.07	2.79	2.81					
	Liquefied petroleum gas	NO	NO	NO	NO	NO					
	CNG	NO	NO	NO	NO	3.06					
LDV	Gasoline	3.85	3.75	3.65	3.61	3.52					
	Diesel oil	4.57	4.54	4.36	4.01	3.79					
	CNG	NO	NO	NO	NO	3.68					
HDV	Gasoline	9.06	9.07	9.07	9.11	9.15					
	Diesel oil	11.3	11.7	11.7	12.3	11.9					
	CNG	NO	NO	NO	25.1	19.5					
Busses	Gasoline	NO	NO	NO	NO	NO					
	Diesel oil	15.0	15.2	15.4	15.4	14.7					
	CNG	NO	NO	NO	NO	25.4					
2-Wheeler	Gasoline	1.49	1.66	1.48	1.59	1.51					
Average		3.54	3.67	3.69	3.56	3.39					
(1990=100%)		100%	104%	104%	101%	96%					
Veh. Category	Fuel	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
						MJ / ve	eh-km				
PC	Gasoline	2.80	2.73	2.67	2.53	2.48	2.44	2.41	2.36	2.29	2.26
	Diesel oil	2.74	2.72	2.71	2.65	2.65	2.66	2.67	2.67	2.64	2.63
	Liquefied petroleum gas	2.90	2.84	2.82	2.72	2.72	2.71	2.71	2.69	2.65	2.64
	CNG	3.01	3.08	2.96	2.94	2.82	2.84	2.96	2.87	2.72	2.79
LDV	Gasoline	3.32	3.27	3.21	3.02	2.92	2.88	2.83	2.77	2.64	2.54
	Diesel oil	3.72	3.71	3.70	3.55	3.50	3.46	3.41	3.37	3.33	3.30
	CNG	4.16	4.26	4.09	4.01	3.80	3.82	4.00	3.89	3.31	3.45
HDV	Gasoline	9.15	9.14	9.16	8.78	8.77	8.74	8.72	8.70	8.65	8.63
	Diesel oil	11.7	11.6	11.6	11.5	11.3	11.2	11.1	10.9	10.6	10.3
				20.1	20.6	17.1	17.2	16.6	17.2	16.4	17.1
	CNG	19.9	20.5	20.1	20.0						
Busses	CNG Gasoline	19.9 NO	20.5 NO	20.1 NO	NO	8.91	8.88	8.86	8.83	NO	8.81
Busses							8.88 13.1	8.86 13.0	8.83 12.8	NO 12.9	8.81 12.5
Busses	Gasoline	NO	NO	NO	NO	8.91					
Busses 2-Wheeler	Gasoline Diesel oil	NO 14.1	NO 14.0	NO 14.0	NO 13.2	8.91 13.1	13.1	13.0	12.8	12.9	12.5
	Gasoline Diesel oil CNG	NO 14.1 25.3	NO 14.0 26.1	NO 14.0 25.5	NO 13.2 24.5	8.91 13.1 24.2	13.1 24.5	13.0 25.8	12.8 25.3	12.9 24.3	12.5 26.3

For modelling evaporative emissions, the stock, mileage, and numbers of stops of gasoline passenger cars and gasoline light duty vehicles are used. For modelling cold start emissions, numbers of starts of passenger cars and light duty vehicles are used as activity data. The corresponding numbers are summarised in Table 3-82. Vehicle stock figures correspond to registration data. The starts per vehicle are based on specific household surveys (ARE/SFSO 2005, 2012, 2017).

Table 3-82 Vehicle stock numbers (gasoline vehicles only – relevant for diurnal evaporation) and average number of starts per vehicle per day (gasoline, diesel oil, and (compressed) natural gas vehicles).

Veh. Category	1990	1995	2000	2005	2010					
	sto	stock in 1000 veh. (gasoline/bioeth.)								
PC	2822	3'033	3'282	3'247	2'931					
LDV	158	154	136	99	66					
2-Wheelers	764	688	712	747	778					
		starts	per veh. p	er day						
PC	2.9	2.7	2.9	2.5	2.6					
LDV	2.0	2.0	2.0	2.0	2.0					

Veh. Category	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023		
		stock in 1000 veh. (gasoline/bioeth.)										
PC	2'719	2'667	2'625	2'621	2'626	2'623	2'705	2'736	2'686	2'732		
LDV	50	48	46	44	42	41	42	41	39	46		
2-Wheelers	829	845	862	882	903	915	946	983	967	983		
				S	tarts per v	eh. per da	у					
PC	2.5	2.5	2.6	2.6	2.6	2.6	2.3	2.4	2.6	2.6		
LDV	2.0	2.0	2.0	2.0	1.9	2.0	2.0	2.0	2.0	2.0		

3.2.6.2.3 Railways (1A3c)

Methodology (1A3c)

Based on the decision tree Fig. 3.1 in chapter 1A3c Railways of the EMEP/EEA guidebook (EMEP/EEA 2023), the exhaust emissions of rail vehicles are calculated by a Tier 3 method with the non-road transportation model described in chp. 3.2.1.1.1.

The entire Swiss railway system is electrified (except for some short feeder tracks to private companies). Electric locomotives are used in passenger as well as freight railway traffic. Diesel locomotives are used for shunting purposes in marshalling yards and for construction activities only. Their emissions are quantified as exhaust emissions.

The non-exhaust emissions have been estimated with a separate method documented in SBB (2005) and INFRAS (2007). Several concepts have been applied including mass balances e.g. mass loss of break blocks and wheels, measurements on a test bench, ambient PM10 concentration measurements combined with receptor model. The emissions were quantified as a sum of brake, wheel, track and contact wire abrasion and were split into passenger and freight train origins. For projection purposes, the PM10 emissions were divided into emission factors per person-kilometre (passenger rail-transport) and tonne-kilometre (freight rail transport) and corresponding activity data. The share of PM2.5 was estimated to 15 % of the PM10 emissions.

Emission factors (1A3c)

The emission factors are country-specific. The general sources for the emission factors of the non-road model are described in chp. 3.2.1.1.1. Power class and emission standard specific emission factors are shown in Table 3-83.

- Only diesel oil and biodiesel are used as fuels, therefore all emission factors refer to the use of diesel oil and biodiesel for traffic on railways except for non-exhaust emissions.
- Non-exhaust particulate matter emission factors (PM2.5 and PM10) distinguish passenger and freight transport, i.e. they are based on passenger and tonne kilometres. Emission factors are based on a study from the Swiss Federal Railways Company (SBB 2005). Details concerning non-exhaust emission factors can be found in EMIS 2025/1A3c-Schienenverkehr.
- For the greenhouse gas inventory under UNFCCC the fossil carbon fraction of biodiesel is estimated based on the method described in chapter 3.2.1.1.1. For technical reasons in our database, there is a split of the whole biodiesel amount in fossil and biogenic biodiesel and not only for the carbon fraction and CO₂. Therefore, there are two lines with biodiesel, one with "biodiesel fossil" and one with "biodiesel biogenic".

Implied emission factors for the reporting year are shown in Table 3-84.

Table 3-83 Illustration of emission and consumption factors for rail vehicles with diesel engines per emission standard (Pre-EU etc.) and engine power.

engine power	Pre-EU	UIC I	UIC II	EU IIIA	EU IIIB	EU V
			g/k	Wh		
Carbon monoxi	de (CO)					
<560 kW	4.0	3.0	2.5	2.5	2.5	2.5
>560 kW	4.0	3.0	3.0	3.0	3.0	3.0
Hydrocarbons ((HC)		-		-	
<560 kW	1.60	0.80	0.60	0.40	0.17	0.17
>560 kW	1.60	0.80	0.80	0.50	0.40	0.36
Nitrogen oxides	s (NO _x)					
<560 kW	13	12	6	3.2	1.8	1.8
>560 kW	16	12	9.5	5.4	3.2	3.2
Particulate mat	ter (PM)					
<560 kW	0.600	0.500	0.250	0.180	0.025	0.025
>560 kW	0.600	0.500	0.250	0.180	0.025	0.025
Fuel consumpti	ion		-		-	
<560 kW	223	223	223	223	223	223
>560 kW	223	223	223	223	223	223
Assumptions re	egarding the int	roduction of El	J emission stag	jes		
<560 kW		2000	2003	2006	2012	2020
>560 kW		2000	2003	2009	2012	2020

Table 3-84 Implied emission factors in 2023 for 1A3c Railways. Data per TJ refer to exhaust emissions (ex), whereas data per km refer to non-exhaust emissions (nx).

1A3c Railways	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx	TSP ex	TSP nx
		g/	g/	g/	g/	g/	g/	g/	g/	g/	g/
Diesel oil	GJ	NA	NA	0.30	NA	NA	NA	NA	NA	NA	NA
Biodiesel fossil	GJ	816	95	0.30	0.18	5.0	NA	5.0	NA	5.0	
Biodiesel biogenic	GJ	816	95	0.30	0.18	5.0	NA	5.0	NA	5.0	
Working hours diesel oil	h	718	84	NA	0.16	4.4	NA	4.4	NA	4.4	NA
Passenger kilometres diesel oil	number	NA	NA	NA	NA	NA	0.0019	NA	0.012	NA	0.016
Ton km diesel oil	number	NA	NA	NA	NA	NA	0.0013	NA	0.0088	NA	0.012
1A3c Railways	Unit	BC ex	BC nx	со	Pb	Cd ex	Cd nx	Hg	PCDD/ PCDF		
TASC Kaliways	Onit	g/	g/	g/	mg/	mg/	mg/	mg/	ng I- Teq/		
Diesel oil	GJ	NA	NA	NA	NA	NA	NE	NA	NA		
Biodiesel fossil	GJ	1.1	NA	480	0.89	2.2	NE	0.12	1.5		
Biodiesel biogenic	GJ	1.1	NA	480	0.89	2.2	NE	0.12	1.5		
Working hours diesel oil	h	0.96	NA	423	0.78	1.9	NA	0.10	1.4		
Passenger kilometres diesel oil	number	NA	NA	NA	NA	NA	NE	NA	NA		
Ton km diesel oil	number	NA	NA	NA	NA	NA	NE	NA	NA		
1A3c Railways	Unit	BaP	BbF	BkF	IcdP	HCB	PCB				
TASC Kallways	Onic	mg/	mg/	mg/	mg/	ng/	ng/				
Diesel oil	GJ	NA	NA	NA	NA	NA	NA				
Biodiesel fossil	GJ	0.79	1.3	0.98	0.19	NA	NA				
Biodiesel biogenic	GJ	0.79	1.3	0.98	0.19	NA	NA				
Working hours diesel oil	h	0.70	1.2	0.86	0.17	NA	NA				
Passenger kilometres diesel oil	number	NA		NA	NA	NA					
Ton km diesel oil	number	NA	NA	NA	NA	NA	NA				

Activity data (1A3c)

Table 3-85 shows the activity data of 1A3c taken from FOEN (2015j). Detailed activity data can be downloaded from the online database INFRAS (2015a).

Table 3-85 Activity data for 1A3c Railways is either diesel oil and biodiesel consumption or number of driven km for freight transport as well as number of driven km for passenger transport. Data in TJ refer to exhaust emissions, whereas data in km refer to non-exhaust emissions.

1A3c Railways	Unit	1990	1995	2000	2005	2010					
Diesel oil	TJ	390	441	455	472	492					
Biodiesel fossil	TJ	NO	NO	0.026	0.072	0.082					
Biodiesel biogenic	TJ	NO	NO	0.48	1.4	1.8					
Working hours diesel oil	h	796'752	819'585	773'446	669'195	543'637					
Passenger kilometres diesel oil	million number	51'912	54'992	57'600	63'600	69'600					
Ton km diesel oil	million number	34'696	34'488	38'720	42'360	46'000					
1A3c Railways	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Diesel oil	TJ	411	391	388	385	382	379	376	377	378	379
							010				
Biodiesel fossil	TJ	0.23	0.27	0.41	0.55			0.97	0.95		
Biodiesel fossil Biodiesel biogenic	TJ TJ	0.23 4.3	-				0.83				0.92
	TI		4.9	0.41 7.9		0.69 14	0.83	0.97		0.94	0.92
Biodiesel biogenic	TI	4.3	4.9 454'398	0.41 7.9 450'869	0.55 11	0.69 14 443'810	0.83 17 440'281	0.97 20 436'752	0.95 19	0.94 18	0.92 17

3.2.6.2.4 Domestic navigation (1A3d)

Methodology (1A3d)

Based on the decision tree Fig. 3.1 in the chapter 1A3d Navigation-shipping in the EMEP/EEA guidebook (EMEP/EEA 2023), the air pollutant emissions are calculated by a Tier 3 method Emissions are calculated in line with the non-road transportation model described in chp. 3.2.1.1.1.

There are passenger ships, dredgers, fishing boats, motor and sailing boats on the lakes and rivers of Switzerland.

On the river Rhine and on Lake Geneva and Lake Constance, some of the boats cross the border and go abroad (France, Germany). Fuels bought in Switzerland will therefore become bunker fuel. Accordingly, the amount of bunker diesel oil is reported as a memo item "International maritime navigation". The emissions are calculated with a Tier 1 approach with implied emission factors from domestic navigation. Only diesel oil is concerned from navigating on the river Rhine (FCA 2015a) and of navigating two border lakes (Lake Constance, Lake Geneva) for which bunker fuel consumption was reported in INFRAS (2011a) after having performed surveys among the shipping companies involved.

Emission factors (1A3d)

The emission factors are country-specific. The general sources for the emission factors of the non-road model are described in chp. 3.2.1.1.1. Power class and emission standard-specific emission factors are shown in Table 3-86 to Table 3-89 (FOEN 2015j).

For the greenhouse gas inventory under UNFCCC the fossil carbon fraction of biodiesel is estimated based on the method described in chapter 3.2.1.1.1. For technical reasons in our database, there is a split of the whole biodiesel amount in fossil and biogenic biodiesel and not only for the carbon fraction and CO₂. Therefore, there are two lines with biodiesel, one with "biodiesel fossil" and one with "biodiesel biogenic".

Implied emission factors for the reporting year are shown in Table 3-90.

Table 3-86 Emission factors for diesel-powered ships per emission standard.

engine power	Pre-SAV	SAV	EU I	EU II	EU IIIA	EU V
			g/k			
Carbon monoxid	e (CO)					
<18 kW	6.7	6.7	6.7	6.7	6.7	6.7
18–37 kW	6.7	6.7	6.7	6.7	6.7	6.7
37–75 kW	5.9	5.9	5.9	4.5	4.5	4.5
75–130 kW	5.0	5.0	4.5	4.5	4.5	4.5
130–300 kW	5.0	5.0	4.5	4.5	4.5	3.15
300–560 kW	5.0	5.0	4.5	4.5	4.5	3.15
>560 kW	5.0	5.0	4.5	4.5	4.5	3.15
Hydrocarbons (H	C)			· · · · · · · · · · · · · · · · · · ·	,	
<18 kW	10	7.2	5.0	3.0	2.0	2.0
18–37 kW	10	7.2	5.0	3.0	2.0	2.0
37–75 kW	10	5.4	1.2	1.2	1.1	0.42
75–130 kW	10	4.1	1.2	0.9	0.8	0.49
130–300 kW	5.0	3.6	1.2	0.9	0.8	0.80
300–560 kW	5.0	3.2	1.2	0.9	0.8	0.17
>560 kW	5.0	2.8	1.2	0.9	0.8	0.17
Nitrogen oxides ((NO _x)					
<18 kW	10.3	10.3	10.3	10.3	10.3	10.3
18–37 kW	10.3	10.3	10.3	10.3	10.3	10.3
37–75 kW	12.4	12.4	8.3	6.3	5.7	4.23
75–130 kW	12.5	12.5	8.3	6.3	5.7	4.86
130–300 kW	12.5	12.5	8.3	6.3	5.7	2.10
300–1000 kW	12.5	12.5	8.3	6.3	5.7	1.20
>1000 kW	12.5	12.5	8.3	6.3	5.7	0.40
Particulate matte	r (PM)					
<18 kW	1.50	1.20	1.00	0.80	0.70	0.70
18–37 kW	1.20	0.90	0.74	0.60	0.54	0.54
37–75 kW	1.10	0.58	0.77	0.36	0.36	0.30
75–130 kW	0.60	0.47	0.63	0.27	0.27	0.14
130–300 kW	0.60	0.47	0.49	0.18	0.18	0.11
300–1000 kW	0.60	0.47	0.49	0.18	0.18	0.02
>1000 kW	0.60	0.47	0.49	0.18	0.18	0.01
Fuel consumptio	n					
<18 kW	248	248	248	248	248	248
18–37 kW	248	248	248	248	248	248
37–75 kW	248	248	248	248	248	248
75–130 kW	223	223	223	223	223	223
>130 kW	223	223	223	223	223	223
Assumptions rega	rding introductio	n of emission s	stages			
All capacities (<	1995)	1995	2003	2008	2009	2019

Table 3-87 Emission factors for diesel-powered boats per emission standard.

engine power	Pre-SAV	SAV	EU I	EU II
		g/k	Wh	
Carbon monoxic	le (CO)			
<4.4 kW	6.7	6.7	4.5	4.5
4.4–7.4 kW	6.7	6.7	4.5	4.5
7.4–37 kW	6.7	6.7	4.5	4.5
37–74 kW	5.9	5.9	4.5	4.5
74–100 kW	5.0	5.0	4.5	4.5
>100 kW	5.0	3.6 (6%)	3.6	3.6
Hydrocarbons (H	łC)			
<4.4 kW	10	10	2.4	2.40
4.4–7.4 kW	10	10	2.1	2.10
7.4–37 kW	10	2.0 (23%)	1.7	1.70
37–74 kW	10	1.4 (23%)	1.4	0.42
74–100 kW	10	1.2 (23%)	1.2	0.52
>100 kW	5	1.2 (30%)	1.2	0.52
Nitrogen oxides	(NO _x)			
<4.4 kW	13	11	8.8	8.80
4.4–7.4 kW	13	11 (71%)	8.8	8.80
7.4–37 kW	13	11 (71%)	8.8	8.80
37–74 kW	13	11 (71%)	8.8	4.23
74–100 kW	13	11 (71%)	8.8	5.22
>100 kW	13	11 (73%)	8.8	5.22
Particulate matte	er (PM)			
<4.4 kW	1.5	1.2	0.9	0.9
4.4–7.4 kW	1.5	1.2	0.9	0.9
7.4–37 kW	1.2	1.1	0.9	0.9
37–74 kW	1.1	1.0	0.9	0.3
74–100 kW	0.9	0.9	0.9	0.15
>100 kW	0.9	0.9	0.9	0.15
Fuel consumption	on		-	
<4.4 kW	400	400	400	400
4.4–7.4 kW	400	400	400	400
7.4–37 kW	400	380	380	380
37–74 kW	380	350	350	350
74–100 kW	400	330	330	330
>100 kW	300	300	300	300
Assumptions rega	arding the introduc	ction of emissio	n stages	
All pow. classes	(<1995)	1995	2007	2015

Table 3-88 Emission	factors for	aasoline-powered	boats per	emission standard.

	2-stroke	e gasloline engin	es	4-stroke gasoline engines					
engine power			g/kWh	ו					
	Pre-SAV	SAV	SAV/EU	Pre-SAV	SAV	EU			
Carbon monoxide	(CO)								
<4.4 kW	645	315	315	350	315	315			
4.4–7.4 kW	645	200 (79%)	225	350	200 (79%)	225			
7.4–37 kW	645	100 (79%)	162	350	100 (79%)	162			
37–74 kW	645	65 (79%)	144	350	65 (79%)	144			
74–100 kW	645	55 (79%)	141	350	55 (79%)	141			
>100 kW	645	45 (73%)	139	350 45 (73%)		139			
Hydrocarbons (HC)	•		•					
<4.4 kW	260	22	25	25	22	25			
4.4–7.4 kW	260	12 (66%)	13	20	12 (66%)	13			
7.4–37 kW	260	6.0 (66%)	8	20	6.0 (66%)	8			
37–74 kW	260	4.0 (66%)	6	20	4.0 (66%)	6			
74–100 kW	260	3.3 (66%)	5	20	3.3 (66%)	5			
>100 kW	260	2.1 (52%)	5	20	2.1 (52%)	5			
Nitrogen oxides (N	IO _x)	· · · · · ·							
<4.4 kW	15	13	13	3.5	13	13			
4.4–7.4 kW	15	9.3 (62%)	9.3	3.5	9.3 (62%)	9.3			
7.4–37 kW	15	9.3 (62%)	9.3	3.5	9.3 (62%)	9.3			
37–74 kW	15	9.3 (62%)	9.3	3.5	9.3 (62%)	9.3			
74–100 kW	15	9.3 (62%)	9.3	3.5	9.3 (62%)	9.3			
>100 kW	15	9.6 (64%)	9.6	3.5	9.6 (64%)	9.6			
Fuel consumption									
<4.4 kW	700	400	400	400	400	400			
4.4–7.4 kW	700	400	400	400	400	400			
7.4–37 kW	650	380	380	380	380	380			
37–74 kW	650	380	380	380	380	380			
74–100 kW	650	380	380	380	380	380			
>100 kW	650	380	380	380	380	380			
Assumptions rega	rding the intro	duction of emis	sion stages	•					
All capacities	(<1995)	1995	2007	(<1995)	1995	2007			
Source of consump	tion factors: SA	EFL, 1996a	•						

Table 3-89 Emission factors for steam-powered vessels per emission standard.

Pollutant	Steam 1	Steam 2	Steam 3	Steam 4	Steam 5	Steam 6	Steam 7
		· · · · · · · · · · · · · · · · · · ·		g/kWh	-		
СО	0.30	0.30	0.30	0.09	0.09	0.09	0.09
HC	0.449	0.449	0.449	0.330	0.330	0.330	0.330
NO _X	2.336	2.336	2.336	1.770	1.558	1.257	1.027
PM2.5	0.033	0.024	0.015	0.009	0.006	0.006	0.006
Fuel cons.	1406	1115	1115	1115	1115	1115	1115
Assumptions reg	garding the date	of introduction o	f improvements	of steamships			
All classes	<1950	1950	1980	1990	1995	2000	2005

Table 3-90 Implied emission factors in 2023 for 1A3d Navigation.

1A3d Navigation	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	со	
		g/	g/	g/	g/	g/	g/	g/	g/	g/	
Gasoline	GJ	NA	NA	0.19	NA	NA	NA	NA	NA	NA	
Diesel oil	GJ	NA	NA	0.30	NA	NA	NA	NA	NA	NA	
Gas oil	GJ	NA	NA	0.84	NA	NA	NA	NA	NA	NA	
Biodiesel fossil	GJ	680	191	0.30	0.18	24		24	13	472	
Biodiesel biogenic	GJ	680	191	0.30	0.18	24	24	24	13	472	
Bioethanol	GJ	542	400	0.19	0.086	NA	NA	NA	NA	8'648	
Working hours gasoline	h	117	90	NA	0.018	0.033	0.033	0.033	0.0017	1'899	
Working hours diesel oil	h	599	168	NA	0.16	21	21	21	11	416	
Working hours gas oil	h	386	24	NA	0.61	2.0	2.0	2.0	0.29	100	
Working hours biodiesel fossil	h	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Working hours biodiesel biogenic	h	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Working hours bioethanol	h	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1A3d Navigation	Unit	Pb	Cd ex	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
TASC Navigation	Unit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
Gasoline	GJ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diesel oil	GJ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gas oil	GJ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Biodiesel fossil	GJ	0.89	2.2	0.12	1.6	0.77	1.3	0.96	0.19	NA	NA
Biodiesel biogenic	GJ	0.89	2.2	0.12	1.6	0.77	1.3	0.96	0.19	NA	NA
Bioethanol	GJ	0.59	2.2	0.19	2.6	1.1	1.1	0.11	0.29	NA	NA
Working hours gasoline	h	0.13	0.46	0.040	0.56	0.23	0.23	0.023	0.062	NA	NA
Working hours diesel oil	h	0.78	2.0	0.10	1.4	0.68	1.1	0.84	0.17	NA	NA
Working hours gas oil	h	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Working hours biodiesel fossil	h	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Working hours biodiesel biogenic	h	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Working hours bioethanol	h	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Activity data (1A3d)

Table 3-91 shows the activity data of 1A3di taken from FOEN (2015j). Detailed activity data can be downloaded from the online database INFRAS (2015a).

Table 3-91 Activity Data for domestic navigation.

1A3d Navigation	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	1'550	1'517	1'556	1'518	1'565					
Total, 1990 = 100 %	%	100	98	100	98	101					
Gasoline	TJ	701	654	616	565	535					
Diesel oil	TJ	738	724	792	800	868					
Gas oil	TJ	110	139	147	150	159					
Biodiesel fossil	TJ	NO	NO	0.046	0.12	0.14					
Biodiesel biogenic	TJ	NO	NO	0.84	2.4	3.1					
Bioethanol	TJ	NO	NO	NO	NO	0.0079					
1A3d Navigation	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	1'561	1'560	1'559	1'557	1'556	1'554	1'553	1'552	1'551	1'550
Total, 1990 = 100 %	%	101	101	101	101	100	100	100	100	100	100
Gasoline	TJ	519	515	515	515	515	515	515	515	515	515
Diesel oil	TJ	877	880	871	863	855	847	839	839	840	841
Gas oil	TJ	153	151	150	149	148	147	146	145	144	144
Biodiesel fossil	TJ	0.52	0.62	0.93	1.2	1.5	1.9	2.2	2.1	2.1	2.0
Biodiesel biogenic	TJ	9.4	11	18	24	31	37	44	42	40	39
Bioethanol	TJ	2.0	2.5	3.4	4.4	5.4	6.4	7.4	8.1	8.9	9.7

3.2.6.2.5 Other transportation – pipeline transport (1A3e)

This source category contains only emissions from 1A3ei Pipeline transport of natural gas due to one compressor station of the main gas pipeline.

Methodology (1A3e)

For source 1A3ei Pipeline transport, the emissions of main pollutants, particulate matter, CO, Hg, PCDD/PCDF and PAH from a compressor station located in Ruswil are considered.

The emissions are calculated with a Tier 2 method (note that the EMEP/EEA guidebook (EMEP/EEA 2023) does not contain a decision tree to determine the Tier level specifically). For the main pollutants, TSP, PM2.5 and PM10, country-specific emission factors were used. For all other pollutants (BC, CO, Hg, PCDD/PCDF and PAH), the emission factors stem from the EMEP/EEA guidebook (EMEP/EEA 2023).

Emission factors (1A3e)

The same emission factors are used as for gas turbines (see Table 3-61). The emission factors are described in chapter 3.2.1.1.2.

Table 3-92 Emission factors of 1A3e for 2023.

1A3e Other transportation	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	СО	
		g/	g/	g/	g/	g/	g/	g/	g/	g/	
Natural gas	GJ	30	1.6	0.23	NA	0.20	0.20	0.20	0.00050	11	
Biogas	GJ	48	1.6	0.50	NA	0.20	0.20	0.20	0.00050	11	
1A3e Other transportation	Unit	Pb	Cd ex	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
	Onit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
Natural gas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA
Biogas	GJ	0.0015	0.00025	0.10	0.50	0.00056	0.00084	0.00084	0.00084	NA	NA

Activity data (1A3e)

The data on fuel consumption for the operation of the compressor station in Ruswil is based on the Swiss overall energy statistics (SFOE 2024; Table 17e).

Table 3-93 Activity data of 1A3e.

1A3e Other transportation	Unit	1990	1995	2000	2005	2010					
Total fuel consumption	TJ	560	310	340	1'070	830					
Total, 1990 = 100 %	%	100	55	61	191	148					
Natural gas	TJ	560	310	340	1'070	830					
Biogas	TJ	NO	NO	NO	NO	NO					
1A3e Other transportation	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Total fuel consumption	TJ	830	760	340	470	490	600	540	138	420	192
Total, 1990 = 100 %	%	148	136	61	84	88	107	96	25	75	34
Natural gas	TJ	830	760	340	470	490	600	540	120	400	170
Biogas	TJ	NO	NO	NO	NO	NO	NO	NO	18	20	22

3.2.6.3 Category-specific recalculations for 1A3 Transport

The following recalculations were implemented in submission 2025:

- 1A3, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A3b: The Swiss statistic of energy consumption (SFOE 2024) has newly added the amount of Liquefied Natural Gas (LNG) used to the total amount of natural gas used for the years 2020-2022. This leads to small recalculations mainly in source categories 1A3b Road transportation, 1A4ai Commercial/institutional (stationary) and 1B2b Natural gas losses.
- 1A3b, 1A3d: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A3b: The difference between the fuel used approach from the road transportation model and the fuel sold information from the energy statistics was previously referred to as "fuel tourism and statistical difference". This was determined using average emission factors for each fuel type to calculate the difference in emissions. The resulting differences in

activity data and emissions were subtracted from the activity data and the previously calculated territorial emissions of each main vehicle category and fuel type in 1A3b Road transportation. Now the relative difference between the territorial fuel consumption modelled by the road transportation model (fuel used) and the fuel sold from the energy statistics is calculated first. The difference in fuel consumption per fuel type is then proportionally allocated to each vehicle category, thus adjusting the activity data to reflect the fuel sold. The emissions per fuel type are then calculated using vehicle category specific emission factors and the adjusted activity data. Therefore, the activity data for 1A3b Road transportation (fuel sold) have been updated for all fuel types and for all years 1990-2022.

- 1A3b: The use of bioethanol has been adopted to the reported amount of bioethanol sold in the Swiss energy statistics. Therefore, missing activity data have been implemented in 1A3b Road Transportation for all processes using bioethanol for the years 2005-2009.
- 1A3b: For the road traffic model in 1A3b Road transportation, adjustments were made to driving performance, mileage and energy consumption and emission factors were adopted to the Handbook for Emission Factors (HBEFA) version 4.2. This leads to recalculations of activity data end emissions for all years 1990-2022.
- 1A3d: An update of the fuel mix and consumption from non-road machineries leads to small recalculations in all source categories affected by the non-road transportation model and for all years 1990-2022.

3.2.7 Source category 1A4 – Non-road and machinery in other sectors (commercial, residential, agriculture and forestry)

3.2.7.1 Source category description for 1A4 – Non-road and machinery in other sectors (commercial, residential, agriculture and forestry)

The source category 1A4 Non-road and machinery in other sectors comprises all emissions from the combustion of fuels in mobile non-road sources in commerce and institutions, households, agriculture and forestry. This includes use of conventional fossil fuels as well as biofuels. Note that information regarding stationary combustion of source categories 1A4 Stationary combustion in manufacturing industries and construction are provided in chp. 3.2.4.

Table 3-94 Specification of source category 1A4 – Non-road and machinery sources in residential, commercial, agriculture and forestry sectors.

1A4	Source category	Specification
1A4aii	Commercial/Institutional: Mobile	Emissions from mobile machinery and motorised equipment used
TA4ali	Commercial/Institutional. Mobile	for professional gardening
1A4bii	Residential:	Emissions from mobile machinery and motorised equipment used
TA4DII	Household and gardening (mobile)	for hobby gardening
1A4cii	Agriculture/Forestry/Fishing:	Emissions from non-road vehicles and machinery in agriculture and
TA4CII	Off-road vehicles and other machinery	forestry

Table 3-95 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1A4 Non-road and machinery in other sectors (mobile).

NFR code	Source category	Pollutant	Identification criteria
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	NOx	L1

3.2.7.2 Methodological issues for 1A4 - Non-road and machinery in other sectors (commercial, residential, agriculture and forestry)

Methodology (1A4 - Non-road and machinery in other sectors (commercial, residential, agriculture and forestry))

Based on the decision tree Fig. 3.1 in chapter 1A4 of the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions of mobile combustion in 1A4 Other sectors are calculated by a Tier 3 method with the non-road transportation model described in chp. 3.2.1.1.1.

Emission factors (1A4 - Non-road and machinery in other sectors (commercial, residential, agriculture and forestry)

The general sources for the emission factors of the non-road model are described in chp. 3.2.1.1.1. Power class and emission standard-specific emission factors are shown in Table 3-69 to Table 3-71 (see chp. 3.2.5.2).

To avoid double counting there are no non-exhaust emissions of PM2.5, PM10 and TSP from resuspension caused by non-road vehicles and machinery in agriculture since they are included in the particle emissions from source categories 3Dc Soils operation of cropland and 3Dc Soils operation of grassland, see chp. 5.3.2.

Implied emission factors for the reporting year for all pollutants are shown in Table 3-96. For the greenhouse gas inventory under UNFCCC the fossil carbon fraction of biodiesel is estimated based on the method described in chapter 3.2.1.1.1. For technical reasons in our

database, there is a split of the whole biodiesel amount in fossil and biogenic biodiesel and not only for the carbon fraction and CO₂. Therefore, there are two lines with biodiesel, one with "biodiesel fossil" and one with "biodiesel biogenic".

Table 3-96 Implied emission factors 1A4 - Non-road and machinery in other sectors (commercial, residential, agriculture and forestry) in 2023 based on amount of fuel consumed in GJ.

1A4 Other sectors		Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	СО	
			g/	g/	g/	g/	g/	g/	g/	g/	g/	
1A4aii	Gasoline	GJ	NA	NA	0.19	NA	NA	NA	NA	NA	NA	
1A4aii	Bioethanol	GJ	90	566	0.19	0.095	NA	NA	NA	NA	24'727	
1A4bii	Gasoline	GJ	NA	NA	0.19	NA	NA	NA	NA	NA	NA	
1A4bii	Bioethanol	GJ	108	597	0.19	0.095	NA	NA	NA	NA	24'714	
1A4cii	Gasoline	GJ	NA	NA	0.19	NA	NA	NA	NA	NA	NA	
1A4cii	Diesel oil	GJ	NA	NA	0.30	NA	NA	NA	NA	NA	NA	
1A4cii	Biodiesel fossil	GJ	303	35	0.30	0.16	23	23	23	15	175	
1A4cii	Biodiesel biogenic	GJ	303	35	0.30	0.16	23	23	23	15	175	
1A4cii	Bioethanol	GJ	110	753	0.19	0.087	NA	NA	NA	NA	23'554	
1A4 Other sectors		Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
TA4 Other sectors		Offic	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	ng/	ng/
1A4aii	Gasoline	GJ	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE
1A4aii	Bioethanol	GJ	0.59	2.4	0.21	2.8	0.95	0.95	0.092	0.32	NE	NE
1A4bii	Gasoline	GJ	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE
1A4bii	Bioethanol	GJ	0.59	2.4	0.21	2.8	0.95	0.95	0.093	0.31	NE	NE
1A4cii	Gasoline	GJ	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE
1A4cii	Diesel oil	GJ	NA	NA	NA	NA	NA	NA	NA	NA	NE	NE
1A4cii	Biodiesel fossil	GJ	0.89	1.9	0.10	1.4	0.62	1.0	0.77	0.17	NE	NE
1A4cii	Biodiesel biogenic	GJ	0.89	1.9	0.10	1.4	0.62	1.0	0.77	0.17	NE	NE
1A4cii	Bioethanol	GJ	0.59	2.2	0.19	2.6	1.1	1.1	0.10	0.29	NE	NE

Table 3-97 Implied emission factors 1A4 - Non-road and machinery in other sectors (commercial, residential, agriculture and forestry) in 2023 based on number of working hours per fuel type..

1A4 Other sectors		Unit	NOx	NMVOC	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	со		
			g/	g/	g/	g/	g/	g/	g/	g/		
1A4aii	Working hours gasoline	h	2.8	21	0.0015	NA	NA	NA	NA	451		
1A4bii	Working hours gasoline	h	2.3	14	0.0017	NA	NA	NA	NA	468		
1A4cii	Working hours gasoline	h	10	81	0.0049	NA	NA	NA	NA	1'484		
1A4cii	Working hours diesel oil	h	63	7.2	0.032	4.8	4.8	4.8	3.1	36		
1A4 Other sectors		Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	HCB	PCB
		Offic	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	mg/	mg/
1A4aii	Working hours gasoline	h	0.0099	0.040	0.0035	0.048	0.016	0.016	0.0016	0.0053	NE	NE
1A4bii	Working hours gasoline	h	0.011	0.044	0.0038	0.052	0.017	0.017	0.0017	0.0058	NE	NE
1A4cii	Working hours gasoline	h	0.035	0.13	0.012	0.16	0.061	0.061	0.0060	0.018	NE	NE
1A4cii	Working hours diesel oil	h	0.18	0.40	0.021	0.28	0.13	0.21	0.16	0.035	NE	NE

The Expert Review Team noted during the Stage 3 review in 2016 that the implied emission factors for NMVOC, CO and particulate matter from the non-road sector are much higher compared to other developed countries. Switzerland explained that only garden care and hobby mobile machinery are included in source categories 1A4aii and 1A4bii and they consume gasoline and bioethanol only and indeed consist mainly of 2-stroke gasoline engines, which explains that the relatively high implied emission factor is justified. (The ERT encouraged the Party to include the explanation of this issue in the IIR.)

Activity data (1A4 - Non-road and machinery in other sectors (commercial, residential, agriculture and forestry)

Table 3-98 shows the activity data of 1A4 – Non-road and machinery in other sectors (commercial, residential, agriculture and forestry) taken from FOEN (2015j). Detailed activity data can be downloaded from the online database INFRAS (2015a). In categories 1A4aii and 1A4bii, only gasoline and bioethanol are used as fuel. In category 1A4cii, mainly diesel oil is consumed and only small amounts of gasoline (e.g. chainsaws) and biodiesel.

Table 3-98 Activity Data for 1A4 - Non-road and machinery in other sectors (commercial, residential, agriculture and forestry).

1A4 Other sectors		Unit	1990	1995	2000	2005	2010					
Total fuel consumpt	lion	TJ	5'761	6'073	6'349	6'103	6'042					
1A4aii	Gasoline	TJ	191	245	295	295	287					
1A4aii	Bioethanol	TJ	NO	NO	NO	NO	0.0024					
1A4bii	Gasoline	TJ	142	155	165	166	163					
1A4bii	Bioethanol	ΤJ	NO	NO	NO	NO	0.0021					
1A4cii	Gasoline	ΤJ	1'160	1'070	963	824	689					
1A4cii	Diesel oil	ΤJ	4'269	4'604	4'921	4'804	4'884					
1A4cii	Biodiesel fossil	TJ	NO	NO	0.28	0.73	0.81					
1A4cii	Biodiesel biogenic	TJ	NO	NO	5.2	14	18					
1A4cii	Bioethanol	TJ	NO	NO	NO	NO	0.0075					
1A4 Other sectors		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1A4 Other sectors Total fuel consumpt	lion	Unit TJ	2014 5'936	2015 5'909	2016 5'898	2017 5'887	2018 5'876		2020 5'854	-	2022 5'824	2023 5'809
	ion Gasoline					-				5'839		
Total fuel consumpt		TJ	5'936	5'909	5'898	5'887	5'876	5'865	5'854	5'839	5'824	5'809
Total fuel consumpt 1A4aii	Gasoline	TJ TJ	5'936 260	5'909 253	5'898 252	5'887 251	5'876 250	5'865 249 1.9	5'854 248	5'839 246 2.5	5'824 245	5'809 243
Total fuel consumpt 1A4aii 1A4aii	Gasoline Bioethanol	TJ TJ TJ	5'936 260 0.60	5'909 253 0.75	5'898 252 1.0	5'887 251 1.3	5'876 250 1.6	5'865 249 1.9	5'854 248 2.2	5'839 246 2.5	5'824 245 2.7	5'809 243 2.9
Total fuel consumpt 1A4aii 1A4aii 1A4bii	Gasoline Bioethanol Gasoline	TJ TJ TJ TJ	5'936 260 0.60 158	5'909 253 0.75 157	5'898 252 1.0 156	5'887 251 1.3 155	5'876 250 1.6 155	5'865 249 1.9 154	5'854 248 2.2 153	5'839 246 2.5 153	5'824 245 2.7 152	5'809 243 2.9 152
Total fuel consumpt 1A4aii 1A4aii 1A4bii 1A4bii	Gasoline Bioethanol Gasoline Bioethanol	TJ TJ TJ TJ TJ TJ	5'936 260 0.60 158 0.53	5'909 253 0.75 157 0.67	5'898 252 1.0 156 0.93	5'887 251 1.3 155 1.2	5'876 250 1.6 155 1.4	5'865 249 1.9 154 1.7	5'854 248 2.2 153 2.0	5'839 246 2.5 153 2.2	5'824 245 2.7 152 2.4	5'809 243 2.9 152 2.6
Total fuel consumpt 1A4aii 1A4aii 1A4bii 1A4bii 1A4bii 1A4cii	Gasoline Bioethanol Gasoline Bioethanol Gasoline	TJ TJ TJ TJ TJ TJ TJ	5'936 260 0.60 158 0.53 593	5'909 253 0.75 157 0.67 569	5'898 252 1.0 156 0.93 553	5'887 251 1.3 155 1.2 538	5'876 250 1.6 155 1.4 523	5'865 249 1.9 154 1.7 508 4'726	5'854 248 2.2 153 2.0 492	5'839 246 2.5 153 2.2 480	5'824 245 2.7 152 2.4 467	5'809 243 2.9 152 2.6 454
Total fuel consumpt 1A4aii 1A4aii 1A4bii 1A4bii 1A4bii 1A4cii 1A4cii	Gasoline Bioethanol Gasoline Bioethanol Gasoline Diesel oil	TJ TJ TJ TJ TJ TJ TJ TJ	5'936 260 0.60 158 0.53 593 4'867	5'909 253 0.75 157 0.67 569 4'863	5'898 252 1.0 156 0.93 553 4'828	5'887 251 1.3 155 1.2 538 4'794	5'876 250 1.6 155 1.4 523 4'760	5'865 249 1.9 154 1.7 508 4'726	5'854 248 2.2 153 2.0 492 4'692	5'839 246 2.5 153 2.2 480 4'701	5'824 245 2.7 152 2.4 467 4'711	5'809 243 2.9 152 2.6 454 4'721

3.2.7.3 Category-specific recalculations for 1A4 – Non-road and machinery in other sectors (commercial, residential, agriculture and forestry)

The following recalculations were implemented in submission 2025:

- 1A4, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A4aii, 1A4bii, 1A4cii: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A4aii, 1A4bii, 1A4cii: An update of the fuel mix and consumption from non-road machineries leads to small recalculations in all source categories affected by the non-road transportation model and for all years 1990-2022.

3.2.8 Source category 1A5b - Other, mobile (Military)

3.2.8.1 Source category description for 1A5b Other, mobile (Military)

The source category 1A5b Other includes emissions from fuel combustion in military aircraft and military non-road activities.

Table 3-99 Specification of source category 1A5 Other, mobile (Military)

1A5	Source category	Specification
1A5b	Other mobile (including military, land based	Emissions from military aircrafts and machines like power
TASD	and recreational boats)	generators, tanks, bulldozers, boats etc.

Table 3-100 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1A5 Other, mobile.

NFR code	Source category	Pollutant	Identification criteria
1A5b	Other mobile (including military land-based and recreational boats)	PM10	L1

3.2.8.2 Methodological issues for 1A5b Other, mobile (Military)

1A5bi military aviation

To calculate the emissions from military aviation, a Tier 2 method is used.

1A5bii military non-road vehicles and machines

Based on the decision tree Fig. 3.1 in chapter 1A4 Non-road mobile sources and machinery of the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions of military non-road vehicles and machines are calculated by a Tier 3 method with the non-road transportation model described in chp. 3.2.1.1.1.

Emission factors (1A5b)

Emission factors 1A5bi military aviation

- NO_x, NMVOC, CO: average emission factors for military aircraft are calculated by the Federal Office of Civil Aviation (FOCA) based on information from the Federal Department of Defence, Civil Protection and Sport (DDPS) concerning fuel consumption per aircraft type in the year 2017-2018 (DDPS 2020). These emission factors stay constant for the whole time series from 1990 onwards.
- SO_x: the SO_x emission factor is taken from the EMEP/EEA guidebook (EMEP/EEA 2023, chapter 1.A.3.a Aviation 2023, Table 3.11, row "Switzerland/CCD") and is assumed to be constant over the period 1990–2023. CCD means climb/cruise/descent.
- TSP, PM10, PM2.5 exhaust: emission factors for TSP, PM10, and PM2.5 exhaust are assumed to be equal. The implied emission factor from territorial processes (means all flights only in Swiss territory) are taken for the years 1990 (15.5 g/GJ), 1995 (7.8 g/GJ), 2000 (4.5 g/GJ) and linearly interpolated in between. From 2015 onwards an average emission factor (3.4 g/GJ) could be calculated by FOCA based on information from DDPS the same way as for NO_x, NMVOC, CO (see explanation above).
- TSP, PM10, PM2.5 non-exhaust: emission factors for TSP, PM10, PM2.5 non-exhaust are assumed to be equal. The implied emission factor (0.0016 g/GJ) from territorial

processes (means all flights only in Swiss territory) in the year 1990 are taken for the whole time period (FOCA 2016b).

- BC exhaust: the BC-factor of 48 % from PM2.5 exhaust is the same as for civil aviation and constant over the period 1990-2023.
- Implied emission factors for the reporting year are shown in Table 3-101.

Emission factors of military non-road vehicles and machines

The general sources for the emission factors of the non-road model are described in chp. 3.2.1.1.1. Implied emission factors for the reporting year are shown in Table 3-101. For the greenhouse gas inventory under the UNFCCC the fossil carbon fraction in biodiesel is estimated based on the method described in chapter 3.2.1.1.1. For technical reasons in our database, there is a split of the whole biodiesel amount in fossil and biogenic biodiesel and not only for the carbon fraction and CO₂. Therefore, there are two lines with biodiesel, one with "biodiesel fossil" and one with "biodiesel biogenic".

1A5b Other Mobile	Unit	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx	TSP ex	TSP nx
		g/	g/	g/	g/	g/	g/	g/	g/	g/	g/
Gasoline	GJ	NA	NA	0.19	NA	NA	NA	NA	NA	NA	NA
Jet kerosene fossil	GJ	231	33	23	NA	3.4	0.0016	3.4	0.0016	3.4	0.0016
Diesel oil	GJ	NA	NA	0.30	NA	NA	NA	NA	NA	NA	NA
Biodiesel fossil	GJ	247	23	0.30	0.15	6.9	NA	6.9	NA	6.9	NA
Biodiesel biogenic	GJ	247	23	0.30	0.15	6.9	NA	6.9	NA	6.9	NA
Bioethanol	GJ	85	394	0.19	0.094	NA	NA	. NA	NA	NA	NA
Working hours gasoline	h	4.3	25	NA	0.0035	NA	NA	. NA	NA	NA	NA
Working hours diesel oil	h	122	12	NA	0.074	3.4	NA	3.4	NA	3.4	NA
Working hours (for non-exhaust only)	h	NA	NA	NA	NA	NA	10	NA	67	NA	101
1A5b Other Mobile	Unit	BC ex	BC nx	СО	Pb	Cd	Hg	PCDD/ PCDF			
		g/	g/	g/	mg/	mg/	mg/	ng I- Teq/			
Gasoline	GJ	NA	NA	NA	NA		NA	NA	I		
Jet kerosene fossil	GJ	1.6	NA	235	NA	NA	NA				
Diesel oil	GJ	NA	NA	NA	NA	NA	NA				
Biodiesel fossil	GJ	3.4	NA	117	0.89	1.9					
Biodiesel biogenic	GJ	3.4	NA	117	0.89	1.9	0.10	1.3			
Bioethanol	GJ	NA	NA	24'332	0.59	2.4	0.21	2.8			
Working hours gasoline	h	NA	NA	941	0.022	0.090	0.0078	0.11			
Working hours diesel oil	h	1.7	NA	58	0.44		0.049				
Working hours (for non-exhaust only)	h	NA	NA	NA	NA	NA	NA	NA	l		
1A5b Other Mobile	Unit	BaP	BbF	BkF	IcdP	HCB	PCB]			
	onit	mg/	mg/	mg/	mg/	ng/	ng/				
Gasoline	GJ	NA	NA	NA	NA	NE	NE	I			
Jet kerosene fossil	GJ	NA	NA	NA	NA	NE					
Diesel oil	GJ	NA	NA	NA	NA	NE	NE				
Biodiesel fossil	GJ	0.59	0.99	0.74	0.16	NE					
Biodiesel biogenic	GJ	0.59	0.99	0.74	0.16	NE	NE				
Bioethanol	GJ	0.96	0.96	0.093	0.31	NE					
Working hours gasoline	h	0.036	0.036	0.0035	0.012	NE					
Working hours diesel oil	h	0.29	0.49	0.36	0.080						
Working hours (for non-exhaust only)	h	NA	NA	NA	NA	NA	NA				

Table 3-101 Emission factors for 1A5b Other (Military, mobile) in 2023.

Activity data (1A5b)

The fuel consumption of 1A5bi Military aviation is copied from the logbooks of the military aircrafts and summed up yearly by the Swiss Air Force (part of the Swiss Armed Forces, VTG) and provided to FOEN (VTG 2011, VTG 2024).

The fuel consumption of 1A5bii military non-road vehicles and machines is based on activity data provided by DDPS (DDPS 2014a) and calculated bottom-up by the non-road transportation model (chp. 3.2.1.1.1). Detailed activity data can be downloaded from the online database INFRAS (2015a).

Table 3-102 shows activity data of both categories 1A5bi and 1A5bii.

1A5b Other Mobile	Unit	1990	1995	2000	2005	2010					
Gasoline	TJ	16	16	16	16	16					
Jet kerosene fossil	TJ	2'733	1'955	1'794	1'624	1'592					
Diesel oil	TJ	220	228	233	238	256					
Biodiesel fossil	TJ	NO	NO	0.013	0.036	0.043					
Biodiesel biogenic	TJ	NO	NO	0.25	0.71	0.92					
Bioethanol	TJ	NO	NO	NO	NO	0.00024					
Working hours gasoline	h	421'417	421'542	421'667	421'417	421'161					
Working hours diesel oil	h	431'912									
Working hours (for non-exhaust only)	h	3'413'313	3'478'413	3'622'184	3'638'684	3'799'620					
1A5b Other Mobile	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Gasoline	TJ	15	15	15	15	15	14	14	14	14	14
Jet kerosene fossil	TJ	1'615	1'567	1'627	1'469	1'457	1'303	1'365	1'301	1'423	1'432
Diesel oil	TJ	255	255	252	249	246	243	240	241	241	241
Biodiesel fossil	TJ	0.15	0.18	0.27	0.36	0.44	0.53	0.62	0.61	0.60	0.58
Biodiesel biogenic	TJ	2.7	3.2	5.1	7.0	8.8	11	13	12	12	11
Bioethanol	TJ	0.058	0.072	0.100	0.13	0.16	0.18	0.21	0.23	0.25	0.27
Working hours gasoline	h	419'632	419'250	418'548	417'847	417'146	416'445	415'744	415'233	414'723	414'212
Working hours diesel oil	h	523'569	522'764	517'850	512'936	508'022	503'108	498'194	499'216	500'237	501'258
Working hours (for non-exhaust only)	h	3'801'430	3'801'882	2'700'004	3'794'285	3'700'/87	2'706'600	2'702'000	2'702'720	2702/567	217021406

Table 3-102 Activity data (fuel consumption) for 1A5b Other (Military, mobile).

3.2.8.3 Category-specific recalculations for 1A5b Other, mobile (Military)

The following recalculations were implemented in submission 2025:

- 1A5b, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A5b: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A5b: An update of the fuel mix and consumption from non-road machineries leads to small recalculations in all source categories affected by the non-road transportation model and for all years 1990-2022.

3.3 Source category 1B - Fugitive emissions from fuels

3.3.1 Source category 1B1 - Fugitive emissions from solid fuels

3.3.1.1 Source category description for 1B1 – Fugitive emissions from solid fuels

The source category 1B1 Fugitive emissions from solid fuels includes non-exhaust emissions from coal handling only. There is no production of solid fuels in Switzerland.

Table 3-103 Specification of source category 1B1a Coal mining and handling.

1B1	Source category	Specification
1B1a	Fugitive emission from solid fuels: Coal mining and handling	Only particulate matter emissions from handling of coal

Table 3-104 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1B1 Fugitive emissions from solid fuels

Source category 1B1 Fugitive emission from solid fuels is not a key category.

3.3.1.2 Methodological issues for 1B1 – Fugitive emissions from solid fuels

Methodology (1B1)

There is no coal mining in Switzerland and therefore only non-exhaust particulate matter emissions from coal handling occur.

Based on the EMEP/EEA guidebook (EMEP/EEA 2023, emissions from coal handling are determined by a Tier 2 method using technology-specific activity data and emission factors.

Emission factors (1B1)

Emission factors for TSP, PM10 and PM2.5 are based on the EMEP/EEA guidebook (EMEP/EEA 2023, table 3-7). No BC emission factors are available from literature for coal turnover. It is assumed that coal persists of 60 % of carbon and that the share is equal independent of its size.

Table 3-105 Emission factors in 1B1 Fugitive emissions from solid fuels in 2023.

1B1 Solid fuels		Unit	PM2.5 nx	PM10 nx	TSP nx	BC nx
					g/	g/
1B1a Coal handling	Other bituminous coal	t	0.30	3.0	7.5	0.18

Activity data (1B1)

Activity data are provided by the energy model as described in chapter 3.1.6.2 and are based on the total amount of other bituminous coal imported as published in Swiss overall energy statistics (SFOE 2024).

Table 3-106 Activity data in 1B1 Fugitive emissions from solid fuels.

1B1 Solid fuels	U	Jnit	1990	1995	2000	2005	2010					
1B1a Coal handling	Other bituminous coal k	:t	535	286	210	233	248					
1B1 Solid fuels	U	Jnit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1B1a Coal handling	Other bituminous coal k	t	233	214	198	190	176	158	153	154	160	126

Energy: Source category 1B - Fugitive emissions from fuels - Source category 1B1 - Fugitive emissions from solid fuels

3.3.1.3 Category-specific recalculations for 1B1 Fugitive emissions from solid fuels

• 1B1a: The Swiss statistic of energy consumption (SFOE 2024) has recalculated the amount of other bituminous coal used in industry for the years 2019-2022. This leads to recalculation in 1B1a Coal handing in these years, too.

3.3.2 Source category 1B2a - Fugitive emissions from oil

3.3.2.1 Source category description for 1B2a

In Switzerland, oil production is not occurring. Fugitive emissions from oil industry in Switzerland result exclusively from the refineries transforming crude oil into liquid fuels and the several gasoline stations and storage tanks for gasoline and jet kerosene. At the beginning of 2015, one of the two refineries ceased operation and there is only one refinery left. Crude oil is imported by underground pipelines only. The extents of the two existing oil pipelines in Switzerland are approximately 40 km and 70 km, respectively.

1B2a	Source category	Specification
1B2ai	Fugitive emissions oil: Exploration, production, transport	Oil production is not occurring in Switzerland. Emissions only stem from pipeline transport
1B2aiv	Fugitive emissions oil: Refining and storage	SO2 emissions from Claus-units in refineries
1B2av	Distribution of oil products	Fugitive emissions caused by distribution and storage of gasoline and storage of kerosene

Table 3-107 Specification of source category 1B2a - Oil.

Table 3-108 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1B2a fugitive emissions from oil.

NFR code	Source category	Pollutant	Identification criteria
1B2av	Distribution of oil products	NMVOC	L1, T1, T2

3.3.2.2 Methodological issues for 1B2a

Methodology (1B2a)

1B2ai Exploration, production, transport of oil – pipeline transport: Following the decision tree, Figure 3-1 in the EMEP/EEA guidebook (EMEP/EEA 2023), emissions reported under 1B2ai are estimated using a Tier 3 approach where emission estimates are based on information from experts (Canton of Neuchâtel 2019).

1B2aiv Refining and storage - leakage and emissions from Claus-units in refineries: Following the decision tree, Figure 3-1 in the EMEP/EEA guidebook (EMEP/EEA 2023), NMVOC emissions at refineries due to leakage are estimated using a Tier 2 approach where technology-specific activity data and emission factors are available. This source category also encompasses the SO_x emissions from Claus-units at refineries. An analogous Tier 2 method with country-specific emission factors is used to calculate these emissions.

1B2av Distribution of oil products - emissions from gasoline stations: According to the decision tree in Figure 3-1 in the EMEP/EEA guidebook (EMEP/EEA 2023), the methodology to estimate emissions from gasoline stations follows a Tier 2 approach using technology specific activity data and emission factors. A bottom-up model was developed to estimate and sum up the emissions from each individual source that could cause emissions: (a) gasoline delivery from the main storage tank to the gasoline station, (b) underfloor storage tank filling at the gasoline station, (c) storage in underfloor tank and finally (d) the refuelling

process. The model is also based on information from several gasoline station operators, technicians and Swiss cantons. This information entails emission measurements as well as details regarding the number of gasoline stations which are equipped with petrol pumps with vapour recovery systems.

1B2av Distribution of oil products - gasoline and jet kerosene storage tank facilities: According to the decision tree in Figure 3-1 in the EMEP/EEA guidebook (EMEP/EEA 2023), the methodology to estimate emissions from gasoline and jet kerosene storage tanks follows a tier 3 methodology using facility-specific emission estimates available on a yearly basis since 2017. These estimates are used for a model validation. The model extrapolates backwards for previous years using currently available databases on numbers of storage tanks and their respective equipment.

Emission factors (1B2a)

1B2ai Exploration, production, transport of oil – pipeline transport of crude oil: In Switzerland crude oil is transported by underground pipelines only. According to expert information from oil industry, there are no emissions along the pipelines but only at the pig trap. There is one pig trap per pipeline and one pipeline per refinery. Based on expert estimates, 0.5 m³ air saturated with VOC are emitted per week and pig trap. This leads to negligible NMVOC emissions of 10-20 kg per year.

1B2aiv, NMVOC from leakage in refineries: The emission factor of NMVOC for 1B2aiv, leakage in refineries is country-specific and is documented in the EMIS database (EMIS 2025/1B2aiv_Raffinerie, Leckverluste). It is delineated from an emission estimation project in one of the refineries in 1992 called CRISTAL (Raffinerie de Cressier 1992). The estimation from the other refinery is assumed to be twice as high, because the technology of the plant is older. Then a weighted mean based on the quantity of crude oil used in both refineries was calculated (for further details see the internal documentation of the EMIS database, EMIS 2025/1B2aiv). This emission factor is used for all the years until 1995. For the years 2007-2019 total NMVOC emissions from 1A1b, 1B2aiv and 1B2c correspond to those reported in the Swiss PRTR database (PRTR 2021), including data for the years up to 2019 from the two refineries. Therefore, emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors in 1B2aiv are adapted to reach the total NMVOC emission factors are interpolated linearly.

1B2aiv, SO_x emission factors from Claus units: For emissions from Claus units, the emission factors per tonne of crude oil are based on values from the project CRISTAL (Raffinerie de Cressier 1992) for the years 1990 and 1995 as well as on estimates from experts from the refinery for the year 2015 (years between 1990-1995 and 1995-2015 are interpolated, from 2015 on the value is kept constant).

1B2av Distribution of oil products - gasoline stations: The emission factors of NMVOC from 1B2av are country-specific and based on a bottom-up model (Luftkollektiv 2023) that sums up the different processes generating fugitive gasoline emissions, i.e. transport to the gasoline station, unloading to the tank at the gasoline station, opening the manhole, pressure equalisation, vapour recovery and finally refuelling of the vehicles. The bottom-up model developed was applied to the state of the years 1990, 2002, 2010, 2020 and 2030 and the respective emission factors were determined. In between, the emission factors are linearly interpolated. The Pb emission factor is based on the lead content of gasoline. Pb emissions only occurred until 1999. Since 2000, only unleaded gasoline is sold.

1B2av Distribution of oil products – gasoline and jet kerosene storage tank facilities: Emission factors for storage tanks are estimated by Carbura based on two studies, one for gasoline storage tanks (Carbura 2022) and one for jet kerosene storage tanks (Carbura 2023). NMVOC emissions for the reporting year were estimated on the basis of information on tank volumes, tank equipment, throughput quantities and maintenance (Carbura 2024). For gasoline storage tanks, detailed information is available for all historical reporting years. For jet kerosene storage tanks, historical data is available since 2000. Due to lack of data for earlier years, the emission factor for 1990 is the same as the one calculated for 2000 and kept constant in between. It should be noted that the storage and handling of jet kerosene causes significantly lower NMVOC emissions than gasoline due to the significantly lower vapour pressure.

Table 3-109 NMVOC and SO_x emission factors in 1B2a – Oil, for 2023. All other emission factors including Pb (where emissions occurred from 1990 to 1999 only) are not applicable for this source category.

1B2a Oil		Unit	NMVOC	SOx	Pb
		Onit	g/	g/	mg/
1B2aiii Transport of crude oil by pipelines	Refinery	number	10'000	NA	NA
1B2aiv Refinery claus units	Crude oil	t	NA	5.0	NA
1B2aiv Refinery leakage	Crude oil	t	75	NA	NA
1B2av Gasoline station	Gasoline	GJ	22	NA	NA
1B2av Gasoline storage tank	Gasoline	GJ	1.1	NA	NA
1B2av Jet kerosene storage tanks	Jet kerosene fossil	GJ	0.073	NA	NA

Activity data (1B2a)

As crude oil is transported per pipeline to the refineries in Switzerland, activity data for 1B2ai reflect the number of pipelines, which is equal to the number of pipelines and number of pig traps. Activity data for 1B2aiv refining and storage are the amount of crude oil imported. These data are provided by Avenergy Suisse (Avenergy 2024) in their annual statistics and also reported in the Swiss overall energy statistics (SFOE 2024).

The activity data for 1B2av concerning fugitive emissions from gasoline stations and storage tanks is the amount of gasoline sold based on the Swiss overall energy statistics (SFOE 2024), corrected for consumption of Liechtenstein.

The activity data for 1B2av fugitive emissions from jet kerosene storage tanks is the sum of total amount of jet kerosene imported and produced in Swiss refineries. The amount of jet kerosene production in Swiss refineries has decreased steadily since 2005 and is zero since 2021.

1B2a Oil		Unit	1990	1995	2000	2005	2010					
1B2aiii Transport of crude oil by pipelines	Refinery	number	2.0	2.0	2.0	2.0	2.0					
1B2aiv Refinery claus units	Crude oil	kt	3'127	4'657	4'649	4'877	4'546					
1B2aiv Refinery leakage	Crude oil	kt	3'127	4'657	4'649	4'877	4'546					
1B2av Gasoline station	Gasoline	TJ	156'516	151'672	168'353	152'182	134'129					
1B2av Gasoline storage tank	Gasoline	TJ	156'516	151'672	168'353	152'182	134'129					
1B2av Jet kerosene storage tanks	Jet kerosene fossil	TJ	48'160	54'739	68'310	51'004	61'815					
1B2a Oil												
1B2a Oil		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1B2a Oil 1B2aiii Transport of crude oil by pipelines	Refinery	Unit number	2014 2.0		2016 1.0	-	2018 1.0	2019 1.0	2020 1.0	2021 1.0	2022 1.0	2023 1.0
	Refinery Crude oil		-	1.0	1.0	1.0	1.0			-	-	
1B2aiii Transport of crude oil by pipelines		number	2.0	1.0 2'836	1.0 3'006	1.0 2'889	1.0	1.0	1.0	1.0	1.0	1.0
1B2aiii Transport of crude oil by pipelines 1B2aiv Refinery claus units	Crude oil	number kt	2.0 4'975	1.0 2'836 2'836	1.0 3'006 3'006	1.0 2'889	1.0 3'076 3'076	1.0 2'789	1.0 2'857	1.0 2'339	1.0 3'102	1.0 2'868
1B2aiii Transport of crude oil by pipelines 1B2aiv Refinery claus units 1B2aiv Refinery leakage	Crude oil Crude oil	number kt kt	2.0 4'975 4'975	1.0 2'836 2'836 105'664	1.0 3'006 3'006	1.0 2'889 2'889	1.0 3'076 3'076	1.0 2'789 2'789	1.0 2'857 2'857	1.0 2'339 2'339	1.0 3'102 3'102	1.0 2'868 2'868

Table 3-110 Activity data of 1B2a - Oil.

3.3.2.3 Category-specific recalculations for 1B2a - Oil

There were no recalculations implemented in submission 2025.

3.3.3 Source category 1B2b - Fugitive emissions from natural gas

3.3.3.1 Source category description for 1B2b

Emissions from natural gas production only occurred during the years of operation of the only production plant in Switzerland from 1985 to 1994. The dominating emissions in source category 1B2b stem from natural gas transmission and distribution.

1B2b	Source category	Specification
1B2b	Fugitive emissions from natural gas (exploration, production, processing, transmission, storage, distribution and other)	Emissions from gas "distribution and transit" network Production of natural gas (only relevant for 1990-1994)

Table 3-111 Specification of source category 1B2b – Natural gas.

Table 3-112: Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1B2b – Natural gas

Source category 1B2b – Natural gas is not a key category.

3.3.3.2 Methodological issues for 1B2b

Methodology (1B2b)

In source category 1B2b Fugitive emissions from natural gas, fugitive emissions from production and from pipeline transport of natural gas are reported. Therefore, only NMVOC emissions occur in this source category.

According to the decision tree for natural gas systems (IPCC 2006, Volume 2 Energy, chp. 4 Fugitive Emissions, Figure 4.2.1), Switzerland follows a Tier 1 approach for fugitive emissions attributed to production of natural gas and a Tier 2 approach for fugitive emissions attributed to transmission and distribution of natural gas. As source category 1B2b is not a key category and as the contribution from production of natural gas is small, the use of a Tier 1 method for this source category is justified.

An important basis of the methodology to estimate fugitive emissions from natural gas transmission and distribution form the country-specific gas properties which are continuously measured at the various import stations. The Swiss Gas and Water Industry Association (SGWA) reports annually weighted values for densities and net calorific values as well as concentrations of greenhouse gases CO₂ and CH₄ and the air pollutant NMVOC. The same country-specific properties are used to estimate fugitive emissions from natural gas production as there are no other data available.

Those fugitive emissions from natural gas production are calculated based on annual production data and default emission factors (IPCC Tier 1 approach), taking into account the country-specific gas properties as mentioned above. There has been no natural gas production in Switzerland since 1994, due to the closure of the only production site at that time.

For transmission and distribution, a country-specific methodology – established by Quantis (2014) and fully revised by the Swiss Gas and Water Industry Association (SGWA 2023a) – is applied to derive country-specific losses for each emission source. The methodology assesses losses from transmission and distribution pipelines, including from the transit pipeline and its single compressor station. Calculations of losses from the gas network are based on the length and material of the gas pipelines, distinguishing various pressure levels. Also comprised are leakages from gas devices and network components (e.g. control units and gas meters as well as appliances in households, industry and natural gas fuelling stations), pipeline fittings, small-scale damages and maintenance work. To estimate emissions resulting from the permanent leakiness of the different gas appliances, the number and kind of end users and connected gas appliances are considered. The methodology by SGWA (2023a) provides the amount of gas lost in cubic meters per year which serves – after conversion to energy units (GJ per year) based on the country-specific net calorific values – as the activity data. Finally, emissions of NMVOC are calculated by multiplying the losses (activity data) with the country-specific composition of the gas (emission factor).

Emission factors (1B2b)

Production of natural gas

For natural gas production NMVOC default emission factors are taken from the 2006 IPCC Guidelines (IPCC 2006) as documented in the internal emission database documentation (EMIS 2025/1B2b Gasproduktion). The default emission factors are provided in grams per cubic meter of gas produced and – to match the units of the activity data – are converted to grams per energy unit (GJ) produced based on the country-specific gas properties as mentioned above. As gas production only occurred until 1994, there is no emission factor reported in Table 3-113.

Transport of natural gas

For natural gas transmission and distribution, the emission factors represent the composition of the gas lost and are based on the country-specific gas properties as mentioned above.

Table 3-113 Emission factors in 1B2b – Natural gas, for 2023.

1B2b Natural gas		Unit	NMVOC g/
1B2bii Natural gas production	Raw gas	GJ	NO
1B2biv Tansmission losses natural gas network	Natural gas	GJ	2'145
1B2bv Distribution losses natural gas network	Natural gas	GJ	2'145

Activity data (1B2b)

Production of natural gas

Note that production of natural gas only occurred until 1994 in Switzerland. Activity data are based on Swiss overall energy statistics (SFOE 2024).

Transport of natural gas

For gas transmission and distribution, the activity data represent the amount of natural gas lost from the gas network. All the details are documented in SGWA (2023a) and EMIS 2025/1B2b Diffuse Emissionen.

The key points within transmission are as follows:

- **Compressor Station**: Since 2016 the operator of the transit pipeline provides annual emissions data for specific areas (such as starting gas for turbines, compressor depressurization, control valves, gas meters, etc.). For the years before 2016 and for areas not covered by the operator's data, emission factors from Battelle (1989) are used. The calculations are performed by scaling with the actual compressor power (yearly average).
- **Transit pipeline:** Since 2016, the operator of the transit pipeline provides annual emissions data for losses from operation and maintenance of the transit pipeline. Before 2016, emission factors from Battelle (1989) are used. For pressure reducing and metering stations, emission factors from DVGW (2022) are applied. The calculations are performed by scaling with the pipeline length (gas statistics from SGWA).
- Components of the transport network (excluding the transit pipeline): Emission factors from DVGW (2022) for 2020 are converted to the structures of the Swiss gas network. The calculations are performed by scaling with the pipeline length (gas statistics from SGWA).

• Network Maintenance of the transport network (excluding the transit pipeline): For 1990, emission factors from Battelle (1989) are used with linear interpolation to the emissions factors for 2020 based on DVGW (2022). The calculations are performed by scaling with the pipeline length (without the share of the transit pipeline; gas statistics from SGWA).

The key points within distribution are as follows:

- Leakage: The methodology is based on the actual number of leaks per kilometre for the years since 2017 (gas statistics from SGWA). For 1990, the number of leaks is derived from Battelle (1989). The various materials and pressure levels of the pipelines are distinguished. The losses per leak are based on measurements from DVGW (2022). The calculations are performed by scaling with the pipeline length (gas statistics from SGWA).
- Damage by external influences (third-party damage): The methodology is based on actual third-party damage per kilometre since 2017 (gas statistics from SGWA). For 1990, the amount of third-party damage per kilometre is derived from Battelle (1989). The losses per damage are determined based on DVGW (2022). The calculations are performed by scaling with the pipeline length (gas statistics from SGWA).
- **Permeation:** Permeation through polyethylene pipelines is estimated based on DVGW (2022), while permeation is considered to be negligible for other materials. The calculations are performed by scaling with the pipeline length (gas statistics from SGWA).
- **Components:** Emission factors from Battelle (1994) for 1990 and DVGW (2022) for 2020 are considered. The calculations are performed by scaling with the pipeline length (gas statistics from SGWA).
- **Network Maintenance:** Emission factors from Battelle (1994) for 1990 and DVGW (2022) for 2020 are considered. The calculations are performed by scaling with the pipeline length (gas statistics from SGWA).
- Industrial Networks: Emission factors are formed based on Battelle (1994), referring to the gas quantity used by industrial plants. The calculations are performed by scaling with the gas quantity used by industrial plants (until 2019 based on statistics from the Swiss Gas Industry Association, thereafter, estimated based on the total gas quantity).
- House Installations: Emission factors are based on usability tests for 1990 based on Battelle (1994), for 2020 based on measurement campaigns by the network operators. The calculations are performed by scaling with the number of end users (gas statistics from SGWA).
- **Gas Stoves:** Emission factors according to Battelle (1994) are used. The number of gas stoves is estimated based on the number of end users (as determined by a survey by SGWA).
- **Gas Stations:** Emission factors according to Battelle (1994) are used.
- Liquefied natural gas: Calculations are based on the number of transfer operations and the dead volume of the couplings. Additional losses are estimated to amount to one per cent of the total liquefied natural gas quantity used.

1B2b Natural gas		Unit	1990	1995	2000	2005	2010					
1B2bii Natural gas production	Raw gas	TJ	130	NO	NO	NO	NO					
1B2biv Tansmission losses natural gas network	Natural gas	TJ	12	13	14	13	48					
1B2bv Distribution losses natural gas network	Natural gas	ТJ	162	169	156	139	119					
1B2b Natural gas		Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1B2bii Natural gas production	Raw gas	TJ	NO									
1B2biv Tansmission losses natural gas network	Natural gas	TJ	12	12	10	18	11	11	14	7.8	8.9	7.2
1B2bv Distribution losses natural gas network	Natural gas	TJ	98	94	91	88	82	79	75	76	74	75

Table 3-114 Activity data of 1B2b Fugitive emissions – Natural gas.

3.3.3.3 Category-specific recalculations for 1B2b

 1B2b: The Swiss statistic of energy consumption (SFOE 2024) has newly added the amount of Liquefied Natural Gas (LNG) used to the total amount of natural gas used for the years 2020-2022. This leads to small recalculations mainly in source categories 1A3b Road transportation, 1A4ai Commercial/institutional (stationary) and 1B2b Natural gas losses.

3.3.4 Source category 1B2c - Fugitive emissions from venting and flaring

3.3.4.1 Source category description for 1B2c

This source category contains venting and flaring caused by two types of activities: oil production and refining and gas production. In Switzerland, oil production is not occurring, and only one production site for natural gas production was operational from 1985–1994. Therefore, emissions from flaring result primarily from the gas torches caused by oil refining, which were operational at the two refineries. Since 2015, there is only one refinery in operation. In addition, CO_2 emissions from H₂ production in one of the two refineries since 2005 are also reported under 1B2c.

Table 3-115 Specification of source category 1B2c – Venting and flaring.

1B2c	Source category	Specification
1B2c	Venting and flaring (oil gas combined oil	The release/combustion of excess gas at the oil refinery Flaring of gas at gas production facility (only relevant for 1990- 1994)

Table 3-116: Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 1B2c - Fugitive emissions from venting and flaring (oil, gas, combined oil and gas).

NFR code	Source category	Pollutant	Identification criteria
1B2c	Venting and flaring (oil gas combined oil and gas)	NOx	T2

3.3.4.2 Methodological issues for 1B2c

Methodology (1B2c)

Following the decision tree, Figure 3-1 in the EMEP/EEA guidebook (EMEP/EEA 2023), emissions reported under 1B2c are estimated using a Tier 3 approach where plant-specific activity data are available. In Switzerland, flaring only occurs in refineries and there is no venting. One of the two refineries in Switzerland ceased its operation at the beginning of

2015. Between 1990-1994, there was a gas production facility in Switzerland, where gas was flared.

Emission factors (1B2c)

Emission factors of 1B2c Venting and flaring are based on the following data:

- NO_x, NMVOC, SO_x and CO emission factors are provided from the refining industry as documented in the EMIS database (EMIS 2025/1B2c Raffinerie Abfackelung). Since 2005 (with the exception of 2012), the refining industry provides annual data on the CO₂ emissions from flaring under the Federal Act on the Reduction of CO₂ Emissions (Swiss Confederation 2011) based on daily measurements of CO₂ emission factors of the flared gases. From these data, annual CO₂ emission factors are derived. Since 2005, the evolution of the other emission factors (NO_x, NMVOC, SO_x, CO) is assumed to be proportional to the CO₂ emission factor. Emission factors for 2023 are considered confidential and are available to reviewers upon request. The NMVOC emissions from flaring in the gas production facility (only occurring from 1990-1994) are calculated based on default emission factors provided in the 2006 IPCC Guidelines.
- PM/TSP exhaust, BC exhaust, heavy metals and PAH emission factors concerning gas venting and flaring for gas production and for oil refining stem from the EMEP/EEA guidebook (EMEP/EEA 2023). For the emission factors applicable at oil refineries, the values from EMEP/EEA (2023), originally in the unit of ton of gas burned, are recalculated per quantity of oil processed for the Swiss inventory. Since the quantity of gas burned per oil processed at refinery is confidential, therefore, the emission factor shown in Table 3-117 is confidential as well.
- The PCDD/PCDF emission factor for venting and flaring at gas production stems from Norway's Informative Inventory Report 2021 (Norwegian Environment Agency 2021). This emission factor is used from 1985 until 1994, when gas production stopped in Switzerland.

1B2c Venting and flaring		Unit	NOx	NMVOC	SOx	PM2.5 ex	PM10 ex	TSP ex	BC ex	со
			g/	g/	g/	g/	g/	g/	g/	g/
1B2cii1 Flaring	Crude oil	t	С	C	С	C	C	C	С	С
1B2cii2 Flaring	Raw gas	GJ	NO	NO	NO	NO	NO	NO	NO	NO
1B2c Venting and flaring		Unit	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP
		Unit	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/
1B2cii1 Flaring	Crude oil	t	С	С	С	NA	С	C	С	С
1B2cii2 Elaring	Raw das	GJ	NO	NO	NO	NO	NO	NO	NO	NO

Table 3-117 Emission factors in 1B2c – Venting and flaring, for 2023.

Activity data (1B2c)

1B2c Fugitive emissions from venting and flaring

Before 2005, the amount of flared gas in oil refineries (1B2ci) is assumed to be proportional to the amount of crude oil processed in the refineries. Since 2005, the industry provides bottom-up data on the amount of gas flared in the refineries. Activity data since 2014 are considered confidential and are available to reviewers on request.

For gas venting and flaring associated with gas production (only occurring from 1990-1994), the amount of gas flared under category 1B2cii is estimated based on the amount of gas produced.

Table 3-118 Activity data of 1B2	с –	V	'entii	ng an	d flarir	ng.	
1B2c Venting and flaring					Unit	199	0
							_

	Unit	1990	1995	2000	2005	2010					
Crude oil	kt	С	С	С	С	С					
Raw gas	TJ	130	NO	NO	NO	NO					
	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Crude oil	kt	С	С	С	С	С	С	С	С	С	С
Raw gas	TJ	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
-	Crude oil Raw gas Crude oil	Raw gas TJ Unit Crude oil kt	Crude oil kt C Raw gas TJ 130 Unit 2014 Crude oil kt C	Crude oil kt C C Raw gas TJ 130 NO Unit 2014 2015 Crude oil kt C C	Crude oil kt C C C C Raw gas TJ 130 NO NO NO Unit 2014 2015 2016 C C Crude oil kt C C C C	Crude oil kt C C C C Raw gas TJ 130 NO NO NO Unit 2014 2015 2016 2017 Crude oil kt C C C	Crude oil kt C Linit 2014 2015 2016 2017 2018 Crude oil kt C	Crude oil kt C	Crude oil kt C	Crude oil kt C	Crude oil kt C C C C C C Raw gas TJ 130 NO <

3.3.4.3 Category-specific recalculations for 1B2c

There were no recalculations implemented in submission 2025.

4 Industrial processes and product use

4.1 Overview of emissions

This introductory chapter gives an overview of major emissions from sector 2 Industrial processes and product use between 1990 and 2023 and comprises process emissions only. All emissions from fuel combustion in industry are reported in sector 1 Energy. Regarding main pollutants, industrial processes and product use are the main emission source of NMVOC and contribute to a lesser extent to the emissions of SO_x and particulate matter. Industrial processes and product use are also relevant sources for emissions of priority heavy metals and dominate the PCB emissions.

The following source categories are reported:

- 2A Mineral products
- 2B Chemical industry
- 2C Metal production
- 2D, 2G Other solvent and product use
- 2H Other industry production
- 2I Wood processing
- 2K Consumption of POPs and heavy metals
- 2L Other production, consumption, storage, transportation or handling of bulk products

4.1.1 Overview and trend for NMVOC

According to Figure 4-1 and Table 4-1, total NMVOC emissions from 2 Industrial processes and product use show a considerable decrease between 1990 and 2004 with a weaker decreasing trend until 2016 and rather constant values afterwards. The trend until 2004 is mainly due to reductions in 2D Other solvent and product use and to a lesser extent to reductions in 2G Other product use. For the entire time series, the NMVOC emissions are dominated by the emissions from 2D. Relevant emissions stem from 2G Other product use and 2H Other as well.

In 1990, source categories 2D3d Coating applications and 2D3g Chemical products contribute to more than half of the NMVOC emissions of source category 2D whereas all the other source categories account for the rest. In 2023, the largest shares in source category 2D come from 2D3d Coating applications and 2D3a Domestic solvent use including fungicides while the shares of 2D3b Road paving with asphalt, 2D3c Asphalt roofing, 2D3e Degreasing, 2D3f Dry cleaning, 2D3g Chemical products, 2D3h Printing and 2D3i Other solvent use account for the rest.

The reduction in 2D3d Coating applications is due to changes in the paint composition, i.e. from solvent-based to water-based paints. Accordingly, emission factors for all commercial and industrial applications show a significant decrease between 1990 and 2004. This trend is induced and driven by the EU directive (EC 2004) on the limitation of emissions of volatile organic compounds from the solvents used in certain paints and varnishes and vehicle refinishing products. In addition, noticeable decreases in paint consumption in construction (1990–1998) and industrial paint application (2001–2004) are superposed. The latter resulted from structural changes within the industrial sector and replacing of conventional paints by powder coatings. In 1990, the NMVOC emissions from 2D3d Coating applications are dominated by the emissions from industrial paint application and paint application in construction whereas in 2023, by emissions from paint application on wood and in construction.

The NMVOC emissions from the most important single source category 2D3a Household cleaning agents, cosmetics and toiletries increase between 1990 and 1996 then they drop until 2000 and since then they show a weaker decline until 2016. From 2017 onwards, the emissions are again increasing. Factors contributing to this trend are changes in the range of product used, product-specific NMVOC contents and population growth.

Within source category 2D, a significant reduction in emissions from 2D3g Chemical products and 2D3h Printing between 1990 and 2023 is observed. The reduction in source category 2D3h Printing as well as in industry and services in general is mainly a result of the ordinance on the VOC incentive tax (Swiss Confederation 1997) with enactment of the tax in 2000 and structural changes within the respective industry and service sectors.

Also process optimizations (production of acetic acid and PVC), closing down of production, e.g. PVC production in 1996 (2B Chemical industry) and the production decrease in the iron foundries (2C Metal production) contribute to the observed decrease in NMVOC emissions. The NMVOC emissions from 2H Other with main contributions from source category 2H2 Bread production slightly decline as well in the period 1990–2023. In addition, general technological improvements and post-combustion installations contribute to further emission reductions.

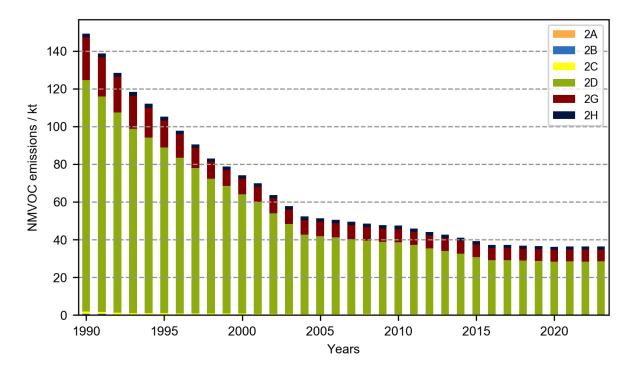


Figure 4-1 Switzerland's NMVOC emissions from industrial processes and product use by source categories 2A-2D and 2G-2H between 1990 and 2023. The corresponding data can be found in Table 4-1.

Table 4-1 NMVOC emissions from sector 2 Industrial processes and product use by source categories 2A-2D, 2G
and 2H. The last column in the third part of the table indicates the relative trend.

NMVO	С	1990	1995	2000	2005	2010	
2A	kt	0.047	0.037	0.032	0.035	0.037	
2B	kt	0.61	0.18	0.025	0.028	0.037	
2C	kt	1.1	0.76	0.71	0.45	0.35	
2D	kt	123	88	63	41	38	
2G	kt	22	14	8.2	7.6	6.9	
2H	kt	2.1	2.0	1.8	1.8	1.9	
21	kt	NA	NA	NA	NA	NA	
2K	kt	NA	NA	NA	NA	NA	
2L	kt	NA	NA	NA	NA	NA	
Sum	kt	149	105	74	51	47	
NMVO	С	2014	2015	2016	2017	2018	
2A	kt	0.033	0.030	0.031	0.031	0.031	
2B	kt	0.023	0.020	0.016	0.013	0.015	
2C	kt	0.31	0.29	0.27	0.28	0.28	
2D	kt	32	30	29	29	28	
2G	kt	6.7	6.6	6.5	6.4	6.3	
2H	kt	1.8	1.8	1.7	1.7	1.7	
21	kt	NA	NA	NA	NA	NA	
2K	kt	NA	NA	NA	NA	NA	
2L	kt	NA	NA	NA	NA	NA	
Sum	kt	41	39	37	37	37	
NMVO	C	2019	2020	2021	2022	2023	2005-2023
2A	kt	0.030	0.029	0.030	0.029	0.026	
2B	kt	0.016	0.015	0.016	0.015	0.015	
2C	kt	0.22	0.20	0.22	0.22	0.19	
2D	kt	28	28	28	28	28	
2G	kt	6.3	6.3	6.3	6.3	6.3	
2H	kt	1.7	1.6	1.7	1.7	1.6	
21	kt	NA	NA	NA	NA	NA	
2K	kt	NA	NA	NA	NA	NA	
2L	kt	NA	NA	NA	NA	NA	
Sum	kt	37	36	36	36	36	

4.1.2 Overview and trend for SO_x

According to Figure 4-2 and Table 4-2, total SO_x emissions from 2 Industrial processes and product use show an intermittent decrease of almost 70 % in the period 1990-2009. From 2010 to 2018, there is again an increase in SO_x emissions followed by a decrease 2019-2023. In 1990, source categories 2C Metal production and 2B Chemical industry show the largest contributions (around 50 % each) to the total SO_x emissions. In 2023, the emissions are dominated by 2B Chemical industry. The emissions from 2A Mineral products are negligible over the entire time period and there are no emissions from 2D. The highly fluctuating SO_x emissions from 2B Chemical industry stem mainly from the graphite and silicon carbide production, i.e. the raw materials used (petroleum coke and other bituminous coal) and reflect both the production volume and the sulphur content of raw materials between 1990 and 2023. In 2023, it is by far the largest emission source within sector 2. The SO_x emissions from 2C Metal production originate predominately from the consumption of electrodes (anodes) in the aluminium production and follow thus the aluminium production volume in Switzerland (the only primary aluminium smelter was closed down in 2006). The small amount of SO_x emissions from 2G Other product use stems from the use of fireworks.

3 (%) -24 -46 -58 -32 -17 -8.1

-29

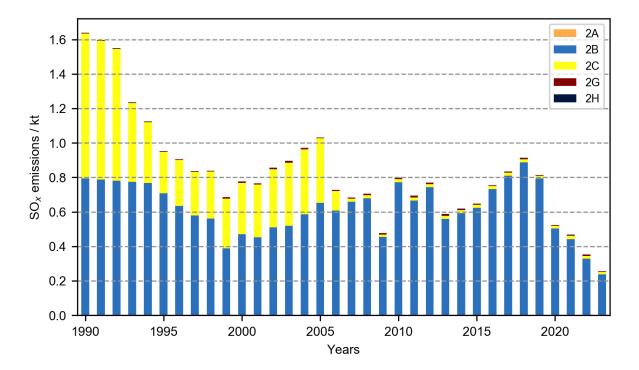


Figure 4-2 Switzerland's SO_x emissions from industrial processes and product use by source categories 2A-2C and 2G-2H between 1990 and 2023. The corresponding data can be found in Table 4-2.

SOx		1990	1995	2000	2005	2010	
2A	kt	0.00078	0.00061	0.00054	0.00058	0.00061	
2B	kt	0.79	0.71	0.47	0.65	0.77	
2C	kt	0.84	0.24	0.30	0.37	0.017	
2D	kt	NA	NA	NA	NA	NA	
2G	kt	0.0034	0.0042	0.0062	0.0056	0.0069	
2H	kt	0.0013	0.00066	0.00093	0.00040	0.0012	
21	kt	NA	NA	NA	NA	NA	
2K	kt	NA	NA	NA	NA	NA	
2L	kt	NA	NA	NA	NA	NA	
Sum	kt	1.6	0.95	0.78	1.0	0.80	
SOx		2014	2015	2016	2017	2018	
2A	kt	0.00055	0.00050	0.00052	0.00051	0.00051	
2B	kt	0.59	0.62	0.73	0.81	0.89	
2C	kt	0.018	0.018	0.017	0.018	0.018	
2D	kt	NA	NA	NA	NA	NA	
2G	kt	0.0074	0.0066	0.0050	0.0071	0.0075	
2H	kt	0.0011	0.0011	0.00033	0.00036	0.00040	
21	kt	NA	NA	NA	NA	NA	
2K	kt	NA	NA	NA	NA	NA	
2L	kt	NA	NA	NA	NA	NA	
Sum	kt	0.62	0.65	0.76	0.83	0.91	
SOx		2019	2020	2021	2022	2023	2005-202
2A	kt	0.00051	0.00049	0.00049	0.00048	0.00044	
2B	kt	0.79	0.50	0.44	0.33	0.24	
2C	kt	0.016	0.016	0.018	0.017	0.013	
2D	kt	NA	NA	NA	NA	NA	
2G	kt	0.0041	0.0043	0.0062	0.0077	0.0033	
2H	kt	0.00034	0.00032	0.00030	0.00033	0.00032	
21	kt	NA	NA	NA	NA	NA	
2K	kt	NA	NA	NA	NA	NA	
2L	kt	NA	NA	NA	NA	NA	
Sum	kt	0.81	0.52	0.47	0.35	0.26	

Table 4-2 SO_x emissions from sector 2 Industrial processes and product use by source categories 2A-2C and 2G-2H. The last column in the third part of the table indicates the relative trend.

4.1.3 Overview and trend for PM2.5

According to Figure 4-3 and Table 4-3, total PM2.5 emissions from sector 2 Industrial processes and product use show a decrease of about 40 % in the period 1990-1999. The emissions are fluctuating with again a decreasing trend since 2008. In 1990, the source categories 2C Metal production, 2G Other product use, 2H Other and 2A Mineral products contribute the most to the total PM2.5 emissions.

In 2023, the highest contribution to the total PM2.5 emissions is due to the source categories 2G, 2H and 2A whereas the other source categories are of minor importance. PM2.5 emissions from 2A Mineral products, with the main contributions from blasting operations in 2A1 Cement production and from 2A5a Quarrying and mining of minerals other than coal, decreased by about a quarter between 1990 and 1999. After a slight increase until 2010, they are decreasing again. On the other hand, PM2.5 emissions from 2C Metal production, which are dominated by the emissions from 2C1 Iron and steel production, show a strong decrease between 1994 and 1999 and are almost exclusively responsible for the total PM2.5 emission reduction in this source category between 1990 and 2023. The reason for the initial

23 (%)

-24 -63 -96

-41 -19

-75

emission reduction in 1995 is the closing down of two steel production sites, whereas the drastic emission drop in 1998/1999 is due to the installation of new filters in the remaining two steel plants. The PM2.5 emissions from 2G Other product use, i.e. from the use of fireworks and tobacco, remained about constant between 1990 and 2013 and have since decreased by about one third. In 1990, 2G emissions were dominated by tobacco use. The annual fluctuations are due to differences in the consumption of fireworks caused by bans due to dryness on the national holiday. In 2023, tobacco use is still the major emission source but also the use of fireworks contributes considerable amounts. The emissions in 2H Other decreased by about a quarter since 1990. In this source category, the main contributions currently arise from 2H1 Chipboard and fibreboard production and 2H2 Food and beverages industry.

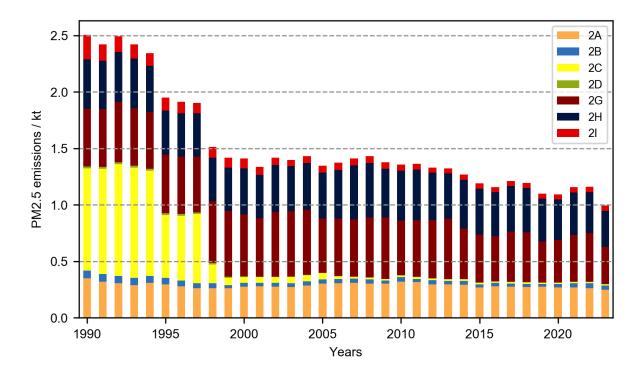


Figure 4-3 Switzerland's PM2.5 emissions from industrial processes and product use by source categories 2A-2D and 2G-2I between 1990 and 2023. The corresponding data can be found in Table 4-3.

Table 4-3 PM2.5 emissions from sector 2 Industrial processes and product use by source categories 2A-2D and
2G-2I. The last column in the third part of the table indicates the relative trend.

PM2.5		1990	1995	2000	2005	2010	
2A	kt	0.35	0.30	0.28	0.30	0.32	
2B	kt	0.069	0.058	0.033	0.040	0.039	
2C	kt	0.90	0.56	0.051	0.055	0.014	
2D	kt	0.016	0.015	0.0069	0.0024	0.0033	
2G	kt	0.51	0.52	0.55	0.48	0.49	
2H	kt	0.44	0.39	0.40	0.41	0.44	
21	kt	0.22	0.12	0.090	0.063	0.057	
2K	kt	NA	NA	NA	NA	NA	
2L	kt	NA	NA	NA	NA	NA	
Sum	kt	2.5	2.0	1.4	1.3	1.4	
PM2.5		2014	2015	2016	2017	2018	
2A	kt	0.29	0.27	0.28	0.27	0.27	
2B	kt	0.033	0.029	0.031	0.029	0.029	
2C	kt	0.013	0.012	0.012	0.012	0.012	
2D	kt	0.0037	0.0037	0.0037	0.0038	0.0038	
2G	kt	0.45	0.42	0.40	0.44	0.44	
2H	kt	0.43	0.41	0.39	0.41	0.39	
21	kt	0.047	0.046	0.046	0.043	0.044	
2K	kt	NA	NA	NA	NA	NA	
2L	kt	NA	NA	NA	NA	NA	
Sum	kt	1.3	1.2	1.2	1.2	1.2	
PM2.5		2019	2020	2021	2022	2023	2005-2023 (%)
2A	kt	0.28	0.27	0.27	0.26	0.25	-18
2B	kt	0.023	0.030	0.038	0.045	0.039	-0.17
2C	kt	0.010	0.0098	0.011	0.011	0.0087	-84
2D	kt	0.0038	0.0038	0.0038	0.0038	0.0038	58
2G	kt	0.36	0.38	0.41	0.43	0.33	-32
2H	kt	0.38	0.36	0.38	0.36	0.32	-21
21	kt	0.044	0.046	0.049	0.049	0.047	-25
2K	kt	NA	NA	NA	NA	NA	-
2L	kt	NA	NA	NA	NA	NA	-
Sum	kt	1.1	1.1	1.2	1.2	0.99	-26

4.2 Source category 2A – Mineral products

4.2.1 Source category description of 2A Mineral products

Table 4-4 Specification of source category 2A Mineral products in Switzerland.

2A	Source category	Specification
2A1	Cement production	Blasting operations of the cement production,
		Process emissions from calcination are reported in 1A2f
2A2	Lime production	Blasting operations of the lime production,
		Process emissions from calcination are reported in 1A2f
2A3	Glass production	Process emissions from glass production are reported in 1A2f
2A5a	Quarrying and mining of minerals other than	Gravel plants and blasting operations of the plaster production
	coal	

Table 4-5 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 2A Mineral Products.

NFR code	Source category	Pollutant	Identification criteria
2A1	Cement production	PM2.5	L2, T2
2A1	Cement production	PM10	L2
2A5a	Quarrying and mining of minerals other than coal	PM2.5	L2, T2
2A5a	Quarrying and mining of minerals other than coal	PM10	L1, L2, T2

4.2.2 Methodological issues of 2A Mineral products

4.2.2.1 Cement production (2A1)

Methodology (2A1)

In Switzerland, there are six plants producing clinker and cement. The Swiss plants are rather small and do not exceed a capacity of 3'000 tonnes of clinker per day. All of them use modern dry process technology.

According to the EMEP/EEA guidebook (EMEP/EEA 2023, source category 2A1 Cement production comprises all emissions from operations other than pyroprocessing (kiln). Based on the decision tree Fig. 3.1 in chapter 2A1 Cement production of EMEP/EEA (2023), the emissions resulting from blasting operations during the digging of limestone are determined by a Tier 2 method using country-specific emission factors documented in EMIS 2025/2A1. The reported emissions of non-exhaust particulate matter contain fugitive emissions of particulate matter of the production sites including storage and handling as well.

Pollutants released from the raw material during the calcination process in the kiln are reported in source category 1A2f Cement production together with the emissions from fuel combustion.

Emission factors (2A1)

Blasting: Emission factors per tonne of clinker are derived from the emission factors of civil explosives and information on the specific consumption of explosives in the quarries as documented in the Handbook on emission factors for stationary sources (SAEFL 2000) and the EMIS database. They are assumed to be constant over the entire time period. The emission factor of BC (% of PM2.5 exh.) is taken from the EMEP/EEA guidebook (EMEP/EEA 2023 chp. 2.A.1, table 3.1).

2A1 Cement production	Unit of activity data	NOx	NMVOC	SOx	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx
	Only of activity data	g/	g/	g/	g/	g/	g/	g/
Blasting operations	t clinker	3.3	8.6	0.14	0.51	50	0.86	77
		TSP ex	TSP nx	BC ex	CO	1		
2A1 Cement production	Unit of activity data	a/	,	a/				
Blasting operations	t clinker	g/ 0.86	g/ 110		g/ 3.3			
Diasting operations	t GILIKEI	0.00	110	0.015	3.3			

Table 4-6 Emission factors for blasting operations of 2A1 Cement production in 2023.

Activity data (2A1)

Since 1990, data on annual clinker production are provided by the industry association (Cemsuisse) as documented in the EMIS database (EMIS 2025/2A1_Zementwerke übriger Betrieb). From 2008 onwards, they are based on plant-specific annual monitoring reports from the Swiss Emissions Trading Scheme (ETS).

Table 4-7 Activity data of 2A1 Cement production.

2A1 Cement production	Unit	1990	1995	2000	2005	2010					
Blasting operations	kt clinker	4'808	3'706	3'214	3'442	3'642					
2A1 Cement production	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Blasting operations	kt clinker	3'502	3'195	3'296	3'279	3'239	3'227	3'129	3'227	3'155	2'855

4.2.2.2 Lime production (2A2)

Methodology (2A2)

There is only one producer of burnt lime in Switzerland. Based on the decision tree Fig. 3.1 in chapter 2A2 Lime production of the EMEP/EEA guidebook (EMEP/EEA 2023), emissions from blasting operations in the quarry are determined by a Tier 2 method using country-specific emission factors (EMIS 2025/2A2). The reported emissions of non-exhaust particulate matter contain fugitive emissions of particulate matter of the production site including storage and handling as well.

Pollutants released from the raw material during the calcination process in the kiln are reported in source category 1A2f Lime production together with the emissions from fuel combustion.

Emission factors (2A2)

The emission factors (NO_x, NMVOC, SO_x, PM2.5, PM10, TSP and CO) per tonne of lime produced are confidential but available to reviewers on request. They are assumed to be constant over the entire time period. The emission factor of BC (% PM2.5) is taken from EMEP/EEA guidebook (EMEP/EEA 2023, chp. 2.A.2, table 3.1).

Activity data (2A2)

Activity data on annual lime production is based on data from the only lime producer in Switzerland and is confidential but available to reviewers on request. From 2008 onwards, they are based on plant-specific annual monitoring reports from the Swiss Emissions Trading Scheme (ETS).

4.2.2.3 Glass production (2A3)

Process emissions from glass production in Switzerland, i.e. container and tableware glass as well as glass wool are reported together with the combustion emissions in source category 1A2f according to EMEP/EEA guidebook (EMEP/EEA 2023), since it is not straightforward to separate them. Therefore, emissions of NO_x, SO_x, PM2.5/PM10/TSP, BC, CO, Pb, Cd and Hg are reported as "included elsewhere" (IE).

4.2.2.4 Quarrying and mining of minerals other than coal (2A5a)

Methodology (2A5a)

In this source category there are two production processes occurring in Switzerland: Gravel plants and plaster production. In August 2020, one of the two plaster production plants was closed. The emissions stem mainly from blasting operations and crushing of stones either in plaster production or gravel plants.

Based on the EMEP/EEA guidebook (EMEP/EEA 2023), emissions from blasting operations as well as emissions of particulates from crushing and grinding work are determined by a Tier 2 method using default and country-specific emission factors for gravel plants and plaster production, respectively (EMIS 2025/2A5a). Emissions from storage and handling are also accounted for.

Emission factors (2A5a)

The emission factors per tonne of gravel and rocks are based on the calculation model of EMEP/EEA (2023) for small quarries taking into account the process steps material processing, material handling and operation and stockpiles. The process step internal transport was not considered as the emissions of all construction machinery are reported in source category 1A2gvii Mobile combustion (see chp. 3.2.5.2). For plaster production, the emission factors are confidential from 2021 onwards but available to reviewers on request.

2A5a Quarrying and mining of minerals	Unit of activity data	NOx	NMVOC	SOx	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx
2A5a Quarrying and mining or minerals	Offic of activity data	g/	g/	g/	g/	g/	g/	g/
Gravel plants	t gravel	NA	NA	NA	NA	1.6	NA	6.1
Plaster production	t rocks	C	C	С	C	C	C	С
2A5a Quarrying and mining of minerals	Unit of activity data	TSP ex	TSP nx	BC ex	CO	1		
2A5a Quarrying and mining of minerals	Unit of activity data	g/	g/	g/	g/			
Gravel plants	t gravel	NA	15	NA	NA			
Plaster production	t rocks	C	С	NE	С	1		

Table 4-8 Emission factors of 2A5a Gravel plants and Plaster production in 2023.

Activity data (2A5a)

Activity data for gravel plants and plaster production is based on industry data. For plaster production, plant-specific data are available for 1990, 2001 and from 2004 onwards. For the missing years in between the activity data are linearly interpolated. From 2021 onwards, activity data are confidential but available to reviewers on request.

Data on gravel production is provided annually by the Swiss association of gravel and concrete industry (Fachverband der Schweizerischen Kies- und Betonindustrie, FSKB). But the latest data available is always one year delayed with respect to the latest year of the submission.

2A5a Quarrying and mining of minerals	Unit	1990	1995	2000	2005	2010					
Gravel plants	kt gravel	33'798	36'791	39'785	44'960	50'540					
Plaster production	kt rocks	319	304	288	327	335					
2A5a Quarrying and mining of minerals	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Gravel plants	kt gravel	53'090	50'610	52'750	51'480	49'880	54'060	54'570	53'580	52'110	52'407
Plaster production	kt rocks	166	140	148	146	152	149	122	0	0	0

4.2.2.5 Construction and demolition (2A5b)

The emissions (from resuspension) of particulate matter (PM2.5, PM10 and TSP) from construction machinery are reported in source category 1A2gvii Mobile combustion in manufacturing industries and construction. Therefore, these emissions are indicated in the reporting tables as "IE".

4.2.3 Category-specific recalculations in 2A Mineral products

The following recalculations were implemented in submission 2025:

 2A5a: The emission factors of PM2.5, PM10, TSP of source category 2A5a Gravel plants were revised based on the 2A5a Quarrying and mining calculation model 2023 (EMEP/EEA 2023) for the entire time series. Also, the last year's extrapolated activity data for 2022 was updated based on the industry association's actual production figure.

4.3 Source category 2B – Chemical industry

4.3.1 Source category description of 2B Chemical industry

Table 4-10 Specification of source category 2B Chemical industry in Switzerland.

2B	Source category	Specification
2B1	Ammonia production	Production of ammonia
2B2	Nitric acid production	Production of nitric acid (ceased in 2018)
2B5	Carbide production	Production of silicon carbide and graphite
2B10a	Chemical industry: Other	Production of acetic acid, ammonium nitrate (ceased in 2018), chlorine gas, ethylene, niacin, PVC (ceased in 1996) and sulfuric acid

Table 4-11 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 2B Chemical Industry.

NFR code	Source category	Pollutant	Identification criteria
2B5	Carbide production	SOx	L1, L2, T1, T2
2B10a	Chemical industry: other	SOx	L2, T2

4.3.2 Methodological Issues of 2B Chemical industry

4.3.2.1 Ammonia production (2B1)

Methodology (2B1)

In Switzerland, ammonia is produced in one single plant by catalytic reaction of nitrogen and synthetic hydrogen. Ammonia is not produced in an isolated reaction plant but is part of an integrated production chain. Starting process of this production chain is the thermal cracking of liquefied petroleum gas and light virgin naphtha yielding ethylene and a series of by-products such as e.g. synthetic hydrogen, which are used as educts in further production steps. According to the producer it is not possible to split and allocate the NMVOC emissions of the cracking process to each single product (ethylene, ammonia, cyanic acid etc.) within the integrated production chain. Therefore, the NMVOC emissions of the cracking process are allocated completely to the primary product ethylene (source category 2B10a). The only emissions reported under 2B1 Ammonia production are NH₃ emissions escaping from the flue gas scrubber.

Based on the decision tree Fig. 3.1 in chapter 2B Chemical industry in the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions from 2B1 Ammonia production are calculated by a Tier 2 method using plant-specific emission factors documented in EMIS 2025/2B1.

Emission factors (2B1)

The NH₃ emission factor per tonne of ammonia produced is confidential but available to reviewers on request. From 1990 to 2001, a constant emission factor based on measurements is applied. In 2002, the scrubber was replaced. For 2011 and since 2013 the emission factor is determined based on measurements provided by the plant. For the years 2002 - 2010 and 2012 the average value of the years 2011 and 2013 - 2017 is applied.

2B1 Ammonia production	Unit of activity data	NMVOC	NH3	
	Offic of activity data	g/	g/	
Ammonia production	t ammonia	IE	С	

Activity data (2B1)

Plant-specific activity data on annual ammonia production is provided by the single plant that exists in Switzerland for the entire time period 1990-2023. Since 2013, activity data are taken from annual monitoring reports from the Swiss Emissions Trading Scheme (ETS). Activity data are confidential, and information is available to reviewers on request.

4.3.2.2 Nitric acid production (2B2)

Methodology (2B2)

In Switzerland there was one single plant producing nitric acid (HNO₃) which stopped production in spring 2018. Nitric acid was produced by catalytic oxidation of ammonia (NH₃) with air. At temperatures of 800°C nitric monoxide (NO) is formed. During cooling, nitrogen monoxide reacted with excess oxygen to form nitrogen dioxide (NO₂). The nitrogen dioxide reacted with water to form 60 % nitric acid (HNO₃). Today, two types of processes are used for nitric acid production: single pressure or dual pressure plants. In Switzerland a dual pressure plant was installed.

Thus, there resulted also some nitrogen oxide (NO_x) as an unintentional by-product. In the Swiss production plant abatement of NO_x was done by selective catalytic reduction (SCR, installed in 1988) which reduced NO_x to N_2 and O_2 (the SCR in this plant was also used for treatment of other flue gases and was not installed for the HNO₃ production specially). In 1990 an automatic control system for the dosing of ammonia to the SCR process was installed.

Based on the decision tree Fig. 3.1 in chapter 2B Chemical industry in the EMEP/EEA guidebook (EMEP/EEA 2023), NH_3 and NO_x emissions from 2B2 Nitric acid production are calculated by a Tier 2 method using plant-specific emission factors (see EMIS 2025/2B2).

Emission factors (2B2)

The emission factors for NO_x and NH_3 per tonne of nitric acid (100 %) are confidential but available to reviewers upon request. The emission factor values for NO_x and NH_3 are mean values based on measurements on site in 2005, 2009 and 2012, and 2007, 2009 and 2012, respectively. They are assumed to be constant between 1990 and 2012 since no modifications in the production process has been made in this period.

In 2013, a new catalyst was installed in the production line along with a measurement device for NH_3 slip in order to regulate ammonia dosage in the DeNOx plant. Moreover, in 2013 the volume of the DeNOx plant was duplicated. Consequently, the NH_3 emissions could be reduced significantly. Also, a slight reduction of NO_x occurred. From 2013 to 2018, emission factors were based on measurements provided by the plant.

Activity data (2B2)

Activity data on annual nitric acid (100 %) production was provided for the years 1990 to 2018 by the single production plant in Switzerland and is therefore considered as

confidential. However, this information is available to reviewers. From 2013 to 2018, activity data were taken from annual monitoring reports from the Swiss Emission Trading Scheme (ETS).

4.3.2.3 Carbide production (2B5)

Methodology (2B5)

In Switzerland, only silicon carbide is produced in a single plant. It is produced together with graphite in a coupled process in an electric furnace at temperatures above 2000° C using the Acheson process. Therefore, emissions include those from the production of both silicon carbide and graphite. Based on the decision tree Fig. 3.1 in chapter 2B Chemical industry in the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions of SO_x, particulate matter and CO from 2B5 Silicon carbide production are calculated by a Tier 2 method using plant-specific emission factors (EMIS 2025/2B5).

Emission factors (2B5)

The emission factors of NO_x , SO_x , particulate matter, CO and PAHs are based on data from the production plant. The SO_x emission factor is derived from the sulphur content of the feedstocks, i.e. petroleum coke and anthracite. The CO emission factor is calculated based on the carbon mass balance of the production process and exhaust measurements. The emission factors are expressed in g/t carbide but comprise the (unsplit) emissions from the coupled production process of silicon carbide and graphite. They are confidential but available to reviewers on request.

NOx SOx PM2.5 ex PM10 ex TSP ex BC ex 2B5 Carbide production Unit of activity data g/.. g/.. a/. a/ a/. a/. Silicon carbid production t carbide С С C С С NE CO BaP BbF BkF IcdP 2B5 Carbide production Unit of activity data g/. mg/. mg/. mg/. mg/. Silicon carbid production t carbide

Table 4-13 Emission factor for 2B5 Carbide production in 2023.

Activity data (2B5)

Activity data on annual production of silicon carbide (and graphite) is provided by the production plant from 1995 onwards. For 1990–1994 they are estimates based on industry data. The activity data are considered confidential. However, this information is available to reviewers on request.

4.3.2.4 Chemical industry: Other (2B10a)

Methodology (2B10a)

Source category 2B10a Chemical industry: Other comprises emissions from production of acetic acid, ammonium nitrate (ceased in 2018), chlorine gas, ethylene, niacin, PVC (ceased in 1996) as well as sulphuric acid. Based on the decision tree Fig. 3.1 in chapter 2B Chemical industry in the EMEP/EEA guidebook (EMEP/EEA 2023), emissions from 2B10a Chemical industry are calculated by a Tier 2 method using plant-specific emission factors (EMIS 2025/2B10a).

Acetic acid production (2B10a)

In Switzerland there is only one plant producing acetic acid (CH₃COOH) remaining after the other one stopped its production by the end of 2012. The still existing plant emits NMVOC only whereas from the latter one also emissions of CO have occurred.

Emission factors

The emission factors for NMVOC and CO (up to 2012) from acetic acid production in Switzerland are based on measurement data from industry and expert estimates documented in EMIS 2025/2B10 Essigsäure-Produktion. From 2013 onwards, the only relevant pollutant from acetic acid production is NMVOC. Since 2013 the emission factor is confidential but available to reviewers on request.

During normal operation the process emissions in the plant, which stopped its production in the end of 2012, had been treated in a flue gas incineration. Thus, the reported emissions of NMVOC and CO only occurred in case of malfunction resulting in strongly fluctuating plant-specific emission factors. In addition, the resulting implied emission factors based on the emissions of both plants were modulated by considerable production fluctuations of one of the plants from 2000 onwards.

2B10a Chemical industry Other	Unit of activity data	NOx	NMVOC	SOx	Ox NH3 PM2.5 nx PM10 nx TSP nx C		CO	Hg		
2B10a Chemical industry Other	Offit of activity data	g/	g/	g/	g/	g/	g/	g/	g/	mg/
Acetic acid production	t acid	NA	С	NA	NA	NA	NA	NA	NA	NA
Ammonium nitrate production	t ammonium nitrate	NO	NO	NO	NO	NO	NO	NO	NO	NO
Chlorine gas production	t chlorine	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylene production	t ethylene	NA	С	NA	NA	NA	NA	NA	NA	NA
Niacin production	t niacin	С	NA	NA	NA	NA	NA	NA	С	NA
PVC production	kg PVC	NO	NO	NO	NO	NO	NO	NO	NO	NO
Sulfuric acid production	t acid	NA	NA	С	NA	NA	NA	NA	NA	NA

Table 4-14 Emission factors of 2B10a Chemical industry: Other in 2023.

Activity data

The annual amount of produced acetic acid is based on data from industry and from the Swiss business association for the chemical, pharmaceutical and biotech industry (scienceindustries) documented in EMIS 2025/2B10 Essigsäure-Produktion. The data for acetic acid production are confidential since 2013 (only one manufacturer remaining) but available for reviewers on request.

2B10a Chemical industry Other	Unit	1990	1995	2000	2005	2010					
Acetic acid production	kt acid	30	27	24	8.4	20					
Ammonium nitrate production	kt ammonium nitrate	С	С	С	С	С					
Chlorine gas production	kt chlorine	С	С	С	С	С					
Ethylene production	kt ethylene	С	С	С	С	С					
Niacin production	kt niacin	С	С	С	С	С					
PVC production	kt PVC	43	43	NO	NO	NO					
Sulfuric acid production	kt acid	С	С	С	С	С					
2B10a Chemical industry Other	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
A settle settle settless	kt acid	C	C	0	0	C	C	C	0	2	
Acetic acid production	KL aciu	U	C	C	С	U	U	U	C	C	С
Acetic acid production Ammonium nitrate production	kt ammonium nitrate	C	c	C	c	c	NO	NO	NO	NO	C NO
		C C	C C	-	-	C C	NO C	NO C	NO C	NO C	C NO C
Ammonium nitrate production	kt ammonium nitrate	U	C C C	C	c	с с с	NO C C	NO C C	NO C	NO C C	C NO C C
Ammonium nitrate production Chlorine gas production	kt ammonium nitrate kt chlorine	C	C C	C C	C C	C C C C	NO C C C	NO C C C	NO C C C	NO C C C	C NO C C C
Ammonium nitrate production Chlorine gas production Ethylene production	kt ammonium nitrate kt chlorine kt ethylene	C C	C C	C C C	C C C	C C C C NO	NO C C C NO	NO C C C NO	NO C C C NO	NO C C C NO	C NO C C C NO

Table 4-15 Activity data of 2B10a Chemical industry: Other.

Ammonium nitrate production (2B10a)

In Switzerland there was only one plant producing ammonium nitrate; it stopped production in 2018. In the production process emissions of NH_3 and particulate matter occurred.

Emission factors

The emission factors for NH_3 and for particulate matter from ammonium nitrate production in Switzerland are plant-specific and based on measurement data from industry and expert estimates, which are available for 2009, 2012, 2013 and 2016 as documented in EMIS 2025/2B10 Ammoniumnitrat Produktion. From 1990-2013 average emission factors are applied based on the measurements from 2009, 2012 and 2013. The emission factors are confidential but available to reviewers on request.

Activity data

The annual amount of ammonium nitrate (pure NH_4NO_3) produced was based on data from industry for 1990 and from 1997 to 2018 as documented in EMIS 2025/2B10 Ammoniumnitrat Produktion. The activity data for ammonium nitrate production are confidential but available to reviewers on request.

Chlorine gas production (2B10a)

In Switzerland there is only one plant producing chlorine gas. Chlorine gas was produced by chlorinealkaline electrolysis in a mercury-cell process until 2016. In the course of 2016, the production was switched to mercury-free membrane process technology. Thus, from 2017 onwards, there are no more Hg emissions.

Emission factors

The emission factor for Hg from chlorine gas production by chlorinealkaline electrolysis in a mercury-cell process between 1990 and 2016 in Switzerland is plant-specific and based on measurement data from industry and expert estimates documented in EMIS 2025/2B10 Chlorgas-Produktion. The emission factor is confidential but available to reviewers on request.

Activity data

The annual amount of chlorine gas produced is based on data from industry and data from the Swiss business association for the chemical, pharmaceutical and biotech industry (scienceindustries) as documented in EMIS 2025/2B10 Chlorgas-Produktion. The activity data for chlorine gas production are confidential but available to reviewers on request.

Ethylene production (2B10a)

As described above in source category 2B1 Ammonia production, ethylene is produced within an integrated production chain and results as primary product of the first step, i.e. the cracking process. Since the NMVOC emissions of the cracking process cannot be split and allocated separately to the various chemical products, they are assigned completely to the production of ethylene and are reported here under source category 2B10a.

Emission factors

The emission factor for NMVOC from ethylene production in Switzerland is plant-specific and based on measurement data from industry documented in EMIS 2025/2B10 ethylene production. The emission factor is confidential but available to reviewers on request.

Activity data

The annual amount of ethylene produced is based on data from the industry as documented in EMIS 2025/2B10 ethylene production. They refer to annual monitoring reports from the Swiss Emissions Trading Scheme (ETS). The activity data for ethylene production are confidential but available to reviewers on request.

Niacin production (2B10a)

In Switzerland, there is one plant producing niacin that emits NO_x and CO. In the production process of niacin, nitric acid is used as oxidizing agent. Since the nitric acid production plant was closed in spring 2018 the required nitric acid is directly produced within the niacin production plant using a so-called ammonia burner. In autumn 2021, a catalytic converter was installed to treat the non-absorbed gas components of the production plant (incl. ammonia burner). The nitrogen oxides are denitrified with ammonia, and nitrous oxide, hydrocyanic acid and carbon monoxide are decomposed to nitrogen, water and carbon dioxide.

Emission factors

The emission factors for NO_x and CO from niacin production in Switzerland are plant-specific. They are based on measurement data from industry in 2017, 2018 and 2021 as documented in EMIS 2025/2B10 Niacin Produktion. The emission factors are confidential but available to reviewers on request.

Activity data

Activity data of annual niacin production were provided by the Swiss production plant for the entire time period as documented in EMIS 2025/2B10 Niacin-Produktion. For the years 2005-2011 and since 2013 they are based on monitoring reports of the Swiss ETS. Activity data are considered confidential but available to reviewers on request.

Sulphuric acid production (2B10a)

Sulphuric acid (H_2SO_4) is produced by one plant only in Switzerland. From this production process SO_x is emitted.

Emission factors

The emission factor for SO_x from sulphuric acid production in Switzerland is plant-specific. Since 2009, the emission factor is based on annual measurement data from industry documented in EMIS 2025/2B10 Schwefelsäure-Produktion. Between 1990 and 2008 the mean value is applied. The SO_x emission factor is confidential but available to reviewers on request.

Activity data

The annual amount of sulphuric acid produced is based on data from industry and data from Swiss business association for the chemical, pharmaceutical and biotech industry (scienceindustries) as documented in EMIS 2025/2B10 Schwefelsäure-Produktion. The activity data for sulphuric acid production are confidential but available to reviewers on request.

PVC (2B10a)

Until 1996 PVC was produced in Switzerland. From this production process NMVOC emissions were released.

Emission factors

For PVC production the NMVOC emission factor is based on industry information and expert estimates as documented in the EMIS database (EMIS 2025/2B10 PVC-Produktion).

Activity data

The annual amount of PVC produced is based on data from industry and expert estimates documented in EMIS 2025/2B10 PVC-Produktion (see Table 4-15).

4.3.3 Category-specific recalculations in 2B Chemical industry

The following recalculations were implemented in submission 2025:

 2B5: So far not reported NO_x and PAH emissions from source category 2B5 Silicon carbide production are now included in the inventory on the basis of PRTR data (2008-2023).

4.4 Source category 2C – Metal production

4.4.1 Source category description of 2C Metal production

Table 4-16 Specification of source category 2C Metal production in Switzerland.

2C	Source category	Specification
2C1	Iron and steel production	Secondary steel production, iron foundries
2C3	Aluminium production	Production of aluminium (ceased in 2006)
2C7a	Copper production	Non-ferrous metal foundries
2C7c	Other metal production	Battery recycling, galvanizing plants

Table 4-17 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 2C Metal Production.

NFR code	Source category	Pollutant	Identification criteria
2C1	Iron and steel production	PM2.5	T1, T2
2C1	Iron and steel production	PM10	T1, T2

4.4.2 Methodological issues of 2C Metal production

4.4.2.1 Iron and steel production (2C1)

Methodology (2C1)

In Switzerland only secondary steel production from recycled steel scrap occurs. After closing of two steel plants in 1994 another two plants remain. Both plants use electric arc furnaces (EAF) with carbon electrodes for melting the steel scrap. The PCB emissions are modelled within the disposal category of the dynamic mass flow model developed for the usage of PCBs in Switzerland (Glüge et al. 2017), see Annex A2.2. The PCB emission value of the air pollution control measurements in 2014 were included in the model.

Iron is processed in foundries only. There is no production of pig iron. Today, 14 iron foundries exist in Switzerland. About 75 % of the iron is processed in induction furnaces and 25 % in cupola furnaces.

Based on the decision tree Fig. 3.1 in chapter 2C1 in the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions from 2C1 Iron and steel production are calculated by a Tier 2 method using country-specific emission factors (EMIS 2025/2C1).

Emission factors (2C1)

Emission factors for the pollutants emitted from steel production are based on air pollution control measurements of the steel plants. Emission factors of NO_x, NMVOC, SO_x, PM2.5/PM10/TSP, CO, Pb, Cd, PCDD/PCDF and PAH are based on air pollution control measurements at the electric arc furnaces of the two plants in 1999, 2005 and 2010 and in 1998, 2009 and 2014, respectively. The PCB emission factor comes from the dynamic mass flow model for the usage of PCBs in Switzerland, see Annex A2.2. There was a significant decrease in the PM2.5/PM10/TSP, Pb, Cd and Hg emission factors due to the installation of new filters in 1998/1999 at the two remaining production sites.

The emission factors from iron production in foundries are provided by the Swiss foundry association (GVS) and are assumed to be constant for the entire time period. NMVOC is mainly emitted in the finishing process of the cast iron. The NH_3 emission factor is taken from the Handbook on emission factors for stationary sources (SAEFL 2000).

The emission factor of BC (% PM2.5) is taken from EMEP/EEA guidebook (EMEP/EEA 2023, chp. 2.C.1, table 3.1).

Table 4-18 Emission factors 20	C1 Iron and steel	production in 2023.
--------------------------------	-------------------	---------------------

2C1 Iron and staal production	Unit of activity data	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx
2C1 Iron and steel production	Unit of activity data	g/	g/	g/	g/	g/	g/	g/	g/
Iron production, electric melting furnace	t iron	NA	33	NA	NA	7.0	NA	10	NA
Iron production, other processes	t iron	10	4'000	NA	70	NA	50	NA	130
Steel production, electric arc furnace	t steel	140	70	14	NA	6.0	NA	8.0	NA
Steel production, electric arc furnace (PCB)	g PCB	NA	NA	NA	NA	NA	NA	NA	NA
Steel production, other processes	t steel	NO	NO	NO	NO	NO	NO	NO	NO
Steel production, rolling mill	t steel	NA	40	NA	NA	NA	NA	NA	NA
2C1 Iron and steel production	Unit of activity data	TSP ex	TSP nx	BC ex	CO	Pb	Cd	Hg	
	Only of activity data	g/	g/	g/	g/	mg/	mg/	mg/	
Iron production, electric melting furnace	t iron	13	NA	0.025	93	320	1.3	NA	I
Iron production, other processes	t iron	NA	150	NA	4'000	NA	NA	NA	
Steel production, electric arc furnace	t steel	9.0	NA	0.022	700	200	4.0	40	
Steel production, electric arc furnace (PCB)	g PCB	NA	NA	NA	NA	NA	NA	NA	
Steel production, other processes	t steel	NO	NO	NO	NO	NO	NO	NO	
Steel production, rolling mill	t steel	NA	NA	NA	NA	NA	NA	NA	
2C1 Iron and steel production	Unit of activity data	PCDD/ PCDF	BaP	BbF	BkF	IcdP	PCB		
2CT from and steer production	Unit of activity data	ng I- Teq/	mg/	mg/	mg/	mg/	mg/		
Iron production, electric melting furnace	t iron	130	NA	NA	NA	NA	NA		
Iron production, other processes	t iron	1'300	NA	NA	NA	NA	NA		
Steel production, electric arc furnace	t steel	110	0.80	3.4	0.90	2.2	NA		
Steel production, electric arc furnace (PCB)	g PCB	NA	NA	NA	NA	NA	11		
Steel production, other processes	t steel	NO	NO	NO	NO	NO	NO		
Steel production, rolling mill	t steel	NA	NA	NA	NA	NA	NA		

Activity data (2C1)

For the steel production, annual activity data is provided by the Swiss steel producers (1990 – 1994 four plants, since 1995 two plants). Since 2009, activity data refer to monitoring reports of the Swiss ETS.

Annual activity data on iron production is provided by the Swiss foundry association for the entire time period.

The steel production decreased between 1994 and 1995 significantly due to the closing of two steel production sites in Switzerland. In 2009, there was a remarkable reduction in activity data within the metal industry because of the financial crisis. Due to the economic situation, including the strong rise in electricity prices because of the war in Ukraine, production fell sharply from 2022 to 2023.

2C1 Iron and steel production	Unit	1990	1995	2000	2005	2010					
Iron production, electric melting furnace	kt iron	80	70	65	35	40					
Iron production, other processes	kt iron	170	130	120	67	53					
Steel production, electric arc furnace	kt steel	1'108	716	1'022	1'159	1'218					
Steel production, electric arc furnace (PCB)	t PCB	0.12	0.098	0.13	0.16	0.17					
Steel production, other processes	kt steel	1'108	716	NO	NO	NO					
Steel production, rolling mill	kt steel	1'108	716	1'022	1'082	1'082					
2C1 Iron and steel production	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Iron production, electric melting furnace	kt iron	33	28	26	27	26	18	15	16	17	16
Iron production, other processes	kt iron	43	37	34	35	34	24	20	22	23	22
Steel production, electric arc furnace	kt steel	1'315	1'296	1'238	1'270	1'291	1'130	1'125	1'294	1'208	936
Steel production, electric arc runace											
Steel production, electric arc furnace (PCB)	t PCB	0.17	0.17	0.17	0.17	0.17	0.16	0.16	0.16	0.15	0.15
		0.17 NO	0.17 NO	-	-	0.17 NO	0.16 NO	0.16 NO	0.16 NO	0.15 NO	0.15 NO

Table 4-19 Activity data for 2C1 Iron and steel production.

4.4.2.2 Aluminium production (2C3)

Methodology (2C3)

Today, there is no more primary aluminium production as the last production site closed in April 2006. Based on the decision tree Fig. 3.1 in chapter 2C3 in the EMEP/EEA guidebook (EMEP/EEA 2023), emissions from source category 2C3 are calculated by a Tier 2 method using country-specific emission factors (EMIS 2025/2C3).

Emission factors (2C3)

The emission factors are based on air pollution control measurements and data from the aluminium industry association (Aluminium – Verband Schweiz), literature and expert estimates documented in the EMIS database. Since production stopped in 2006, there are no emission factors to be reported for 2023.

Activity data (2C3)

From 1995 to 2006 data on aluminium production is based on data published regularly by the Swiss Aluminium Association (www.alu.ch). For earlier years, the data was provided directly by the aluminium industry. In April 2006, the last site of primary aluminium production (electrolysis) in Switzerland closed.

Table 4-20 Activity data for the 2C3 Aluminium production.

2C3 Aluminium production	Unit	1990	1995	2000	2005	2010					
Aluminium production	kt aluminium	87	21	36	45	NO					
2C3 Aluminium production	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Aluminium production	kt aluminium	NO									

4.4.2.3 Copper production (2C7a)

Methodology (2C7a)

Source category 2C7a Copper production comprises one large and several small non-ferrous metal foundries, which are organized within the Swiss foundry association (GVS). In Switzerland, only casting and no primary production of non-ferrous metals occur.

Based on the decision tree Fig. 3.1 in chapter 2C7a in the EMEP/EEA guidebook (EMEP/EEA 2023), emissions from source category 2C7a are calculated by a Tier 2 method (EMIS 2025/2C7a) using country-specific emission factors.

Emission factors (2C7a)

The emission factors from non-ferrous metal foundries are based on expert estimates and data from the industry as documented in the EMIS database. They are assumed to be constant over the entire time period.

Table 4-21 Emission factors for 2C7a Foundries of non-ferrous metals in 2023.

2C7a Copper production	Unit of activity data	NMVOC	PM2.5 ex	PM10 ex	TSP ex	BC ex	со	Pb	Cd	PCDD/ PCDF
	Unit of activity data	g/	g/	g/	g/	g/	g/	mg/	mg/	ng I- Teq/
Foundries of non-ferrous metals	t metal	50	95	100	100	0.095	240	300	50	30'000

Activity data (2C7a)

Activity data on annual non-ferrous metal production is based on data from industry (1990 and monitoring reports of the Swiss ETS from 2006 onwards) and the Swiss foundry association (GVS, since 1996) as documented in the EMIS database.

Table 4-22 Activity data for 2C7a Foundries of non-ferrous metals.

2C7a Copper production	Unit	1990	1995	2000	2005	2010					
Foundries of non-ferrous metals	kt metal	60	56	53	33	20					
2C7a Copper production	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Foundries of non-ferrous metals	kt metal	9.5	8.9	9.0	8.0	6.8	6.4	5.1	7.5	7.9	5.3

Industrial processes and product use: Source category 2C – Metal production - Methodological issues of 2C Metal production

4.4.2.4 Other metal production (2C7c)

Methodology (2C7c)

Source category 2C7c Other metal production comprises emissions from battery recycling and galvanizing plants. In Switzerland, there is one plant recycling batteries by applying the Sumitomo-process which started operation in 1992 and about a dozen of galvanizing plants. Based on chapter 2C7c in the EMEP/EEA guidebook (EMEP/EEA 2023), emissions from source category 2C7c are calculated by a Tier 2 approach (EMIS 2025/2C7c) using country-specific emission factors.

Emission factors (2C7c)

The emission factors for battery recycling between 1992 and 2003 are based on measurements in 2000 (TSP, Hg) and 2003 (NO_x, SO_x, CO, Pb, Cd, PCDD/PCDF) as well as mass balances of the single recycling site. Emission factors are assumed constant between 1990 and 2002.

Since 2003 emission factors of NO_x, SO_x, TSP, CO, Pb, Cd, Hg and PCDD/PCDF are assumed constant based on air pollution control measurements from 2003 and 2012.

Emission factors of NMVOC and NH₃ are also based on air pollution control measurements from 2003 and 2012. Emission factors are assumed constant for the entire time period.

All emission factors of battery recycling are confidential. These data are available to reviewers on request.

The emission factors of galvanizing plants are based on data from the Swiss galvanizing association and expert estimates documented in the EMIS database. They are assumed to be constant over the entire time period.

2C7c Other metal production	Unit of activity data	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx
	Onit of activity data	g/	g/	g/	g/	g/	g/	g/	g/
Battery recycling	t batteries	С	С	С	С	С	NA	С	NA
Galvanising plants	t galvanised material	NA	NA	NA	90	NA	15	NA	30
C7c Other metal production	Unit of activity data	TSP ex	TSP nx	BC ex	со	Pb	Cd	Hg	PCDD/ PCDF
	Unit of activity data	g/	g/	g/	g/	mg/	mg/	mg/	ng I- Teq/
Battery recycling	t batteries	С	NA	NE	С	С	С	С	С
Galvanising plants	t galvanised material	NA	37	NA	NA	NA	2.5	NA	700

Table 4-23 Emission factors for 2C7c Other metal production: Battery recycling and Galvanizing in 2023.

Activity data (2C7c)

Annual activity data on the amount of metal processed is based on data from the only battery recycling site in Switzerland which started operation in 1992 and from the Swiss galvanizing association, as documented in the EMIS database (EMIS 2025/2C7c_Batterie-Recycling, EMIS 2025/2C7c_Verzinkereien).

Activity data of battery recycling are confidential. These data are available to reviewers on request.

2C7c Other metal production	Unit	1990	1995	2000	2005	2010					
Battery recycling	kt batteries	NO	С	С	С	С					
Galvanising plants	kt galvanised material	102	84	99	88	93					
2C7c Other metal production	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Battery recycling	kt batteries	С	С	С	C	С	C	С	С	С	С
Galvanising plants	kt galvanised material	92	92	91	91	91	91	91	91	91	90

Table 4-24 Activity data for 2C7c Other metal production: Battery recycling and Galvanizing.

4.4.3 Category-specific recalculations in 2C Metal production

The following recalculations were implemented in submission 2025:

 2C1: A typing error in the activity data 2022 of source category 2C1 Iron foundries was corrected.

4.5 Source category 2D3 – Other solvent use

4.5.1 Source category description of 2D3 Other solvent use

Source category 2D3 comprises mainly NMVOC emissions from about 40 different solvent applications. From 2D3c Asphalt roofing and 2D3i Fat, edible and non-edible oil extraction (ceased in 2000) also particulate matter and CO and particulate matter, respectively, are emitted.

2D	Source category	Specification
2D3a	Domestic solvent use including fungicides	Domestic use of cleaning agents, solvents, cosmetics and toiletries; use of pharmaceutical products in households
2D3b	Road paving with asphalt	Road paving
2D3c	Asphalt roofing	Asphalt roofing
2D3d	Coating applications	Paint application in households, industry, construction and car repairing and on wood
2D3e	Degreasing	Metal degreasing and cleaning; cleaning of electronic components; other industrial cleaning
2D3f	Dry cleaning	Dry cleaning
2D3g	Chemical products	Handling and storage of solvents; production of fine chemicals, pharmaceuticals; manufacturing of paint, inks, glues, adhesive tape (ceased in 1994); processing of rubber, PVC, polystyrene foam, polyurethane and polyester; tanning of leather (ceased in 2015)
2D3h	Printing	Package printing, other printing industry
2D3i	Other solvent use	Removal of paint and lacquer; vehicles dewaxing (ceased in 2001); production of perfume/aroma and cosmetics, paper and paper board, tobacco products, textile products; scientific laboratories; not attributable solvent emissions; extraction of oil and fats (ceased in 2000)

Table 4-25 Specification of source category 2D Other solvent use in Switzerland.

Table 4-26 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 2D Other Solvent Use.

NFR code	Source category	Pollutant	Identification criteria
2D3a	Domestic solvent use including fungicides	NMVOC	L1, L2, T1, T2
2D3b	Road paving with asphalt	NMVOC	L1, L2, T1, T2
2D3d	Coating applications	NMVOC	L1, L2, T1
2D3e	Degreasing	NMVOC	L1, T1, T2
2D3g	Chemical products	NMVOC	L1, L2, T1, T2
2D3h	Printing	NMVOC	L1, L2, T1
2D3i	Other solvent use	NMVOC	L1, L2, T2

4.5.2 Methodological issues of 2D3 Other solvent use

General comment:

In the past, the data collection of the about 50 processes of solvent and product use (source categories 2D3 and 2G) were carried out for the years1990, 1998 and then at three-years intervals until 2013 for both NMVOC emission factors and activity data. Depending on the available years of the background data (e. g. data from industry associations, employment statistics), these years were preferably used for deriving emission factors and activity data. For activity data based directly on (annual) statistics, all available data is used in the inventory. As a rule of inventory, the values of emission factors and activity data of all years in-between – also between the last survey year and the projected year – are linearly interpolated. In the past, the main data sources for commercial and industrial solvent and

product use stem from industry associations. Unfortunately, the availability and quality of the data as well as the technical expertise within the associations have changed over the years. For this reason, the solvent and product use processes have no longer been updated all together since 2016, but as part of a long-term project which started in 2017. This enables a much more thorough and comprehensive, often iterative approach based on different data sets. Thematic priorities are also set, e. g. all paint and coating applications and productions including printing processes (2D3d, 2D3g, 2D3h). On the basis of the thorough new surveys, the values and bases of previous surveys are also evaluated and revised if necessary. If previous values appear implausible or incorrect and cannot be adjusted because data and information are no longer available, they were partially deleted and linearly interpolated over longer periods accordingly.

4.5.2.1 Domestic solvent use including fungicides (2D3a)

Methodology (2D3a)

The source category 2D3a Domestic solvent use including fungicides comprises mainly the use of cleaning agents and solvents in private households for building and furniture cleaning and cosmetics and toiletries but also the use of pharmaceuticals. These products contain solvents, which evaporate during use or after the application. Up to submission 2022, propellant emissions from the use of spray cans in the household sector were reported as a separate source category. An in-depth discussion with a long-standing expert from the largest contract manufacturer in Switzerland revealed that the aerosol in many spray applications has the function of both propellant and solvent, and a clear distinction is usually not even possible or meaningful. Therefore, the source category 2D3a Domestic use of aerosol cans was removed and its NMVOC emissions were integrated into the respective application sources, also into the two source categories 2D3a Use of cleaning agents and 2D3a Domestic use of pharmaceuticals. Among the numerous NMVOC emission sources, the use of household cleaning agents, cosmetics and toiletries is the largest single source in source category 2D3.

Based on the decision tree Fig. 3.1 in chapter 2D3a in the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions are calculated by a Tier 2 method (EMIS 2025/2D3a) using country-specific emission factors. All emissions related to domestic solvent use are calculated proportional to the Swiss population.

Emission factors (2D3a)

Household cleaning agents

The source category 2D3a Use of cleaning agents comprises the use of cosmetics, toiletries, cleaning agents and care products including spray cans (aerosol). Its resulting emission factor bases thus on a multitude of products, their consumption figures, NMVOC contents and emission fractions. Currently, about 85 % of the NMVOC emissions stem from the use of cosmetics and toiletries whereas the rest arises from the use of cleaning agents and care products. The most important product classes are hair styling and deodorants with emission shares of about 30 % and just under 20 %, respectively, followed by air refresheners, perfumes and eaux de toilette, nail care and waterproofing sprays with shares between 10 % and 5 %.

Available data sources consist of surveys of the use of household cleaning agents, cosmetics and toiletries in Switzerland (1990) and in Germany (1996 and 2000).

For the current values, a comprehensive study was conducted based on detailed sales figures of the years 2017-2020, NMVOC contents and application-specific emission factors. The sales figures mainly come from a market research institute covering a large part of the

Swiss retail trade, while information on product class-specific NMVOC contents were provided by a large retailer, production companies and a contract manufacturer and are based on the European aerosol statistics as well.

Domestic use of pharmaceutical products

Emission factors of domestic use of pharmaceutical products are available from surveys in Switzerland (1990) and Germany (1998) and from the Swiss business association for the chemical, pharmaceutical and biotech industry (scienceindustries) for 2011, as documented in the EMIS database. For years with no survey data, emission factors are interpolated.

Table 4-27 Emission factors of 2D3a Domestic solvent use including fungicides in 2023.

D3a Domestic solvent use	Unit of activity data	NMVOC
	Onit of activity data	g/
Domestic use of pharmaceutical products	inhabitants	32
Household cleaning agents	inhabitants	700

Activity data (2D3a)

As described in the methodology chapter, the activity data used for calculating the NMVOC emissions in 2D3a Domestic solvent use corresponds to the Swiss population (FSO 2024c).

Table 4-28 Activity data of 2D3a Domestic solvent use including fungicides.

							-				
2D3a Domestic solvent use	Unit	1990	1995	2000	2005	2010					
Domestic use of pharmaceutical products	inhabitants	6'712'000	7'041'000	7'184'000	7'437'000	7'825'000	ľ				
Household cleaning agents	inhabitants	6'712'000	7'041'000	7'184'000	7'437'000	7'825'000					
2D3a Domestic solvent use	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Domestic use of pharmaceutical products	inhabitants	8'189'000	8'282'000	8'373'000	8'452'000	8'514'000	8'575'000	8'638'000	8'705'000	8'739'000	8'889'000
Household cleaning agents	inhabitants	8'189'000	8'282'000	8'373'000	8'452'000	8'514'000	8'575'000	8'638'000	8'705'000	8'739'000	8'889'000

4.5.2.2 Road paving with asphalt (2D3b)

Methodology (2D3b)

Based on the decision tree Fig. 3.1 in chapter 2D3b in the EMEP/EEA guidebook (EMEP/EEA 2023), the NMVOC emissions from 2D3b Road paving with asphalt are determined by a Tier 2 method based on country-specific emission factors as documented in EMIS 2025/2D3b. Other pollutants are not considered.

Emission factors (2D3b)

The emission factor for NMVOC emissions from 2D3b Road paving with asphalt comprises NMVOC emissions from the use of prime coatings and from the bitumen content in asphalt products (about 5 %). The NMVOC content in the bitumen has decreased considerably between 1990 and 2010. The values are based on industry data from 1990, 1998, 2007, 2010 and 2013. All other years are interpolated and complemented with expert estimates documented in the EMIS database. Emissions of particulate matter are not estimated so far.

Table 4-29 Emission factors of 2D3b Road paving with asphalt in 2023.

2D3b Road paving with asphalt	Unit of activity data	NMVOC	PM2.5 ex	PM10 ex	TSP ex	BC ex
	Offic of activity data	g/	g/	g/	g/	g/
Asphalt concrete	t mixed goods	540	NE	NE	NE	NE

Industrial processes and product use: Source category 2D3 – Other solvent use - Methodological issues of 2D3 Other solvent use

Activity data (2D3b)

Activity data on the amount of asphalt products (so-called mixed goods) used for road paving is based on annual data from the association of asphalt production industry (SMI) for 1990 and from 1998 onwards and expert estimates for the years in between.

Table 4-30 Activity data of 2D3b Road paving with asphalt.

2D3b Road paving with asphalt	Unit	1990	1995	2000	2005	2010					
Asphalt concrete	kt mixed goods	5'500	4'800	5'170	4'780	5'250					
2D3b Road paving with asphalt	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Asphalt concrete	kt mixed goods	5'260	4'850	4'710	5'260	5'180	5'210	4'910	4'960	4'970	5'000

4.5.2.3 Asphalt roofing (2D3c)

Methodology (2D3c)

In Switzerland there are three main producers of asphalt roofing material. Based on the decision tree Fig. 3.1 in chapter 2D3c in in the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions of NMVOC from Asphalt roofing are determined by a Tier 2 method based on country-specific emission factors as documented in EMIS 2025/2D3c. Emissions of PM2.5, PM10, TSP, BC and CO from the manufacture of asphalt sheeting are determined based on a Tier 1 method using default emission factors (EMEP/EEA 2023). In the past, four processes related to asphalt roofing were differentiated, i.e. production of sheeting, production of prime coat, laying of sheeting and use of prime coat. For submission 2018, these processes were aggregated and revised resulting in an implied emission factor for the entire asphalt roofing process.

Emission factors (2D3c)

The NMVOC emission factors from Asphalt roofing are based on information from the industry association, literature and expert estimates as documented in the EMIS database. Tier 1 emission factors of PM2.5, PM10, TSP, BC (% PM2.5) and CO from the manufacture of asphalt sheeting are taken from the EMEP/EEA guidebook (EMEP/EEA 2023, chp. 2.D.3.c, table 3.1).

Table 4-31 Emission factors of 2D3c Asphalt roofing in 2023.

2D3c Asphalt roofing	Unit of activity data	NMVOC	PM2.5 ex	PM10 ex	TSP ex	BC ex	CO
		g/	g/	g/	g/	g/	g/
Asphalt roofing	t sheeting	4'700	49	245	980	0.0049	5.9

Activity data (2D3c)

Activity data is based on data from industry and expert estimates as documented in the EMIS database. From 2012 onwards, they are extrapolated on the basis of the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020).

Table 4-32 Activity data of 2D3c Asphalt roofi
--

2D3c Asphalt roofing	Unit	1990	1995	2000	2005	2010					
Asphalt roofing	kt sheeting	54	56	58	51	68					
2D3c Asphalt roofing	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Asphalt roofing	kt sheeting	75	75	76	76	76	77	77	77	77	78

4.5.2.4 Coating applications (2D3d)

Methodology (2D3d)

This source category comprises emissions from paint application in construction, households, industry, wood and car repair. Industrial application also includes commercial applications such as corrosion protection and road marking. A comprehensive assessment of all coating applications and paint production was carried out in 2018-2020. Based on the decision tree Fig. 3.1 in chapter 2D3d in the EMEP/EEA guidebook (EMEP/EEA 2023), for 2D3d Coating applications a bottom-up Tier 2 method based on the consumption of paints, lacquers, glazes, thinners and related materials and their solvent content. Country-specific emission factors are used. In 2023, the most important emission sources are 2D3d Paint application, wood and 2D3d Paint application in construction and to a lesser extent 2D3d Paint application, industrial.

Emission factors (2D3d)

Emission factors for NMVOC are derived from the solvent contents of the paints and thinners based on data from the Swiss association for coating and paint applications (VSLF), the biggest industrial users (incl. surveys of VOC balances), paint producers, and all major Swiss DIY (do it yourself) companies as documented in the EMIS database (EMIS 2025/2D3d). The emission factors for all commercial and industrial coating applications declined significantly between 1990 and 2004 as a result of both a reduction of the solvent content and replacing of solvent-based paint by water-based paint due to increasingly strict NMVOC regulations by the EU directive (EC 2004). In addition, powder coatings, which are far more efficient, replaced in this time period the conventional paint (rough estimate: 1 t of powder coating replaces 3 t of conventional paint). Since 2004, the mean solvent content of paint applied in construction and on wood has remained about constant with some fluctuations whereas a decrease has been observed for paints in industrial applications. For paint application in car repair, even a slight increase in solvent content has been observed in the last few years. Source category 2D3d Paint application, households is based on a comprehensive study including all major Swiss DIY companies and also covers the paint spray aerosols.

2D3d Coating applications	Unit of activity data	NMVOC
	Offic of activity data	g/
Paint application, car repair	kg paint	550
Paint application, construction	kg paint	61
Paint application, households	kg paint	85
Paint application, industrial	kg paint	180
Paint application, wood	kg paint	313

Table 4-33 Emission factors of 2D3d Coating applications in 2023.

Activity data (2D3d)

The activity data correspond to the annual consumption of paints which are estimated according to data and information from VSLF, the biggest industrial users (incl. VOC balances), Swiss paint producers, foreign trade statistics and all major Swiss DIY companies for paint applications in households (EMIS 2025/2D3d). Between 1990 and 1998, the total consumption of paint decreased considerably, increased continuously from 2004 onwards and dropped again after 2013. This trend results from the opposing trends in the different source categories:

• 2D3d Paint application, construction: The paint consumption in construction shows a substantial reduction compared to 1990 levels. The increasing tendency in paint

application between 2001 and 2010, the drop thereafter and the slight increase from 2020 onwards can be explained to a certain extent by the development of construction activity in Switzerland. Before 2001, there was a decline in construction activity, which explains the decreasing tendency in paint application.

- 2D3d Paint application, wood: The paint consumption for applications on wood increased moderately between 1990 and 1998. But from 2001 onwards it shows a comparable development as the paint application in construction.
- 2D3d Paint application, industrial Between 1990 and 2016, the activity of industrial paint application decreased significantly. There was a clear decrease between 2001 and 2004 due to structural changes in the industrial sectors and a widespread application of powder coatings from 2004 onwards. Since 2007, the activity data show a moderate decrease.

2D3d Coating applications	Unit	1990	1995	2000	2005	2010					
Paint application, car repair	kt paint	2.7	2.2	2.0	1.9	1.7					
Paint application, construction	kt paint	60	43	33	42	54					
Paint application, households	kt paint	12	13	13	12	11					
Paint application, industrial	kt paint	20	21	21	8.8	8.3					
Paint application, wood	kt paint	8.7	8.7	8.5	9.2	13					
2D3d Coating applications	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Paint application, car repair	kt paint	1.1	0.97	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Paint application, construction	kt paint	49	49	47	46	46	45	45	46	46	46
Paint application, households	kt paint	10	10	10	10	10	10	10	10	10	10
Paint application, industrial	kt paint	7.8	7.6	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5
Paint application, wood	kt paint	11	10	9.5	9.3	9.2	9.0	9.0	9.0	9.0	9.0

Table 4-34 Activity data of 2D3d Coating application.

4.5.2.5 Degreasing (2D3e)

Methodology (2D3e)

Source category 2D3e comprises emissions from degreasing of electronic components, metal and other industrial cleaning. It covers also the emissions from the use of spray cans in the field of industry, technical products and automotive applications without coating. Based on the decision tree Fig. 3.1 in chapter 2D3e in the EMEP/EEA guidebook (EMEP/EEA 2023), the NMVOC emissions from 2D3e Degreasing are calculated by a Tier 2 method (EMIS 2025/2D3e) using country-specific emission factors.

Emission factors (2D3e)

Emission factors for NMVOC are estimated based on data from industry surveys by swissmem (including VOC balance evaluations in 2004, 2007, 2012 and 2018) and expert estimates as documented in the EMIS database. For the use of spray cans the values are based on an (unpublished) propellant gas statistics, data from the Swiss aerosol association and statistics data of the European aerosol federation (FEA) for the years 1990, 1998 and 2019/2020, respectively.

2D3e Degreasing	Unit of activity data	NMVOC g/
Cleaning of electronic components	kg solvent	478
Degreasing of metal	kg solvent	541
Other industrial cleaning	kg solvent	543

Table 4-35 Emission factors of 2D3e Degreasing in 2023.

Activity data (2D3e)

Activity data correspond to the annual consumption of solvents for degreasing and cleaning. They are based on survey data from the association of Swiss mechanical and electric engineering industries (swissmem) in 2004, 2007, 2012 and 2018, VOC balances of the most important companies, import statistics and expert estimates, documented in the EMIS database (EMIS 2025/2D3e). For the use of spray cans the data are based on an (unpublished) propellant gas statistics, data of the Swiss aerosol association and statistics data of the European aerosol federation (FEA) for the years 1990, 1998 and 2019/2020, respectively.

In 1990 metal degreasing showed by far the highest activity data, i.e. consumption of solvents and NMVOC emissions but with a subsequent sharp decline until around 2004. Since then, other industrial cleaning and metal degreasing are of similar importance.

Table 4-36 Activity data of 2D3e Degreasing (solvent consumption).

2D3e Degreasing	Unit	1990	1995	2000	2005	2010					
Cleaning of electronic components	kt solvent	1.7	1.5	1.3	1.1	0.84					
Degreasing of metal	kt solvent	13	9.1	6.2	2.7	2.3					
Other industrial cleaning	kt solvent	2.9	2.5	2.0	1.8	1.4					
2D3e Degreasing	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Cleaning of electronic components	kt solvent	0.59	0.49	0.38	0.28	0.18	0.18	0.18	0.18	0.18	0.18
	lateral sent	4.0	1.6	1.4	1.3	1 1	1 1	11	1 1	1 1	1.1
Degreasing of metal	kt solvent	1.8	1.0	1.4	1.5	1.1	1.1	1.1	1.1	1.1	1.1

4.5.2.6 Dry cleaning (2D3f)

Methodology (2D3f)

Based on the decision tree Fig. 3.1 in chapter 2D3f in the EMEP/EEA guidebook (EMEP/EEA 2023), the NMVOC emissions from 2D3f Dry cleaning are calculated by a Tier 2 method (EMIS 2025/2D3f) using country-specific emission factors.

Emission factors (2D3f)

Emission factors for NMVOC are estimated based on information from the emission control authority and analysis of about 170 VKTS inspection protocols from the four biggest Swiss cantons (AG, BE, VD and ZH) of 2017 as documented in the EMIS database.

Table 4-37 Emission factors of 2D3f Dry cleaning in 2023.

2D3f Dry cleaning	Unit of activity data					
Dry cleaning	kg solvent	900				

Activity data (2D3f)

For dry cleaning, activity data is the amount of tetrachloroethylene (PER) and nonhalogenated solvents used. The activity data from 2001 onwards has been calculated based on the (annual) number of dry-cleaning facilities in Switzerland according to VKTS and FSO (business census) and the mean solvent consumption per facility based on an analysis of about 170 VKTS inspection protocols from the four biggest Swiss cantons (AG, BE, VD and ZH) of 2017. Activity data for 1990 are based on net imports of PER. For the years in between, data are interpolated linearly. Table 4-38 Activity data of 2D3f Dry cleaning.

2D3f Dry cleaning	Unit	1990	1995	2000	2005	2010					
Dry cleaning	kt solvent	1.3	0.77	0.23	0.097	0.081					
2D3f Dry cleaning	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Dry cleaning	kt solvent	0.072	0.071	0.071	0.070	0.070	0.069	0.069	0.068	0.068	0.067

4.5.2.7 Chemical products (2D3g)

Methodology (2D3g)

Based on the decision tree Fig. 3.1 in chapter 2D3g in the EMEP/EEA guidebook (EMEP/EEA 2023, for source category 2D3g Chemical products a Tier 2 method using country-specific emission factors is used for calculating the NMVOC emissions (EMIS 2025/2D3g).

Although asphalt roofing materials are produced in Switzerland, there is no bitumen blowing. According to information from both manufacturers, all bitumen (including very small amounts of oxidized bitumen) used for the production of polymer-bitumen sealing sheeting is imported. The emissions from the coating machines of the production of polymer-bitumen sheeting and the thinner production are reported in source category 2D3c Asphalt roofing.

Note: The data for the chemical industry and plastics processing are currently being updated.

Emission factors (2D3g)

Emission factors for NMVOC in the period 1990 to approximately 2010 were mainly provided by industry associations, i.e. for

- fine chemicals production, pharmaceutical production and handling and storing of solvents: Swiss business association for the chemical, pharmaceutical and biotech industry (scienceindustries)
- paint and ink production: Swiss association for coating and paint applications (VSLF) and the Swiss Organisation for the Solvent Recovery of Industrial Enterprises in the Packaging Sector (SOLV)
- polyurethane processing: Swiss plastics association
- polyester processing: Swiss polyester association
- tanning of leather (ceased production in 2015): Swiss leather tanning association.

For the period from around 2010 and the other processes in source category 2D3g, data are based on information from individual industrial companies (e.g. ink and paint production), surveys of VOC balances (e.g. ink production), emission control authorities (e.g. polystyrene processing) and expert estimates as documented in the EMIS database.

Table 4-39 Emission factors of 2D3g Chemical products in 2023.

2D3g Chemical products	Unit of activity data	NMVOC
		g/
Fine chemicals production	production index	3'340'000
Glue production	kg glue	0.51
Handling and storing of solvents	production index	1'500'000
Ink production	kg ink	5.0
PVC processing	kg PVC	4.0
Paint production	kg paint	3.0
Pharmaceutical production	kg pharmaceuticals	7.0
Polyester processing	kg polyester	70
Polystyrene processing	kg polystyrene	31
Polyurethane processing	kg polyurethane	3.0
Production of adhesive tape	kg adhesive tape	NO
Rubber processing	tyres	140
Tanning of leather materials	employees	NO

Activity data (2D3g)

The activity data are mainly production or consumption data provided by the Swiss Federal Office of Statistics, Swiss foreign trade statistics and industry associations, i.e. for

- fine chemicals production and handling and storing of solvents: Swiss Federal Office of Statistics
- pharmaceutical production: Swiss business association for the chemical, pharmaceutical and biotech industry (scienceindustries)
- paint and ink production: Swiss association for coating and paint applications (VSLF) and Swiss Organisation for the Solvent Recovery of Industrial Enterprises in the Packaging Sector (SOLV)
- polyurethane processing: Swiss plastics association
- polyester processing: Swiss polyester association
- polystyrene processing: Swiss foreign trade statistics (annual net import figures)
- tanning of leather: Swiss leather tanning association.

In addition, and for the other processes in source category 2D3g, data are based on information from individual industrial companies and expert estimates as documented in the EMIS database. Activity data on handling and storage of solvents, production of fine chemicals and pharmaceuticals as well as production of inks, are extrapolated on the basis of the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020) from 2012 and 2017, respectively, onwards. Since 1994 no production of adhesive tape is occurring in Switzerland anymore. The last Swiss tannery ceased production in 2015.

2D3g Chemical products	Unit	1990	1995	2000	2005	2010					
Fine chemicals production	production index	70	100	163	224	314					
Glue production	kt glue	19	39	58	72	82					
Handling and storing of solvents	production index	70	100	163	224	314					
Ink production	kt ink	20	29	36	55	65					
PVC processing	kt PVC	94	94	78	64	52					
Paint production	kt paint	88	78	72	77	78					
Pharmaceutical production	kt pharmaceuticals	16	21	20	28	30					
Polyester processing	kt polyester	11	7.0	6.5	6.9	3.4					
Polystyrene processing	kt polystyrene	20	19	19	24	35					
Polyurethane processing	kt polyurethane	17	35	45	54	54					
Production of adhesive tape	kt adhesive tape	1.5	NO	NO	NO	NO					
Rubber processing	tyres	120'000	119'375	103'667	67'000	77'500					
Tanning of leather materials	employees	110	108	102	88	65					
2D3g Chemical products	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Fine chemicals production	production index	293	291	289	286	284	282	280	278	276	274
Glue production	kt glue	94	97	99	102	105	106	107	108	109	109
F				55							
Handling and storing of solvents	production index	293	291	289	286	284	282	280	278	276	274
		-	-		-	284 36		-	278 38	276 39	39
Handling and storing of solvents	production index	293	291	289	286		282	280			
Handling and storing of solvents Ink production	production index kt ink	293 52	291 43	289 35	286 36	36	282 37	280 37	38	39	39 30 60
Handling and storing of solvents Ink production PVC processing	production index kt ink kt PVC	293 52 37	291 43 36	289 35 35	286 36 34	36 32	282 37 31	280 37 30	38 30	39 30	39 30 60 27
Handling and storing of solvents Ink production PVC processing Paint production	production index kt ink kt PVC kt paint	293 52 37 66	291 43 36 63	289 35 35 60	286 36 34 60	36 32 60	282 37 31 60	280 37 30 60	38 30 60	39 30 60	39 30 60 27 3.4
Handling and storing of solvents Ink production PVC processing Paint production Pharmaceutical production	production index kt ink kt PVC kt paint kt pharmaceuticals	293 52 37 66 29	291 43 36 63 29 3.5 27	289 35 35 60 29	286 36 34 60 29	36 32 60 29	282 37 31 60 28	280 37 30 60 28	38 30 60 28	39 30 60 28	39 30 60 27 3.4 25
Handling and storing of solvents Ink production PVC processing Paint production Pharmaceutical production Polyester processing	production index kt ink kt PVC kt paint kt pharmaceuticals kt polyester	293 52 37 66 29 3.6 29 3.8	291 43 36 63 29 3.5 27 37	289 35 35 60 29 3.5 23 37	286 36 34 60 29 3.4 24 36	36 32 60 29 3.4 22 36	282 37 31 60 28 3.3 23 35	280 37 30 60 28 3.3 23 35	38 30 60 28 3.3 24 35	39 30 60 28 3.4 24 35	39 30 60 27 3.4 25 35
Handling and storing of solvents Ink production PVC processing Paint production Pharmaceutical production Polyester processing Polystyrene processing	production index kt ink kt PVC kt paint kt pharmaceuticals kt polyester kt polyestyrene	293 52 37 66 29 3.6 29	291 43 36 63 29 3.5 27	289 35 35 60 29 3.5 23	286 36 34 60 29 3.4 24	36 32 60 29 3.4 22	282 37 31 60 28 3.3 23	280 37 30 60 28 3.3 23	38 30 60 28 3.3 24	39 30 60 28 3.4 24	39 30 60 27 3.4 25
Handling and storing of solvents Ink production PVC processing Paint production Pharmaceutical production Polyester processing Polystyrene processing Polyurethane processing	production index kt ink kt PVC kt paint kt pharmaceuticals kt polyester kt polyeren kt polyurethane	293 52 37 66 29 3.6 29 3.8	291 43 36 63 29 3.5 27 37	289 35 35 60 29 3.5 23 37	286 36 34 60 29 3.4 24 36	36 32 60 29 3.4 22 36	282 37 31 60 28 3.3 23 35	280 37 30 60 28 3.3 23 35	38 30 60 28 3.3 24 35	39 30 60 28 3.4 24 35	39 30 60 27 3.4 25 35

4.5.2.8 Printing (2D3h)

Methodology (2D3h)

The source category 2D3h Printing is differentiated into package printing and other printing industry. Based on the decision tree Fig. 3.1 in chapter 2D3g in the EMEP/EEA guidebook (EMEP/EEA 2023), a Tier 2 method using country-specific emission factors is used for calculating the NMVOC emissions from the ink applications (EMIS 2025/2D3h).

Emission factors (2D3h)

Emission factors for NMVOC are based on data from industry associations (Swiss Organisation for the Solvent Recovery of Industrial Enterprises in the Packaging Sector (SOLV), Swiss organisation for the print and media industry (viscom)), surveys on the VOC balances, emission control authorities, German studies on NMVOC emissions from solvent use (Theloke 2005) and expert estimates, as documented in the EMIS database. For packaging printing, emission factors are derived for the years 1990, 1998, 2001, 2004, 2007, 2010, 2013 and 2016 whereas for the other printing processes for 1990, 1998, 2001, 2013 and 2016.

2D3h Printing	Unit of activity data	NMVC
2D3H FHIlling	Only of activity data	g/
Other printing	kg ink	2
Package printing	kg ink	1

Table 4-41 Emission factors of 2D3h Printing in 2023.

Activity data (2D3h)

The activity data correspond to the consumption of printing ink. These data stem from industry associations (SOLV, viscom), surveys on the VOC balances, Swiss Federal Office of Statistics, emission control authorities and expert estimates, documented in the EMIS database. For packaging printing, activity data are available for the years 1990, 1998, 2001, 2004, 2007, 2010, 2013 and 2016 whereas for the other printing processes for 1990, 1998,

2001, 2005, 2008, 2013 and 2016. From 2017 onwards, they are extrapolated on the basis of the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020).

2D3h Printing Unit 1990 200 Other printing kt inł Package printing kt inł 5.9 5.5 2D3h Printing Unit 2014 201 201 2018 Other printing kt inł 78 74 Package printing kt ink

Table 4-42 Activity data of 2D3h Printing (ink consumption).

4.5.2.9 Other solvent use (2D3i)

Methodology (2D3i)

Source category 2D3i Other solvent use consists of a number of solvent uses in various production processes and services. Based on the decision tree Fig. 3.1 in chapter 2D3i in the EMEP/EEA guidebook (EMEP/EEA 2023), a Tier 2 method using country-specific emission factors is applied for calculating the NMVOC emissions from the different solvent applications in source category 2D3i Other solvent use (EMIS 2025/2D3i). For the source category 2D3i Not-attributable solvent emissions, so-called direct emission data is available only.

Emission factors (2D3i)

Emission factors for NMVOC are based on data from industry and services, industry associations, retail trade, German studies on NMVOC emissions from solvent use (Theloke et al. 2000 and Theloke 2005), VOC balances and expert estimates, as documented in the EMIS database.

2D3i Other solvent use	Unit of activity data	NMVOC
	Onit of activity data	g/
Fat, edible and non-edible oil extraction	kg oil and grease	NO
Production of cosmetics	employees	62'182
Production of flavours and fragarances	employees	30'000
Production of paper and paperboard	kg paper	0.013
Production of textiles	kg solvent	180
Production of tobacco	employees	12'000
Removal of paint and lacquer	kg removal agent	350
Scientific laboratories	employees	15'000
Vehicle dewaxing	vehicles	NO

Table 4-43 Emission factors of 2D3i Other solvent use in 2023.

Activity data (2D3i)

For some production processes and services – such as production of perfume and flavour and scientific laboratories – the activity data correspond to the number of employees in the respective industrial sectors (FSO 2024d). The quantity of NMVOC emission per employee originates from the bottom-up approach in these industrial sectors and the decentralized political structure in Switzerland. The determined NMVOC emissions of representative production sites or service institutions are referred to the number of employees in order to calculate the Swiss total.

For production of paper and paperboard and fat, edible and non-edible oil extraction, the activity data are based on production volumes. Annual production volumes of paper and

Industrial processes and product use: Source category 2D3 – Other solvent use - Methodological issues of 2D3 Other solvent use

paperboard are provided by the Swiss association of pulp, paper and paperboard industry (ZPK) and the Swiss association of paper, cardboard and foil manufacturers (SPKF) for the years 1997 – 2011 and from 2016 onwards, respectively. For the production of textiles, the activity data is the solvent consumption based on VOC balances and industry data. For the removal of paint and lacquer, the activity data correspond to the amount of removal agent based on information from producers and retail trade.

2D3i Other solvent use	Unit	1990	1995	2000	2005	2010					
Fat, edible and non-edible oil extraction	kt oil and grease	40	38	12	NO	NO					
Production of cosmetics	employees	2'200	2'200	2'267	2'100	2'100					
Production of flavours and fragarances	employees	2'200	2'325	2'567	3'200	3'475					
Production of paper and paperboard	kt paper	1'510	1'560	1'780	1'750	1'540					
Production of textiles	kt solvent	0.60	0.50	0.40	0.29	0.19					
Production of tobacco	employees	3'300	2'988	2'733	2'700	3'200					
Removal of paint and lacquer	kt removal agent	0.70	0.60	0.50	0.40	0.31					
Scientific laboratories	employees	10'194	18'604	23'217	23'000	23'000					
Vehicle dewaxing	vehicles	200'000	166'250	72'667	NO	NO					
2D3i Other solvent use	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
2D3i Other solvent use Fat, edible and non-edible oil extraction	Unit kt oil and grease	2014 NO	2015 NO	2016 NO	-	2018 NO	2019 NO	2020 NO		2022 NO	2023 NO
					NO				NO	-	
Fat, edible and non-edible oil extraction	kt oil and grease	NO	NO	NO	NO 2'100	NO	NO	NO	NO 2'100	NO	NO
Fat, edible and non-edible oil extraction Production of cosmetics	kt oil and grease employees	NO 2'100	NO 2'100	NO 2'100	NO 2'100 3'080	NO 2'100	NO 2'100	NO 2'100	NO 2'100	NO 2'100	NO 2'100
Fat, edible and non-edible oil extraction Production of cosmetics Production of flavours and fragarances	kt oil and grease employees employees	NO 2'100 3'290	NO 2'100 3'220	NO 2'100 3'150	NO 2'100 3'080	NO 2'100 3'010	NO 2'100 2'940	NO 2'100 2'870	NO 2'100 2'800	NO 2'100 2'800	NO 2'100 2'800
Fat, edible and non-edible oil extraction Production of cosmetics Production of flavours and fragarances Production of paper and paperboard	kt oil and grease employees employees kt paper	NO 2'100 3'290 1'390	NO 2'100 3'220 1'393	NO 2'100 3'150 1'396	NO 2'100 3'080 1'362 0.22	NO 2'100 3'010 1'056	NO 2'100 2'940 1'034	NO 2'100 2'870 967	NO 2'100 2'800 1'024 0.22	NO 2'100 2'800 1'061	NO 2'100 2'800 1'099
Fat, edible and non-edible oil extraction Production of cosmetics Production of flavours and fragarances Production of paper and paperboard Production of textiles	kt oil and grease employees employees kt paper kt solvent	NO 2'100 3'290 1'390 0.21	NO 2'100 3'220 1'393 0.21	NO 2'100 3'150 1'396 0.22	NO 2'100 3'080 1'362 0.22 3'200	NO 2'100 3'010 1'056 0.22	NO 2'100 2'940 1'034 0.22	NO 2'100 2'870 967 0.22	NO 2'100 2'800 1'024 0.22	NO 2'100 2'800 1'061 0.22	NO 2'100 2'800 1'099 0.22
Fat, edible and non-edible oil extraction Production of cosmetics Production of flavours and fragarances Production of paper and paperboard Production of textiles Production of tobacco	kt oil and grease employees employees kt paper kt solvent employees	NO 2'100 3'290 1'390 0.21 3'200	NO 2'100 3'220 1'393 0.21 3'200	NO 2'100 3'150 1'396 0.22 3'200	NO 2'100 3'080 1'362 0.22 3'200	NO 2'100 3'010 1'056 0.22 3'200	NO 2'100 2'940 1'034 0.22 3'200	NO 2'100 2'870 967 0.22 3'200	NO 2'100 2'800 1'024 0.22 3'200 0.19	NO 2'100 2'800 1'061 0.22 3'200	NO 2'100 2'800 1'099 0.22 3'200

Table 4-44 Activity data of 2D3i Other solvent use.

4.5.3 Category-specific recalculations in 2D3 Other solvent use

There were no recalculations implemented in submission 2025.

4.6 Source category 2G – Other product use

4.6.1 Source category description of 2G Other product use

Source category 2G Other product use includes about 20 sources releasing NMVOC. In addition, there are also emissions of NO_x , SO_x , NH_3 , particulate matter, BC, CO, Pb, Cd, Hg, PCDD/PCDF and PAH from use of fireworks and tobacco as well as from renovation of corrosion inhibiting coatings.

Table 4-45 Specification of source category 2G Other product use in Switzerland.

2G	Source category	Specification
2G	Other product use	Use of spray cans in industry (commercial insecticide application only), antifreeze agents in vehicles, concrete additives, cooling and other lubricants, pesticides, tobacco and fireworks; car underbody sealant; de-icing of airplanes and airport surfaces (ceased in 2011); glass and mineral wool enduction; application of glues and adhesives; house cleaning industry/craft/services; hairdressers; cosmetic institutions; preservation of wood; medical practitioners; other health care institutions; other use of gases; renovation of corrosion inhibiting coatings

Table 4-46 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 2G Other product use.

NFR code	Source category	Pollutant	Identification criteria
2G	Other product use	NMVOC	L1, L2, T2
2G	Other product use	PM2.5	L1, L2, T1, T2
2G	Other product use	PM10	L1, L2

4.6.2 Methodological issues of 2G Other product use

4.6.2.1 Other product use (2G)

General comment:

In the past, the data collection of the about 50 processes of solvent and product use (source categories 2D3 and 2G) were carried out for the years 1990, 1998 and then at three-years intervals until 2013 for both NMVOC emission factors and activity data. Depending on the available years of the background data (e. g. data from industry associations, employment statistics), these years were preferably used for deriving emission factors and activity data. For activity data based directly on (annual) statistics, all available data is used in the inventory. As a rule of inventory, the values of emission factors and activity data of all years in-between – also between the last survey year and the projected year – are linearly interpolated. In the past, the main data sources for commercial and industrial solvent and product use stem from industry associations. Unfortunately, the availability and quality of the data as well as the technical expertise within the associations have changed over the years. For this reason, the solvent and product use processes have no longer been updated all together since 2016, but as part of a long-term project which started in 2017. This enables a much more thorough and comprehensive, often iterative approach based on different data sets. Thematic priorities are also set, e. g. all paint and coating applications and productions including printing processes (2D3d, 2D3g, 2D3h). On the basis of the thorough new surveys, the values and bases of previous surveys are also evaluated and revised if necessary. If previous values appear implausible or incorrect and cannot be adjusted because data and

information are no longer available, they were partially deleted and linearly interpolated over longer periods accordingly.

Methodology (2G)

Within source category 2G Other product use, the major NMVOC emission sources in 2023 are 2G Commercial and industrial use of cleaning agents and 2G Health care, other.

Based on the decision tree Fig. 3.1 in chapter 2G in the EMEP/EEA guidebook (EMEP/EEA 2023), for source category 2G Other product use Tier 2 methods using country-specific emission factors are applied for calculating the emissions from the different product applications and the use of fireworks and tobacco (EMIS 2025/2G).

For the source categories 2G Renovation of corrosion inhibiting coatings and 2G Use of aerosol cans in commerce and industry so-called direct emission data is available only. An in-depth discussion with a long-standing expert from the largest contract manufacturer in Switzerland revealed that the aerosol in many spray applications has the function of both propellant and solvent, and a clear distinction is usually not even possible or meaningful. Therefore, the aerosol emissions from the use of spray cans, except for a residual batch of commercial insecticide application, were integrated into the respective application sources, e.g. the use of spray cans in the field of industry and technical products and automotive without paints into 2D3e Degreasing and the disinfectant sprays in 2G Health care other and 2G Medical practices.

Emission factors (2G)

Emission factors for NMVOC are based on data from individual industrial companies, services and Swiss airports, industry associations, survey on co-formulants in pesticides, German studies on NMVOC emissions from solvent use (Theloke et al. 2000 and Theloke 2005), VOC balances, post-combustion plants, statistics (aerosol) and expert estimates, as documented in the EMIS database.

2G Other product use	Unit of activity data	NMVOC
Application of glues and adhesives	kg solvent	g/ 386
Commercial and industrial use of cleaning agents	employees	400
Cosmetic institutions	employees	27'500
De-icing of airplanes	kg de-icing agent	54
De-icing of airport surfaces	kg de-icing agent	NO
Glass wool enduction	t glass wool	131
Hairdressers	employees	2'100
Health care other	employees	9'100
Medical practices	employees	8'200
Preservation of wood	kg paint	30
Rock wool enduction	t rock wool	С
Underseal treatment and conservation of vehicles	kg underseal agent	450
Use of antifreeze agents in vehicles	Mio veh. km	8'000
Use of concrete additives	kg additive	0.74
Use of cooling lubricants	kg cooling lubricant	6.0
Use of lubricants	kg lubricant	120
Use of pesticides	kg pesticides	116
Use of tobacco	Mio cigarette eq.	4'840

Table 4-47 Emission factors of 2G Other product use in 2023.

Emission factors for pollutants other than NMVOC from 2G Use of fireworks and tobacco and 2G Glass wool enduction (EMIS 2025/2G) are displayed in Table 4-48. Emission factors of fireworks are documented in FOEN (2014p). Emission factors for use of tobacco are according to the EMEP/EEA guidebook (EMEP/EEA 2023, chp. 2.D.3.i, 2.G, table 3-15) with the following exceptions: The emission factor for PCDD/PCDF is according to the UK National Atmospheric Emissions Inventory (UK NAEI 2019). The emission factors for Cd and Pb are country-specific estimates based on an averaged measured Pb and Cd content in cigarettes representative for Europe (Watanabe 1987, Caruso 2013, Piadé 2014, Armendariz 2015). They are assumed to remain constant over time due to globally sourced and therefore chemically homogenous tobacco leaves. shows product-specific emission factors for glass wool production. For glass wool enduction, the NH₃ emission factor is based on various air pollution control measurements under the Ordinance on Air Pollution Control and partly on information from industry.

2G Other product use	Unit of activity data	NOx	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	CO
	Offit of activity data	g/	g/	g/	g/	g/	g/	g/	g/
Fireworks	kg fireworks	0.26	4.1	NA	90	180	180	NE	7.4
Glass wool enduction	t glass wool	NA	NA	778	NA	NA	NA	NA	NA
Use of tobacco	Mio cigarette eq.	1'800	NE	4'150	27'000	27'000	27'000	122	55'100
2G Other product use	Unit of activity data	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP
	Unit of activity data	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/
Fireworks	kg fireworks	130	3.0	0.10	NE	NE	NE	NE	NE
Glass wool enduction	t glass wool	NA	NA	NA	NA	NA	NA	NA	NA
Use of tobacco	Mio cigarette eq.	800	970	NE	100	111	45	45	45

Table 4-48 Emission factors of all pollutants other than NMVOC from 2G Other product use in 2023.

Activity data (2G)

For the production processes, such as enduction of glass and rock wool and part of the applications in services or agriculture, such as preservation of wood, pesticides and application of glues and adhesives the activity data are based on production volume or employed agents. For the other part of applications in services, such as house cleaning in services, commerce and industry and medical practices the activity data correspond to the respective number of employees. The quantity of NMVOC emission per employee originates from the bottom-up approach in these service sectors and the decentralized political structure in Switzerland. The determined NMVOC emissions of representative production sites or service institutions are referenced to the number of employees in order to calculate the Swiss total.

The activity data stem from individual industrial companies, services, Swiss airports (since 2011 no VOC-containing agents are used for de-icing of airport surfaces anymore), industry associations, Swiss Federal Statistical Office, Swiss Federal Office for Agriculture (sales statistics of pesticides), VOC balances, foreign trade statistics and expert estimates. They are documented in the EMIS database. Activity data for annual tobacco consumption and the annual firework sales are provided by the Swiss addiction prevention foundation ("Sucht Schweiz") and the statistics of the Swiss federal office for police (FEDPOL 2024), respectively. Activity data for concrete additives are extrapolated from 2017 onwards, based on the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020).

Table 4-49 Activity data of 2G Other product use.

2G Other product use	Unit	1990	1995	2000	2005	2010	l l				
Application of glues and adhesives	kt solvent	4.8	4.0	3.2	2.7	2.5					
Commercial and industrial use of cleaning agents	employees				4'133'667						
Cosmetic institutions	employees	2'600	3'100	3'533	3'800	4'800					
De-icing of airplanes	kt de-icing agent	1.2	2.4	1.8		3.3					
De-icing of airport surfaces	kt de-icing agent	0.34	0.39	0.32	0.41	0.018					
Fireworks	kt fireworks	0.84	1.0	1.5	1.4	1.7					
Glass wool enduction	kt glass wool	24	24	31	37	36					
Hairdressers	employees	20'553	22'826	23'530	22'200	26'761					
Health care other	employees	113'000	129'250	145'667	161'667	163'000					
Medical practices	employees	27'625	42'047	50'833	55'357	58'700					
Preservation of wood	kt paint	4.8	6.5	7.8	6.6	0.97					
Rock wool enduction	kt rock wool	C	С	С	С	С					
Underseal treatment and conservation of vehicles	kt underseal agent	0.060	0.060	0.076	0.12	0.16					
Use of antifreeze agents in vehicles	Mio veh. km	47'523	46'479	51'142	53'723	57'039					
Use of concrete additives	kt additive	24	25	29	36	41					
Use of cooling lubricants	kt cooling lubricant	5.0	5.2	5.8	7.8	7.0					
Use of lubricants	kt lubricant	1.3	1.3	1.3	4.4	2.4					
Use of pesticides	kt pesticides	2.4	2.4	2.3	2.3	2.1					
Use of tobacco	Mio cigarette eq.	16'192	15'774	15'328	13'256	12'360					
2G Other product use	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	onit	2014	2010	2010	2017	2010	2013	2020	2021	2022	2023
Application of glues and adhesives	kt solvent	2.4	2.4	2.3		2.3	2.3	2020	2.3	2.3	2023
		2.4	2.4	2.3	2.3	2.3	2.3	2.3	2.3		2.3
Application of glues and adhesives	kt solvent	2.4 4'236'000 5'333	2.4 4'280'000 5'444	2.3 4'324'000 5'556	2.3 4'368'000 5'667	2.3 4'412'000 5'778	2.3 4'456'000 5'889	2.3 4'500'000 6'000	2.3 4'500'000 6'100	2.3 4'500'000 6'200	2.3 4'500'000 6'300
Application of glues and adhesives Commercial and industrial use of cleaning agents	kt solvent employees	2.4 4'236'000 5'333 2.3	2.4 4'280'000 5'444 2.3	2.3 4'324'000 5'556 2.3	2.3 4'368'000 5'667 2.3	2.3 4'412'000 5'778 2.4	2.3 4'456'000 5'889 2.4	2.3 4'500'000 6'000 2.4	2.3 4'500'000 6'100 2.5	2.3 4'500'000 6'200 2.5	2.3 4'500'000 6'300 2.5
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions	kt solvent employees employees	2.4 4'236'000 5'333	2.4 4'280'000 5'444	2.3 4'324'000 5'556	2.3 4'368'000 5'667 2.3	2.3 4'412'000 5'778	2.3 4'456'000 5'889	2.3 4'500'000 6'000	2.3 4'500'000 6'100	2.3 4'500'000 6'200	2.3 4'500'000 6'300
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes	kt solvent employees employees kt de-icing agent	2.4 4'236'000 5'333 2.3	2.4 4'280'000 5'444 2.3 NO 1.6	2.3 4'324'000 5'556 2.3 NO	2.3 4'368'000 5'667 2.3 NO 1.7	2.3 4'412'000 5'778 2.4	2.3 4'456'000 5'889 2.4	2.3 4'500'000 6'000 2.4	2.3 4'500'000 6'100 2.5	2.3 4'500'000 6'200 2.5	2.3 4'500'000 6'300 2.5
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces	kt solvent employees employees kt de-icing agent kt de-icing agent	2.4 4'236'000 5'333 2.3 NO	2.4 4'280'000 5'444 2.3 NO	2.3 4'324'000 5'556 2.3 NO 1.2 32	2.3 4'368'000 5'667 2.3 NO 1.7 36	2.3 4'412'000 5'778 2.4 NO 1.8 40	2.3 4'456'000 5'889 2.4 NO 1.0 47	2.3 4'500'000 6'000 2.4 NO 1.0 40	2.3 4'500'000 6'100 2.5 NO 1.5 47	2.3 4'500'000 6'200 2.5 NO	2.3 4'500'000 6'300 2.5 NO
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces Fireworks	kt solvent employees employees kt de-icing agent kt de-icing agent kt fireworks	2.4 4'236'000 5'333 2.3 NO 1.8	2.4 4'280'000 5'444 2.3 NO 1.6	2.3 4'324'000 5'556 2.3 NO 1.2	2.3 4'368'000 5'667 2.3 NO 1.7 36	2.3 4'412'000 5'778 2.4 NO 1.8	2.3 4'456'000 5'889 2.4 NO 1.0	2.3 4'500'000 6'000 2.4 NO 1.0 40 30'270	2.3 4'500'000 6'100 2.5 NO 1.5	2.3 4'500'000 6'200 2.5 NO 1.9	2.3 4'500'000 6'300 2.5 NO 0.80
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction	kt solvent employees employees kt de-icing agent kt de-icing agent kt fireworks kt glass wool	2.4 4'236'000 5'333 2.3 NO 1.8 32	2.4 4'280'000 5'444 2.3 NO 1.6 31	2.3 4'324'000 5'556 2.3 NO 1.2 32	2.3 4'368'000 5'667 2.3 NO 1.7 36 30'075	2.3 4'412'000 5'778 2.4 NO 1.8 40	2.3 4'456'000 5'889 2.4 NO 1.0 47	2.3 4'500'000 6'000 2.4 NO 1.0 40	2.3 4'500'000 6'100 2.5 NO 1.5 47	2.3 4'500'000 6'200 2.5 NO 1.9 45	2.3 4'500'000 6'300 2.5 NO 0.80 37
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction Hairdressers	kt solvent employees employees kt de-icing agent kt de-icing agent kt fireworks kt fireworks kt glass wool employees	2.4 4'236'000 5'333 2.3 NO 1.8 32 29'499 163'000 58'700	2.4 4'280'000 5'444 2.3 NO 1.6 31 29'854	2.3 4'324'000 5'556 2.3 NO 1.2 32 30'109 163'000 58'700	2.3 4'368'000 5'667 2.3 NO 1.7 36 30'075 163'000 58'700	2.3 4'412'000 5'778 2.4 NO 1.8 40 30'170	2.3 4'456'000 5'889 2.4 NO 1.0 47 30'610	2.3 4'500'000 6'000 2.4 NO 1.0 40 30'270 163'000 58'700	2.3 4'500'000 6'100 2.5 NO 1.5 47 30'519 163'000 58'700	2.3 4'500'000 6'200 2.5 NO 1.9 45 30'767 163'000 58'700	2.3 4'500'000 6'300 2.5 NO 0.80 37 31'016
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction Hairdressers Health care other	kt solvent employees employees kt de-icing agent kt de-icing agent kt fireworks kt glass wool employees employees	2.4 4'236'000 5'333 2.3 NO 1.8 32 29'499 163'000	2.4 4'280'000 5'444 2.3 NO 1.6 31 29'854 163'000	2.3 4'324'000 5'556 2.3 NO 1.2 32 30'109 163'000	2.3 4'368'000 5'667 2.3 NO 1.7 36 30'075 163'000 58'700	2.3 4'412'000 5'778 2.4 NO 1.8 40 30'170 163'000	2.3 4'456'000 5'889 2.4 NO 1.0 47 30'610 163'000	2.3 4'500'000 6'000 2.4 NO 1.0 40 30'270 163'000	2.3 4'500'000 6'100 2.5 NO 1.5 47 30'519 163'000	2.3 4'500'000 6'200 2.5 NO 1.9 45 30'767 163'000	2.3 4'500'000 6'300 2.5 NO 0.80 37 31'016 163'000
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction Hairdressers Health care other Medical practices	kt solvent employees employees kt de-icing agent kt de-icing agent kt fireworks kt glass wool employees employees employees	2.4 4'236'000 5'333 2.3 NO 1.8 32 29'499 163'000 58'700 0.57 C	2.4 4'280'000 5'444 2.3 NO 1.6 31 29'854 163'000 58'700 0.62 C	2.3 4'324'000 5'556 2.3 NO 1.2 30'109 163'000 58'700 0.68 C	2.3 4'368'000 5'667 2.3 NO 1.7 36 30'075 163'000 58'700 0.70 C	2.3 4'412'000 5'778 2.4 NO 1.8 40 30'170 163'000 58'700 0.49 C	2.3 4'456'000 5'889 2.4 NO 1.0 47 30'610 163'000 58'700 0.60 C	2.3 4'500'000 6'000 2.4 NO 1.0 40 30'270 163'000 58'700 0.60 C	2.3 4'500'000 6'100 2.5 NO 1.5 47 30'519 163'000 58'700 0.60 C	2.3 4'500'000 6'200 2.5 NO 1.9 45 30'767 163'000 58'700 0.60 C	2.3 4'500'000 6'300 2.5 NO 0.80 37 31'016 163'000 58'700 0.60 C
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction Hairdressers Health care other Medical practices Preservation of wood Rock wool enduction Underseal treatment and conservation of vehicles	kt solvent employees employees kt de-icing agent kt de-icing agent kt fireworks kt glass wool employees employees employees kt paint kt rock wool kt underseal agent	2.4 4'236'000 5'333 2.3 NO 1.8 32 29'499 163'000 58'700 0.57 C 0.17	2.4 4'280'000 5'444 2.3 NO 1.6 31 29'854 163'000 58'700 0.62 C 0.17	2.3 4'324'000 5'556 2.3 NO 1.2 32 30'109 163'000 58'700 0.68 C 0.17	2.3 4'368'000 5'667 2.3 NO 1.7 36 30'075 163'000 58'700 0.70 0.70 C 0.17	2.3 4'412'000 5'778 2.4 NO 1.8 40 30'170 163'000 58'700 0.49 C 0.17	2.3 4'456'000 5'889 2.4 NO 1.0 47 30'610 163'000 58'700 0.60 C 0.17	2.3 4'500'000 6'000 2.4 NO 1.0 40 30'270 163'000 58'700 0.60 C 0.17	2.3 4'500'000 6'100 2.5 NO 1.5 47 30'519 163'000 58'700 0.60 C 0.17	2.3 4'500'000 6'200 2.5 NO 1.9 45 30'767 163'000 58'700 0.60 C 0.17	2.3 4'500'000 6'300 2.5 NO 0.80 37 31'016 163'000 58'700 0.60 C 0.17
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction Hairdressers Health care other Medical practices Preservation of wood Rock wool enduction Underseal treatment and conservation of vehicles Use of antifreeze agents in vehicles	kt solvent employees kt de-icing agent kt de-icing agent kt deising agent kt glass wool employees employees employees employees kt paint kt rock wool	2.4 4'236'000 5'333 2.3 NO 1.8 32 29'499 163'000 58'700 0.57 C 0.17 60'913	2.4 4'280'000 5'444 2.3 NO 1.6 31 29'854 163'000 58'700 0.65' 700 0.017 61'881	2.3 4'324'000 5'556 2.3 NO 1.2 30'109 163'000 58'700 0.688 C C 0.17 62'260	2.3 4'368'000 5'667 2.3 NO 1.7 36 30'075 163'000 58'700 0.70 0.70 C 0.17 62'638	2.3 4'412'000 5'778 2.4 NO 1.8 40 30'170 163'000 58'700 0.43'000 58'700 0.43'000 C C 0.17 63'017	2.3 4'456'000 5'889 2.4 NO 1.00 47 30'610 163'000 58'700 0.60 C C 0.17 63'395	2.3 4'500'000 6'000 2.4 NO 1.0 30'270 163'000 58'700 0.600 C 0.17 63'774	2.3 4'500'000 6'100 2.5 NO 1.5 47 30'519 163'000 58'700 0.60 C C 0.17 64'259	2.3 4'500'000 6'200 2.5 NO 1.9 45 30'767 163'000 58'700 0.60 C 0.17 64'744	2.3 4'500'000 6'300 2.5 NO 0.80 37 31'016 163'000 58'700 0.60 C
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction Hairdressers Health care other Medical practices Preservation of wood Rock wool enduction Underseal treatment and conservation of vehicles Use of antifreeze agents in vehicles Use of concrete additives	kt solvent employees kt de-icing agent kt de-icing agent kt de-icing agent kt fireworks treworks employees employees employees kt paint kt rock wool kt underseal agent Mio veh. km	2.4 4'236'000 5'333 2.3 NO 1.8 32 29'499 163'000 58'700 0.57 C 0.77 C 0.17 60'913 39	2.4 4'280'000 5'444 2.3 NO 1.6 311 29'854 163'000 58'700 0.62 C 0.17 61'881 39	2.3 4'324'000 5'556 2.3 NO 1.2 30'109 163'000 58'700 0.68 C C 0.17 62'260 39	2.3 4'368'000 5'667 2.3 NO 1.7 36 30'075 163'000 58'700 0.70 C 0.77 62'638 39	2.3 4'412'000 5'778 2.4 NO 1.88 400 30'170 163'000 58'700 0.49 C 0.49 C 0.17 63'017 40	2.3 4'456'000 5'889 2.4 NO 1.00 47 30'610 163'000 58'700 0.60 C 0.17 63'395 40	2.3 4'500'000 6'000 2.4 NO 1.0 30'270 163'000 58'700 0.60 C C 0.17 63'774 40	2.3 4'500'000 6'100 2.5 NO 1.5 47 30'519 163'000 58'700 0.60 C C 0.17 64'259 40	2.3 4'500'000 6'200 2.5 NO 1.99 45 30'767 163'000 58'700 0.60 C C 0.17 64'744 40	2.3 4'500'000 6'300 2.5 NO 0.80 377 31'016 163'000 58'700 0.60 C 0.17 65'229 40
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction Hairdressers Health care other Medical practices Preservation of wood Rock wool enduction Underseal treatment and conservation of vehicles Use of antifreeze agents in vehicles Use of concrete additives Use of cooling lubricants	kt solvent employees kt de-icing agent kt de-icing agent kt fireworks kt glass wool employees employees employees kt paint kt rock wool kt underseal agent Mio veh. km	2.4 4'236'000 5'333 2.3 NOO 1.8 32 29'499 163'000 0.57 C 0.17 60'913 399 7.4	2.4 4'280'000 5'444 2.3 NO 1.6 311 29'854 163'000 58'700 0.62 C 0.17 61'881 39 7.5	2.3 4'324'000 5'556 2.3 NOO 1.2 30'109 163'000 58'700 0.688 C 0.17 62'260 399 7.7	2.3 4'368'000 5'667 2.3 NOO 1.7 36'3000 58'700 0.70 0.70 0.70 0.77 62'638 39 7.8	2.3 4'412'000 5'778 2.4 NO 1.8 400 30'170 163'000 58'700 0.49 C 0.17 63'017 63'017 400 8.0	2.3 4'456'000 5'889 2.4 NO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 58'700 0.60 0.60 0.60 0.17 63'395 40 0.8.1	2.3 4'500'000 6'000 2.4 NO 1.0 30'270 163'000 58'700 0.60 C 0.17 63'774 400 8.1	2.3 4'500'000 6'100 2.5 NOO 1.5 1.5 47 30'519 163'000 0.600 0.600 0.600 0.17 64'259 400 8.2	2.3 4'500'000 6'200 2.5 NOO 1.9 45 30'767 163'000 58'700 0.60 0.60 C C 0.17 64'744 40 8.2	2.3 4'500'000 6'300 2.5 NO 0.80 31'016 163'000 58'700 0.60 C C 0.17 65'229 65'229 8.2
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction Hairdressers Health care other Medical practices Preservation of wood Rock wool enduction Underseal treatment and conservation of vehicles Use of antifreeze agents in vehicles Use of cooling lubricants Use of Lubricants	kt solvent employees kt de-icing agent kt de-icing agent kt fireworks kt glass wool employees employees employees kt paint kt rock wool kt underseal agent Mio veh. km kt additive kt additive	2.4 4'236'000 5'333 NO 1.8 32 29'499 163'000 58'700 0.57 C C 0.17 60'913 39 7.4 1.6	2.4 4'280'000 5'444 2.3 NOO 1.6 31 29'854 163'000 58'700 0.62 C C 0.17 61'881 39 7.55 1.6	2.3 4'324'000 5'556 2.3 30'109 163'000 58'700 0.688 C C 0.17 62'260 39 7.7.7 1.7	2.3 4'368'000 5'667 2.3 NO 1.7 36 30'075 163'000 58'700 0.70 C C 0.17 62'638 39 7.8 7.8 1.7	2.3 4'412'000 5'778 2.4 40 30'170 163'000 58'700 0.49 C C 0.17 63'017 63'017 40 8.80 0.800	2.3 4'456'000 5'889 2.4 NO 1.0 0 163'000 58'700 0.600 C 0.17 63'395 40 8.1 1.8	2.3 4'500'000 6'000 2.4 40 30'270 163'000 58'700 0.600 C 0.17 63'774 40 8.1.1 1.8	2.3 4'500'000 6'100 2.5 47 30'519 163'000 58'700 0.600 C C 0.17 64'259 40 8.22 1.8	2.3 4'500'000 6'200 2.5 NOO 1.9 45 30767 163'000 58'700 0.600 C 0.17 64'744 40 8.22 1.8	2.3 4'500'000 6'300 2.5 NO 0.80 31'016 163'000 58'700 0.600 C 0.17 65'229 40 8.2 8.2 1.8
Application of glues and adhesives Commercial and industrial use of cleaning agents Cosmetic institutions De-icing of airplanes De-icing of airplanes De-icing of airport surfaces Fireworks Glass wool enduction Hairdressers Health care other Medical practices Preservation of wood Rock wool enduction Underseal treatment and conservation of vehicles Use of antifreeze agents in vehicles Use of concrete additives Use of cooling lubricants	kt solvent employees kt de-icing agent kt de-icing agent kt de-icing agent kt fireworks kt glass wool employees employees employees kt paint kt rock wool kt underseal agent Mio veh. km kt additive kt cooling lubricant	2.4 4'236'000 5'333 2.3 NOO 1.8 32 29'499 163'000 0.57 C 0.17 60'913 399 7.4	2.4 4'280'000 5'444 2.3 NO 1.6 311 29'854 163'000 58'700 0.62 C 0.17 61'881 39 7.5	2.3 4'324'000 5'556 2.3 NOO 1.2 30'109 163'000 58'700 0.688 C 0.17 62'260 399 7.7	2.3 4'368'000 5'667 2.3 NO 1.7 36 30'075 163'000 58'700 0.70 C C 0.17 62'638 39 7.8 7.8	2.3 4'412'000 5'778 2.4 NO 1.8 400 30'170 163'000 58'700 0.49 C 0.17 63'017 63'017 400 8.0	2.3 4'456'000 5'889 2.4 NO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 58'700 0.60 0.60 0.60 0.17 63'395 40 0.8.1	2.3 4'500'000 6'000 2.4 NO 1.0 30'270 163'000 58'700 0.60 C 0.17 63'774 400 8.1	2.3 4'500'000 6'100 2.5 NOO 1.5 1.5 47 30'519 163'000 0.600 0.600 0.600 0.17 64'259 400 8.2	2.3 4'500'000 6'200 2.5 NOO 1.9 45 30'767 163'000 58'700 0.60 0.60 C C 0.17 64'744 40 8.2	2.3 4'500'000 6'300 2.5 NO 0.80 31'016 163'000 58'700 0.60 C 0.17 65'229 40 40 8.2

4.6.3 Category-specific recalculations in 2G Other product use

The following recalculations were implemented in submission 2025:

- 2G: For source category 2G Hairdressers, the activity data for the years 2012–2020 were supplemented and the emission factor for 2004 was adjusted, resulting in changed linear interpolated values for the years 2021 and 2022 as well as 1991–2003 and 2005–2010.
- 2G: For source category 2G Consumption of tobacco products, the emission factor for Cd was updated, using a country-specific estimation, for the years 1990-2022, causing a decrease by 82 %. A new emission factor for Pb was introduced for the years 1990-2022, using a country-specific estimation.
- 2G Consumption of tobacco products: The activity data value for the year 2020 was updated due to a typing mistake.

4.7 Source categories 2H – Other industry production

4.7.1 Source category description of 2H Other industry production

2H	Source category	Specification
2H1	Pulp and paper industry	Production of fibreboards, chipboards and cellulose (ceased in 2008)
2H2	Food and beverages industry	Production of beer, spirits, wine, bread, sugar, smoked and roasted meat and mills
2H3	Other industrial processes	Blasting and shooting

Table 4-50 Specification of source category 2H Other industry production in Switzerland.

NFR code	Source category	Pollutant	Identification criteria
2H1	Pulp and paper industry	PM2.5	L1, L2, T2
2H2	Food and beverages industry	NMVOC	L2, T1, T2
2H2	Food and beverages industry	PM2.5	L1, L2, T1, T2
2H2	Food and beverages industry	PM10	L1, L2, T2

Table 4-51 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 2H Other industry production.

4.7.2 Methodological issues of 2H Other industry production

4.7.2.1 Pulp and paper industry (2H1)

Methodology (2H1)

Today, the production of chipboard and fibreboard are the relevant industrial processes in the source category 2H1 Pulp and paper industry. In Switzerland, chipboard and fibreboard were produced in one and two plants, respectively, until 2019. Since 2020 only one plant is left. The cellulose production was closed in 2008 and is not occurring anymore in Switzerland.

Based on the decision tree Fig. 3.1 in chapter 2H1 in the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions are calculated by a Tier 2 method using country-specific emission factors (EMIS 2025/2H1).

Emission factors (2H1)

Emission factors are based on measurements of the chipboard production plant whereas constant emission factors are assumed for the fibreboard production, documented in the EMIS database. They are confidential but available to reviewers on request.

2H1 Pulp and paper industry	Unit of activity data	NOx	NMVOC	SOx	PM2.5 nx	PM10 nx	TSP nx	BC nx	СО	PCDD/ PCDF
	Offit of activity data	g/	g/	g/	g/	g/	g/	g/	g/	ng I- Teq/
Cellulose production	t cellulose	NO	NO	NO	NO	NO	NO	NO	NO	NO
Chipboard production	t chipboard	NE	С	NE	С	С	С	NE	NE	С
Fibreboard production	t fibreboard	NE	С	NE	С	С	С	NE	NE	NA

Table 4-52 Emission factors for 2H1 Pulp and paper industry in 2023.

Activity data (2H1)

Activity data on annual chipboard production has been provided by the industry since 2005 and between 1990 and 2003 annual data are based on the annual statistics on forest and wood (SFSO/BUWAL 2004) as documented in the EMIS database.

Activity data on annual fibreboard production are provided by monitoring reports of the industry since 1996 as documented in the EMIS database.

Due to the production structure in Switzerland, i.e. one production site for cellulose (ceased in 2008), one for chipboard and two for fibreboard (one ceased in 2019), activity data have been confidential since 2020. Detailed data can be accessed by reviewers on request.

Table 4-53 Activity data of 2H1 Pulp and paper industry.

2H1 Pulp and paper industry	Unit	1990	1995	2000	2005	2010					
Cellulose production	kt cellulose	121	134	133	118	NO					
Chipboard production	kt chipboard	С	С	С	С	С					
Fibreboard production	kt fibreboard	51	121	192	263	297					
2H1 Pulp and paper industry	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Cellulose production	kt cellulose	NO									
Chipboard production	kt chipboard	С	С	С	С	С	С	С	С	С	С
Fibreboard production	kt fibreboard	241	243	243	231	240	182	С	С	С	С

4.7.2.2 Food and beverages industry (2H2)

Methodology (2H2)

Based on the decision tree Fig. 3.1 in chapter 2H2 in the EMEP/EEA guidebook (EMEP/EEA 2023), the emissions from the source category 2H2 Food and beverages industry, are calculated by a Tier 2 method using country-specific emission factors (EMIS 2025/2H2).

Emission factors (2H2)

Emission factors are based on measurements, data from industry and expert estimates as well as data from a study on emissions of volatile organic compounds (VOCs) from the food and drink industries of the European Community (Passant et al., 1993), documented in the EMIS database. For bread production, the emission factor is derived from the arithmetic mean of different measurement campaigns conducted at some of the major Swiss bread producers as documented in the EMIS database (EMIS 2025/2H2 Brot Produktion).

2H2 Food and beverages industry	Unit of activity data	NMVOC	NH3	PM2.5 ex	PM2.5 nx	PM10 ex	PM10 nx
ZI IZ I OOU AND DEVELAGES INDUSTRY	Unit of activity data	g/	g/	g/	g/	g/	g/
Bread production	t bread	2'900	NA	NA	NA	NA	NA
Breweries	m3 beer	250	NA	NA	NA	NA	NA
Meat smokehouses	t meat	1'300	NA	350	NA	350	NA
Milling companies	t flour	NA	NA	NA	50	NA	100
Roasting facilities	t coffee	30	NA	NA	30	NA	60
Spirits production	m3 alcohol	10'000	NA	NA	NA	NA	NA
Sugar production	t sugar	195	239	NA	260	NA	520
Wine production	m3 wine	580	NA	NA	NA	NA	NA
2H2 Food and hoverages industry	Unit of activity data	TSP ex	TSP nx	BC ex	со	PCDD/ PCDF	
2H2 Food and beverages industry	Onit of activity data	g/	g/	g/	g/	ng I- Teq/	
Bread production	t bread	NA	NA	NA	NA	NA	
Breweries	m3 beer	NA	NA	NA	NA	NA	
Meat smokehouses	t meat	350	NA	NA	250	3'000	
Milling companies	t flour	NA	160	NA	NA	NA	
Roasting facilities	t coffee	NA	60	NA	NA	NA	
Spirits production	m3 alcohol	NA	NA	NA	NA	NA	
Sugar production	t sugar	NA	600	NA	NA	NA	
Wine production	m3 wine	NA	NA	NA	NA	NA	

Table 4-54 Emission factors for 2H2 Food and beverages industry in 2023.

Activity data (2H2)

Activity data on annual production have been provided by industry, by the Federal Office for Customs and Border Security (FOCBS), the Swiss farmers' union (SBV), the Swiss Fatstock and Meat Suppliers Cooperative (Schweizerische Genossenschaft für Schlachtvieh- und Fleischversorgung (GSF)), the Swiss Federal Office for Agriculture and the Swiss Alcohol Board as documented in the EMIS database. Activity data on annual bread production are derived from the number of inhabitants (FSO 2024c) and the annual bread consumption per inhabitant provided by the Swiss bread statistics (Schweizerische Brotinformation, SBI) for

the time period between 1990 and 2010. A value for 2017 per capita bread consumption has been provided by the Swiss Bread Association as documented in the EMIS database (EMIS 2025/2H2 Brot Produktion).

Table 4-55 Activity data of 2H2 Food and beverages industry.

2H2 Food and beverages industry	Unit	1990	1995	2000	2005	2010					
Bread production	kt bread	336	352	359	372	386					
Breweries	m3 beer	414'300	367'100	354'100	341'600	353'800					
Meat smokehouses	kt meat	66	64	60	61	66					
Milling companies	kt flour	1'644	1'519	1'603	1'425	1'602					
Roasting facilities	kt coffee	56	50	58	78	102					
Spirits production	m3 alcohol	4'158	3'271	2'179	2'266	1'945					
Sugar production	kt sugar	147	129	219	197	241					
Wine production	m3 wine	120'000	111'693	123'073	108'526	108'319					
OLIO Estad and based as a final state	1.1.1.										
2H2 Food and beverages industry	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Bread production	Unit kt bread	2014 378	2015 376	2016 373	-		2019 376		-	2022 383	
		-			370	373	376	378	381		
Bread production	kt bread	378	376	373	370	373	376	378 340'400	381	383	389
Bread production Breweries	kt bread m3 beer	378 343'100	376 342'700	373 341'900	370 346'300 67	373 365'900 67	376 367'500 66	378 340'400 67	381 338'200 68	383 368'600	389 359'600
Bread production Breweries Meat smokehouses	kt bread m3 beer kt meat	378 343'100 67	376 342'700 67	373 341'900 67	370 346'300 67	373 365'900 67	376 367'500 66	378 340'400 67 1'650	381 338'200 68	383 368'600 67	389 359'600 68
Bread production Breweries Meat smokehouses Milling companies	kt bread m3 beer kt meat kt flour	378 343'100 67 1'625	376 342'700 67 1'645	373 341'900 67 1'663	370 346'300 67 1'626	373 365'900 67 1'665 141	376 367'500 66 1'685	378 340'400 67 1'650 161	381 338'200 68 1'705	383 368'600 67 1'791	389 359'600 68 1'675 161
Bread production Breweries Meat smokehouses Milling companies Roasting facilities	kt bread m3 beer kt meat kt flour kt coffee	378 343'100 67 1'625 119	376 342'700 67 1'645 125	373 341'900 67 1'663 127	370 346'300 67 1'626 131 1'010	373 365'900 67 1'665 141 961	376 367'500 66 1'685 148 1'624	378 340'400 67 1'650 161 1'224	381 338'200 68 1'705 172	383 368'600 67 1'791 177	389 359'600 68 1'675 161 1'067

4.7.2.3 Other industrial processes (2H3)

Methodology (2H3)

Source category 2H3 Other industrial processes encompasses the emissions from blasting and shooting only. An analogous Tier 2 method with country-specific emission factors is used to calculate the emissions.

Emission factors (2H3)

Emission factors per tonne of explosive are derived from the emission factors of civil explosives and information on the specific consumption of explosives in the quarries as documented in the Handbook on emission factors for stationary sources (SAEFL 2000) and the EMIS database. They are assumed to be constant over the entire time period.

Table 4-56 Emission factors for 2H3 Other industrial processes in 2023.

2H3 Other industrial processes	Unit of activity data	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	CO	Pb
2113 Other Industrial processes		g/	g/	g/	g/	g/	g/	g/	g/	g/	mg/
Blasting and shooting	kg explosive	35	60	0.50	0.40	6.0	6.0	6.0	NE	310	0.010

Activity data (2H3)

Activity data for blasting and shooting is taken from federal statistics on explosives (FEDPOL 2024).

Table 4-57 Activity data of 2H3 Other industrial processes.

2H3 Other industrial processes	Unit	1990	1995	2000	2005	2010					
Blasting and shooting	kt explosive	2.6	1.3	1.9	0.79	2.4					
2H3 Other industrial processes	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Blasting and shooting	kt explosive	2.1	2.1	0.67	0.73	0.81	0.67	0.63	0.61	0.65	0.65

4.7.3 Category-specific recalculations in 2H Other

The following recalculations were implemented in submission 2025:

- 2H2: For source category 2H2 Bread production, the emission factor for NMVOCs was updated using a country-specific estimation, for the years 1990-2022, causing a decrease by 36 %.
- 2H2: For source category 2H2 Meat smokehouses, the activity data was modified for the years 1999-2022 due to an update in the underlying statistics.
- 2H2: For source category 2H2 Flour production, the activity data was modified for the years 2012 and 2018-2022 due to an update in the underlying statistics.

4.8 Source categories 2I – Wood processing, 2K – Consumption of POPs and heavy metals and 2L – Other production, consumption, storage, transportation or handling of bulk products

4.8.1 Source category description of 2I Wood processing, 2K Consumption of POPs and heavy metals and 2L Other production, consumption, storage, transportation or handling of bulk products

Table 4-58 Specification of source category 2I Wood processing, 2K Consumption of POPs and heavy metals and 2L Other production, consumption, storage, transportation or handling of bulk products in Switzerland.

2I, 2K, 2L	Source category	Specification
21	Wood processing	Wood processing
2К	Consumption of POPs and heavy metals	Emissions of PCBs from usage of PCBs in transformers, large and small capacitors, anti-corrosive paints and joint sealants as well as from demolition/renovation of PCB containing anti-corrosive paints and joint-sealants
2L	Other production, consumption, storage, transportation or handling of bulk products	Ammonia emissions from freezers (filling and storage)

Table 4-59 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 2I Wood processing, 2K Consumption of POPs and heavy metals and 2L Other production, consumption, storage, transportation or handling of bulk products.

NFR code	Source category	Pollutant	Identification criteria
21	Wood processing	PM2.5	L2
21	Wood processing	PM10	L2, T2

4.8.2 Methodological issues of 2I Wood processing, 2K Consumption of POPs and heavy metals and 2L Other production, consumption, storage, transportation or handling of bulk products

4.8.2.1 Wood processing (2I)

Methodology (2I)

Source category 2I includes particulate emissions of wood processing. Emissions from charcoal production are reported in 1A1c Manufacture of solid fuels and other energy industries. According to chapter 2I in the EMEP/EEA guidebook (EMEP/EEA 2023), the calculation of emissions is based on a Tier 1 method based on country-specific emission factors (EMIS 2025/2I Holzbearbeitung).

Emission factors (2I)

Emission factors of wood processing are based on an industry survey (EMPA 2004b).

Table 4-60 Emission factors for 2I Wood processing in 2023.

2I Wood processing	Unit of activity data	PM2.5 nx	PM10 nx	TSP nx
	Offic of activity data	g/	g/	g/
Wood processing	t sawnwood	74	294	735

Activity data (2I)

Activity data of wood processing are the annual amount of sawnwood based on the yearbook forest and wood (FOEN 2024f).

Table 4-61 Activity data of 2I Wood processing.

2I Wood processing	Unit	1990	1995	2000	2005	2010					
Wood processing	kt sawnwood	1'168	827	901	853	774					
2I Wood processing	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Wood processing	kt sawnwood	634	626	622	578	597	598	623	664	666	638

4.8.2.2 Usage of PCBs (2K)

Methodology (2K)

Source category 2K includes PCB emissions from use of polychlorinated biphenyls (PCBs) in transformers, small and large capacitors, anti-corrosive paints and joint sealants in Switzerland between 1946 and 1986. In 1986, a total ban was placed on any form of PCB use. The use in so-called open systems, i.e. anti-corrosive paints and joint sealants, was allowed until 1972 only. For the time being, anti-corrosive paints and joint sealants are the predominant PCB emission sources. Emissions from demolition/renovation of steel constructions and buildings containing PCBs in anti-corrosive paints and joint sealants, respectively, are also reported in source category 2K.

A dynamic mass flow model was developed for the usage of PCBs in Switzerland for the time period 1930 to 2100 (Glüge et al. 2017). The model takes into account the entire life cycle, i.e. import, usage, export, treatment, disposal and accidental release of PCBs. A description of the model is given in Annex A2.2.

The emissions are calculated by multiplying the annual mass of PCBs involved in a source (e.g. tonnes of PCBs in use in joint sealants) with a source-specific emission factor (e.g. tonnes of PCBs emitted/tonnes of PCBs in use). This country-specific approach corresponds to a Tier 2 method according to the EMEP/EEA guidebook (EMEP/EEA 2023).

Emission factors (2K)

The PCB emission factors from the use of PCBs in transformers, small and large capacitors, anti-corrosive paints and joint sealants are expressed in units per tonnes of PCBs available in the respective application, see Table 4-62. The PCB emission factors for demolition/renovation of steel constructions and buildings containing PCBs in anti-corrosive paints and joint sealants are expressed in units per tonnes of PCBs demolished or renovated.

2K Consumption of POPs and heavy metals	Unit of activity data	PCB
2R Consumption of FOF's and heavy metals	Offic of activity data	mg/
Anti-corrosive paints	g PCB	2.5
Demolition and renovation	g PCB	2.5
Joint sealants	g PCB	2.5
Large capacitors	g PCB	0.47
Small capacitors	g PCB	0.47
Transformers	g PCB	0.0022

Table 4-62 Emission factors for 2K Usage of PCBs in 2023.

Activity data (2K)

The five usage categories are PCB stocks, which means that PCBs are stored in these applications and passed on through the system with a temporal delay (lifetime). In these cases, the activity data are the amounts of PCBs stored in the stock. The treatment category demolition and renovation is an instantaneous category. In this case, the activity data corresponds to the amount of PCBs treated in the respective year.

Table 4-63 Activity data for 2K Usage of PCBs.

2K Consumption of POPs and heavy metals	Unit	1990	1995	2000	2005	2010					
Anti-corrosive paints	t PCB	209	196	178	156	128					
Demolition and renovation	t PCB	2.4	4.0	6.2	8.5	10					
Joint sealants	t PCB	209	196	178	156	129					
Large capacitors	t PCB	356	235	139	73	33					
Small capacitors	t PCB	361	213	108	47	17					
Transformers	t PCB	1'257	840	501	265	123					
2K Consumption of POPs and heavy metals	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Anti-corrosive paints	t PCB	104	98	92	86	80	73	68	62	56	51
Demolition and renovation	t PCB	11	11	11	11	11	11	11	10	10	9.7
Joint sealants	t PCB	104	98	92	86	80	73	68	62	56	51
Large capacitors	t PCB	16	13	11	9.0	7.3	5.8	4.7	3.7	2.9	2.3
Large capacitors											
Small capacitors	t PCB	6.7	5.2	4.0	3.1	2.4	1.8	1.3	1.0	0.75	0.56

4.8.2.3 Use of ammonia as cooling agent (2L)

Methodology (2L)

Ammonia is used as a cooling agent in various applications in the industry and services sector. The most important sources are ice rinks and cold storage facilities. Other relevant sources are breweries, power plants and chemical industries. An analogous Tier 2 method with country-specific emission factors is used to calculate the emissions.

Emission factors (2L)

Emission factors are expressed as share of losses from storage and from filling and recovery. Emission factors are based on expert judgement as documented in the EMIS database (EMIS 2025/2 F_2 L_NH3 aus Kühlanlagen). Emission factors are assumed constant over the entire time period (see Table 4-64).

Table 4-64 Emission factors for 2L Ammonia in freezers in 2023.

2L Other	Unit of activity data	NH3
	Onit of activity data	g/
Freezers filling	t ammonia	1'000
Freezers storage	t ammonia	2'000

Industrial processes and product use: Source categories 2I – Wood processing, 2K – Consumption of POPs and heavy metals and 2L – Other production, consumption, storage, transportation or handling of bulk products - Methodological issues of 2I Wood processing, 2K Consumption of POPs and heavy metals and 2L Other production, consumption, storage, transportation or handling of bulk products - Methodological issues of 2I Wood processing, 2K Consumption of POPs and heavy metals and 2L Other production, consumption, storage, transportation or handling of bulk products

Activity data (2L)

Activity data are based on data from the industry. They are calculated by multiplying the number of plants and installations that use ammonia for cooling by an average amount of ammonia consumed by the corresponding process. This includes the number of breweries, ice rinks, power plants, cold storage facilities, chemical industries, large scale heat pumps and air conditioners. Data on average ammonia consumption of each of these processes is provided by a Swiss company for cooling devices (EMIS 2025/2 F_2 L_NH3 aus Kühlanlagen) (see Table 4-65).

Table 4-65 Activity data of 2L Ammonia in freezers.

2L Other	Unit	1990	1995	2000	2005	2010					
Freezers filling	kt ammonia	0.18	0.20	0.22	0.24	0.27					
Freezers storage	kt ammonia	1.1	1.1	1.2	1.2	1.2					
2L Other	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Freezers filling	kt ammonia	0.28	0.29	0.29	0.29	0.29	0.29	0.30	0.30	0.30	0.30
Freezers storage	kt ammonia	1.5	1.6	1.6	1.6	1.6	1.6	17	17	17	1.7

4.8.3 Category-specific recalculations in 2I Wood processing, 2K Consumption of POPs and heavy metals and 2L Other production, consumption, storage, transportation or handling of bulk products

The following recalculations were implemented in submission 2025:

- 2I: The 2022 activity data of source category 2I Wood processing was updated based on the revised annual amount of sawnwood reported in the yearbook forest and wood.
- 2L: There were small corrections of the amount of NH₃ used in cooling systems. Therefore, the emissions of NH₃ from cooling systems have changed a little (less than 1t/a NH₃) for the years 1991-2022.

5 Agriculture

5.1 Overview of emissions

This introductory chapter contains an overview of emissions from sector 3 Agriculture. NO_x , NMVOC, NH_3 , PM2.5, PM10 and TSP are the reported air pollutants for this sector.

The following source categories are reported:

- 3B Manure management
- 3D Crop production and agricultural soils

Note that emissions from burning of agricultural residues is reported in sector Waste (chp. 6.4, category 5C Waste incineration and open burning of waste), since there is no field burning of crop residues, as this is prohibited in Switzerland. Even in case of diseases the fruit trees are felled, cut up and burned on piles. This usually occurs on the field, but after chopping and stacking (not as standing trees).

5.1.1 Overview and trend for NO_x

NO_x emissions from agriculture are of minor importance for the national total NO_x emissions (see Table 2-8). They show a decreasing trend over the whole period 1990-2023 (see Figure 5-1 and Table 5-1). The trend was more pronounced between 1990 and 2004, and since then continues on a lower level with some fluctuations. Main source is category 3D Crop production and agricultural soils, where 3Da2a Animal manure applied to soils is the most relevant emission source. Accordingly, the development of NO_x emissions in category 3D depends on the development of livestock numbers and thus N excretions, which decreased by 17 % between 1990 and 2020 (Kupper et al. 2022) with a similar pattern as overall NO_x emissions from the agriculture sector. The decrease in inorganic N-fertiliser use (3Da1) additionally contributed to the reduction of NO_x emissions (N applied between 1990 and 2020 was reduced by 38 %; Kupper et al. 2022).

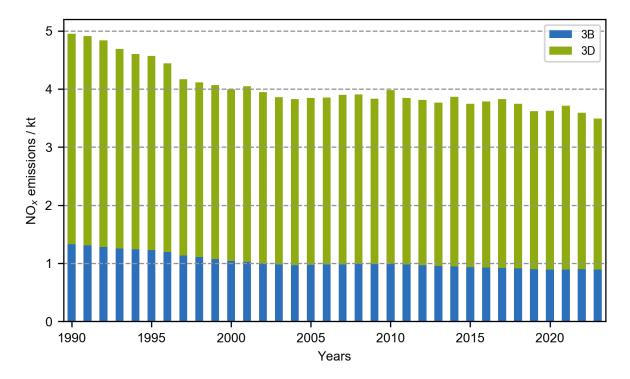


Figure 5-1 Switzerland's NOx emissions from agriculture by source categories 3B and 3D. The corresponding data can be found in Table 5-1.

Table 5-1 NO _x emissions from Sector 3 Agriculture by source categories 3B and 3D. The last column in the third	
part of the table indicates the relative trend.	

NOx		1990	1995	2000	2005	2010	
3B	kt	1.3	1.2	1.0	0.97	0.99	
3D	kt	3.6	3.3	3.0	2.9	3.0	
Sum	kt	5.0	4.6	4.0	3.8	4.0	
NOx		2014	2015	2016	2017	2018	
3B	kt	0.95	0.93	0.93	0.92	0.91	
3D	kt	2.9	2.8	2.9	2.9	2.8	
Sum	kt	3.9	3.7	3.8	3.8	3.7	
NOx		2019	2020	2021	2022	2023	2005-2023 (%)
3B	kt	0.90	0.89	0.89	0.90	0.89	-8.6
3D	kt	2.7	2.7	2.8	2.7	2.6	-9.4
Sum	kt	3.6	3.6	3.7	3.6	3.5	-9.2

5.1.2 Overview and trend for NMVOC

NMVOC emissions from animal husbandry are the main reason why the emissions from sector agriculture provide a significant contribution to the national total of NMVOC emissions (see Table 2-9). The trend of NMVOC emissions within agriculture is depicted in Figure 5-2 and Table 5-2. The emissions are dominated by source category 3B Manure management, where emissions stem from cattle husbandry fed by silage, as dominant emission source. Emissions were stable between 1990 and 2000, before an increasing trend started between 2000 and 2008 due to a significant increase in the number of non-dairy cattle which predominately are fed by silage. Since 2014, the emissions have remained at about constant level.

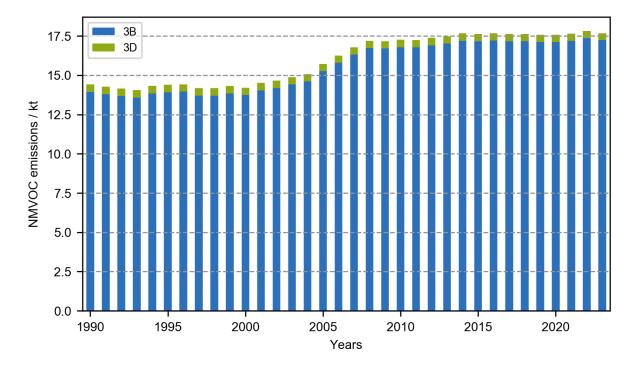


Figure 5-2 Switzerland's NMVOC emissions from agriculture by source categories 3B and 3D. The corresponding data can be found in Table 5-2.

NMVO	C	1990	1995	2000	2005	2010	
3B	kt	14	14	14	15	17	
3D	kt	0.48	0.48	0.47	0.47	0.46	
Sum	kt	14	14	14	16	17	
NMVO	C	2014	2015	2016	2017	2018	
3B	kt	17	17	17	17	17	
3D	kt	0.46	0.46	0.46	0.46	0.46	
Sum	kt	18	18	18	18	18	
NMVO	C	2019	2020	2021	2022	2023	2005-2023 (%)
3B	kt	17	17	17	17	17	13
3D	kt	0.46	0.46	0.46	0.45	0.45	-3.6
Sum	kt	18	18	18	18	18	12

Table 5-2 NMVOC emissions from Sector 3 Agriculture by source category 3B and 3D. The last column in the third part of the table indicates the relative trend.

5.1.3 Overview and trend for NH₃

Agriculture is by far the most important source of NH₃ emissions in Switzerland (see Table 2-11). The trend of NH₃ emissions within agriculture is depicted in Figure 5-3 and Table 5-3. While source category 3B Manure management slightly increased in the period 1990-2023, category 3D Crop production and agricultural soils shows a fluctuating and decreasing trend. Both categories are about equally important in the year 2023. Agricultural ammonia emissions decreased between 1990 and 2004, followed by a slight increase until 2007 and another decrease since then. This non-monotonic trend results from a combination of changes in animal numbers, introduction of nutrient balance regulations for nitrogen, introduction of new housing systems and more grazing due to developments in animal welfare regulations, increase of animal productivity, changes in production techniques and a considerable decrease of N fertiliser use due to nutrient balance restrictions (Kupper et al. 2015, Kupper et al. 2018, Kupper et al. 2022). Between 1990 and 2020, N excretions from

livestock decreased by 17 % and N excretions of livestock going into the manure stream even by 27 % (Kupper et al. 2022). A further reason for the downward trend of agricultural NH_3 emissions is the growing importance of grazing due to animal welfare incentives. The share of soluble N (TAN) of excretions of livestock going to grazing increased from 8 % in 1990 to 17 % in 2020 (Kupper et al. 2022).

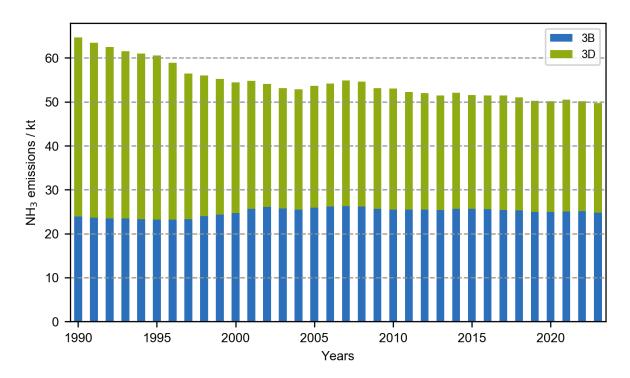


Figure 5-3 Switzerland's NH_3 emissions from agriculture by source categories 3B and 3D. The corresponding data can be found in Table 5-3.

Table 5-3 NH ₃ emissions from Sector 3 Agriculture by source categories 3B and 3D. The last column in the third	
part of the table indicates the relative trend.	

NH3		1990	1995	2000	2005	2010	
3B	kt	24	23	25	26	26	
3D	kt	41	37	30	28	27	
Sum	kt	65	61	54	54	53	
NH3		2014	2015	2016	2017	2018	
3B	kt	26	26	26	25	25	
3D	kt	26	26	26	26	26	
Sum	kt	52	52	51	51	51	
NH3		2019	2020	2021	2022	2023	2005-2023 (%)
3B	kt	25	25	25	25	25	-4.5
3D	kt	25	25	25	25	25	-10
Sum	kt	50	50	50	50	50	-7.5

5.2 Source category 3B – Manure management

5.2.1 Source category description of 3B Manure management

This chapter contains emissions stemming from animal husbandry. It includes emissions of NO_x and NH_3 from animal manure (except categories 3Da2a Animal manure applied to soils

and 3Da3 Urine and dung deposited by grazing animals). Also, NMVOC emissions from animal husbandry are reported in the inventory with silage feeding as important emission source besides manure management. Emissions from physical activities of the animals (PM from abrasion and resuspension of dust) are included in source category 3B as well.

3B	Source category	Specification
3B1a	Manure management - Dairy cattle	Mature dairy cattle, water buffalos
3B1b	Manure management - Non-dairy cattle	Other mature cattle and growing cattle: fattening calves, pre- weaned calves, breeding cattle 1st, 2nd, 3rd year, fattening cattle
3B2	Manure management - Sheep	
3B3	Manure management - Swine	Dry sows, nursing sows, boars, fattening pigs, piglets
3B4a	Manure management - Buffalo	IE (included in 3B1a)
3B4d	Manure management - Goats	
3B4e	Manure management - Horses	
3B4f	Manure management - Mules and asses	
3B4gi	Manure management - Laying hens	
3B4gii	Manure management - Broilers	
3B4giii	Manure management - Turkeys	
3B4giv	Manure management - Other poultry	Growers, other poultry (geese, ducks, ostriches, quails)
3B4h	Manure management - Other animals	Camels and Ilamas (3B4b), deer (3B4c), rabbits (3B4hi), bisons (3B4hii)

Table 5-4 Specification of source category 3B Manure Management.

Table 5-5 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 3B, Manure Management.

NFR code	Source category	Pollutant	Identification
NFK COUE	Source category	Pollutalit	criteria
3B1a	Manure management - Dairy cattle	NMVOC	L1, L2, T1, T2
3B1a	Manure management - Dairy cattle	NH3	L1, L2, T1, T2
3B1b	Manure management - Non-dairy cattle	NMVOC	L1, L2, T1, T2
3B1b	Manure management - Non-dairy cattle	NH3	L1, L2, T1, T2
3B3	Manure management - Swine	NH3	L1, L2, T2
3B4gi	Manure management - Laying hens	NMVOC	T2
3B4gi	Manure management - Laying hens	PM10	L2
3B4gii	Manure management - Broilers	NMVOC	L2, T2
3B4gii	Manure management - Broilers	NH3	L2, T2
3B4gii	Manure management - Broilers	PM10	L2, T2

5.2.2 Methodological issues of 3B Manure management

Methodology (3B)

For calculating the ammonia emissions caused by manure management a country-specific approach is used according to the Tier 3 detailed methodology described in chapter 3B Manure management of the EMEP/EEA guidebook (EMEP/EEA 2023).

An internet-based model called AGRAMMON was developed in Switzerland allowing the calculation of ammonia emissions for single farms and for regions (<u>https://agrammon.ch/</u>). The model simulates the nitrogen flow from animal feeding to excretion (in housing systems and during grazing), to manure storage and to manure application. In the 2018 revision of the model (Kupper et al. 2018) it was extended to cover not only NH₃ emissions but all nitrogen flows (including N₂O, NO_x and N₂).

AGRAMMON considers important parameters on farm and manure management influencing the emissions of ammonia at the different levels of farm management. The Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences (HAFL) collected data

on farm and manure management at farm-level with a detailed representative questionnaire in 2002, 2007, 2010, 2015 and 2019. Each survey consisted of a representative stratified random sample covering approximately 2000 to 3000 farms (in total, in 2020 there were about 49'000 farms in Switzerland). The strata cover five different farm types, three regions of Switzerland and three altitude classes (valley zone, hill zone, mountain zone). The questionnaire contained detailed questions on livestock housing, feeding and grazing for different livestock categories, as well as manure storage and spreading, and use of mineral fertiliser. For each farm in the survey, farm-specific emission calculations were done with AGRAMMON. These results were then used to calculate livestock-category specific average emission factors for each strata group and the five respective survey years. For the national extrapolation of the emission data, the weighted average (according to share of the total livestock population of the respective livestock categories) input data on production of the different strata group was used. The emission time series from 2002 to 2019 was established with the calculated emission factors (2002, 2007, 2010, 2015, 2019), with interpolated emission factors for the years 2003-2006, 2008-2009, 2011-2014 and 2016-2018, and the known development of the number of animals in different livestock categories (activity data). Emission factors beyond 2019 are kept constant until new survey results are available (expected in 2025). The experience gained from the detailed surveys between 2002 and 2019 and from the extrapolation of the single farm data to the totality of farms in Switzerland was used, together with expert assumptions and available statistical data on farm management, to calculate the emissions between 1990 and 2002. The procedure is described in Kupper et al. (2022).

A comparison of the country-specifically calculated Tier 3 results (using the AGRAMMON version 2018) for N flows and NH₃ emissions from animal husbandry (3B Manure management, 3Da2a Animal manure applied to soils and 3Da3 Urine and dung deposited by grazing animals) with the results of the Tier 2 calculations based on the TFEIP N flow tool was performed for 2015 (at the time the last year with a representative survey on farm management). The comparison and discussion of the results are given in Annex A2.3. In the framework of the Stage 3 in-depth review of emission inventories in summer 2020, Switzerland provided detailed information on the development of the nitrogen (N) flow distribution to liquid and solid manure depending on management technique modelled within AGRAMMON.

For nitrogen flux calculations, AGRAMMON uses nitrogen excretions of different livestock categories according to the values valid in the respective reference years of the "Principles of Agricultural Crop Fertilisation in Switzerland" (Richner and Sinaj 2017). The values have partly changed over time depending on the development of production technology (especially breeding, feeding) and have been adjusted accordingly (Kupper et al. 2018, Kupper et al. 2022). To take into account the varying milk yield level of dairy cattle, a linear correction factor given in Richner and Sinaj (2017) was applied. The TAN proportions in the excreta of the animal categories which are used in AGRAMMON are as follows: Dairy cattle and other cattle categories: 55 %; swine: 70 %; poultry: 60 %; horses and other equids as well as sheeps, goats and all other animals are assumed to have 40 % TAN (Kupper et al. 2018, Kupper et al. 2022). N-excretion values and the proportion of TAN therein is based on models which employed experimental data obtained from dairy cattle and fattening swines. The proportion of TAN has been extrapolated from the values to the other cattle and swine categories. For poultry, horses and other equids, sheeps, goats and other animals it is based on expert judgments. The proportion of TAN is equated with urine N, 'Documentation on the Technical Parameters' in AGRAMMON 2018 describes how the values were derived.

Table 5-6 shows that the share of the total N excretions from all agricultural livestock that went into the slurry flow decreased from 64 % to 56 % from 1990 to 2019. Table 5-7 shows that this was not the case for the N excretions of cattle (all categories together) that remained almost constant around 60 %. This probably was because an increase in grazing – which reduced the share of N collected in the housing area – compensated the increase of the share of N going to slurry in the housing area. The share of total N excretions of all livestock going to pasture, range and paddock (Table 5-6) roughly doubled because of animal welfare

incentives and the considerable decrease of pig production. The share going to digesters increased from 0.6 % to 6.9 % and the share going to deep litter and poultry manure rose from 5.4 % to 8.5 % due to a strong growth of poultry production. The share going to solid manure decreased by nearly halve, mainly because of the shift from tied to loose housing systems for cattle. Table 5-8 shows the share of N excretions going to the liquid manure flow (including digesters) for the different livestock categories. The shares strongly increase for the cattle categories. For swine, which produce only liquid manure and for equids (horse, mules and asses), sheep, goats and poultry which produce only solid manure the values logically remained constant.

Table 5-6 Development of the share of the total N excretions from livestock (incl. cattle) going to the paths liquid slurry / solid manure / other (deep litter / poultry manure) / digesters / pasture, range and paddock in Switzerland from 1990 to 2019 (in % of total N excretions). Data based on representative surveys on farm management technique in 2002, 2007, 2010, 2015 and 2019; for 1990 and 1995 based on expert assumptions (Kupper et al. 2022).

Distribution of N excretion [%]	1990	1995	2002	2007	2010	2015	2019
Liquid / Slurry	63.8%	64.0%	58.7%	59.4%	58.7%	58.7%	55.6%
Solid manure	21.3%	20.3%	16.5%	13.9%	13.3%	11.6%	10.8%
Other (deep litter, poultry manure)	5.4%	5.3%	5.8%	6.8%	7.7%	7.5%	8.5%
Digesters	0.6%	0.5%	0.6%	1.6%	2.3%	4.4%	6.9%
Pasture, range and paddock	8.9%	9.9%	18.5%	18.2%	18.0%	17.9%	18.3%

Table 5-7 Development of the share of the N excretions from cattle (sum of all three categories) going to the paths liquid slurry / solid manure / other (deep litter) / digesters / pasture, range and paddock in Switzerland from 1990 to 2019 (in % of total N excretions). Data based on representative surveys on farm management technique in 2002, 2007, 2010, 2015 and 2019; for 1990 and 1995 based on expert assumptions (Kupper et al. 2022).

Distribution of N excretion [%]	1990	1995	2002	2007	2010	2015	2019
Liquid / Slurry	60.5%	61.7%	58.7%	61.6%	61.6%	62.9%	60.8%
Solid manure	26.9%	24.7%	18.7%	15.4%	14.4%	12.0%	11.2%
Other (deep litter)	1.3%	1.3%	1.3%	1.2%	1.4%	1.2%	1.2%
Digesters	0.5%	0.5%	0.6%	1.5%	2.2%	4.1%	6.4%
Pasture, range and paddock	10.7%	11.8%	20.7%	20.3%	20.4%	19.8%	20.4%

Table 5-8 Development of the share of N excretions going to the liquid phase of manure (including digestate) for the different livestock categories in Switzerland from 1990 to 2019 (in % of total N excretions of the respective category). Data based on representative surveys on farm management technique in 2002, 2007, 2010, 2015 and 2019; for 1990 and 1995 based on expert assumptions (Kupper et al. 2022).

% N excretion going to liquid phase	1990	1995	2002	2007	2010	2015	2019
Dairy cattle	66.2%	67.9%	66.0%	69.6%	70.8%	73.6%	74.4%
Other mature cattle	41.6%	39.0%	43.8%	55.2%	55.9%	58.5%	55.9%
Growing cattle	50.0%	50.5%	45.8%	50.1%	50.7%	54.8%	55.7%
Sheep	0%	0%	0%	0%	0%	0%	0%
Swine	100%	100%	98.7%	99.0%	99.5%	99.8%	99.9%
Goats	0%	0%	0%	0%	0%	0%	0%
Horses	0%	0%	0%	0%	0%	0%	0%
Mules and asses	0%	0%	0%	0%	0%	0%	0%
Poultry (layers, broilers, turkey, growers)	0%	0%	0%	0%	0%	0%	0%

Additionally, a larger survey – but less detailed with respect to ammonia relevant farm data – was carried out in 2013 by the Swiss Federal Statistical Office at the national level covering a sample of about 17'000 farms. This allowed a plausibility check of the AGRAMMON data, which showed a good compatibility of the resulting national emissions between the two surveys. The difference in overall national emissions was about 1 %, although there were higher differences at the process- or farm-level, but these cancelled each other out (Kupper et al. 2018).

For the volatilisation of NO_x, which is also integrated in the AGRAMMON model, a Tier 2 approach based on emission factors from van Bruggen et al. (2014) was used.

The calculation of non-methane volatile organic compounds (NMVOC) and particulate matter (PM, except for all cattle categories) emissions was conducted with a Tier 1 approach using country specific and default Tier 1 emission factors from the EMEP/EEA guidebook (EMEP/EEA 2023). The PM emissions from all cattle categories (3B1) are calculated by a Tier 2 method using country specific emission factors based on literature data and expert judgement (Bühler and Kupper 2018).

A comprehensive literature study by Bühler and Kupper (2018) has shown that the data base of NMVOC emissions from animal husbandry is very scarce and the derived emission factors differ widely. The studies cited in the EMEP/EEA guidebook at that time (EMEP/EEA 2016, unchanged in EMEP/EEA 2023) showed several inconsistencies that could affect significantly the emission factors. It also remains unknown, how the emissions from the studies performed in the United States were adapted to European agricultural feeding conditions and how the corresponding emission factors were derived. Therefore, a study was conducted between 2018 and 2021 in order to measure NMVOC emissions from dairy cattle with and without silage feeding in an experimental dairy housing during summer, winter and transitional season and to derive emission factors that are representative for cattle husbandry in Switzerland (Schrade et al. 2025). However, it should be noted that the time the animals spend on pasture is not taken into account in this study and NMVOC emissions are thus probably rather overestimated.

Please note that we are aware that Tier 2 methodologies are in principle required for emission calculations of key categories. But due to lack of data, this was not possible to implement for all categories (e.g. NMVOC (3B) and PM (3B4gii)).

Emission factors (3B)

The consideration of structural and management parameters based on representative stratified surveys on farm management practice for the calculation of the ammonia emissions with the nitrogen flow model AGRAMMON results in livestock category specific emission factors reflecting the changes of such parameters over the assessed time period (Kupper et al. 2015, Kupper et al. 2018, Kupper et al. 2022). National standard N excretion rates are used (Richner and Sinaj 2017), considering animal category specific correction factors as also described under methodology.

For the volatilisation of NO_x, which is also integrated in the AGRAMMON model, default values from van Bruggen et al. (2014) were used. Accordingly, it is estimated that 0.2 %, 0.5 %, 1.0 % and 0.1 % of the total nitrogen in liquid/slurry, solid storage, deep litter and poultry manure systems, respectively, are lost to the atmosphere in the form of NO_x. These values are considerably higher than the ones based on the EMEP/EEA guidebook (Table 3.10 and A1.8; EMEP/EEA 2023), especially for liquid/slurry systems which in 2020 account for about 70 % of the total N flow through manure storage (Kupper et al. 2022). In this context the management systems "anaerobic digestion" is treated as liquid/slurry system.

The resulting NH_3 and NO_x emission factors for the livestock categories are listed in Table 5-9 and Table 5-10. Each emission factor reflects the sum of the emissions from animal housing and manure storage. The emissions resulting from the application of manure to soils and from grazing are reported separately under category 3Da2a and 3Da3 and are not included in the emission factors listed in Table 5-9 and Table 5-10, but are given in the tables of chp. 5.3.2.

Table 5-9 Time series of NH_3 emission factors for livestock categories (3B4a Buffalos: IE (3B1a)). Note that the emissions from grazing and for the application of manure are not included in these emission factors (see chp. 5.3.2).

NH3 emission factors	unit	1990	1995	2000	2005	2010					
3B1a Dairy cattle	kg/animal	11.9	12.6	15.9	17.5	17.5					
3B1b Other mature cattle	kg/animal	11.8	12.9	14.4	16.2	16.1					
3B1b Growing cattle	kg/animal	4.76	5.03	5.33	5.61	5.66					
3B2 Sheep	kg/animal	1.29	1.31	1.12	1.04	1.24					
3B3 Swine	kg/animal	3.54	3.71	3.93	3.84	3.37					
3B4d Goats	kg/animal	2.32	2.30	2.12	1.87	1.92					
3B4e Horses	kg/animal	9.10	9.08	8.31	7.97	8.09					
3B4f Mules and asses	kg/animal	3.34	3.34	3.20	2.99	2.90					
3B4gi Laying hens	kg/animal	0.317	0.308	0.269	0.256	0.218					
3B4gii Broilers	kg/animal	0.0899	0.0855	0.0842	0.0880	0.0796					
3B4giii Turkeys	kg/animal	0.315	0.314	0.294	0.304	0.281					
3B4giv Other poultry: Growers	kg/animal	0.168	0.155	0.129	0.112	0.0834					
3B4giv Other poultry: Other	kg/animal	0.168	0.168	0.169	0.172	0.172					
3B4h Rabbits	kg/animal	0.230	0.230	0.230	0.230	0.230					
3B4h Bisons	kg/animal	NO	6.76	6.99	6.39	6.26					
3B4h Camels and Ilamas	kg/animal	NO	NO	2.08	1.83	2.02					
3B4h Deer	kg/animal	3.40	3.72	3.29	3.12	3.60					
NH3 emission factors	unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
3B1a Dairy cattle	kg/animal	18.3	18.5	18.6	18.8	18.9	19.1	19.1	19.1	40.4	40.4
	kg/annnai	10.0	10.5	10.0	10.0	10.9	10.1	19.1	19.1	19.1	19.1
3B1b Other mature cattle	kg/animal	16.4	16.5	16.3	16.1	15.9	15.7	15.7	19.1	19.1	19.1 15.7
	U U						-		-	-	-
3B1b Other mature cattle	kg/animal	16.4	16.5	16.3	16.1	15.9	15.7	15.7	15.7	15.7	15.7
3B1b Other mature cattle 3B1b Growing cattle	kg/animal kg/animal	16.4 5.96	16.5 6.02	16.3 5.99	16.1 5.98	15.9 5.96	15.7 5.95	15.7 5.93	15.7 5.91	15.7 5.90	15.7 5.88
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep	kg/animal kg/animal kg/animal	16.4 5.96 1.16	16.5 6.02 1.13	16.3 5.99 1.14	16.1 5.98 1.16	15.9 5.96 1.17	15.7 5.95 1.19	15.7 5.93 1.18	15.7 5.91 1.18	15.7 5.90 1.19	15.7 5.88 1.18
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine	kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35	16.5 6.02 1.13 3.38	16.3 5.99 1.14 3.39	16.1 5.98 1.16 3.38	15.9 5.96 1.17 3.37	15.7 5.95 1.19 3.37	15.7 5.93 1.18 3.37	15.7 5.91 1.18 3.37	15.7 5.90 1.19 3.37	15.7 5.88 1.18 3.36
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats	kg/animal kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35 1.95	16.5 6.02 1.13 3.38 1.91 8.31 3.00	16.3 5.99 1.14 3.39 1.87	16.1 5.98 1.16 3.38 1.83	15.9 5.96 1.17 3.37 1.79 8.22 3.02	15.7 5.95 1.19 3.37 1.75 8.19 3.03	15.7 5.93 1.18 3.37 1.75 8.20 3.03	15.7 5.91 1.18 3.37 1.75 8.20 3.03	15.7 5.90 1.19 3.37 1.75 8.20 3.03	15.7 5.88 1.18 3.36 1.75 8.19 3.03
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35 1.95 8.25	16.5 6.02 1.13 3.38 1.91 8.31	16.3 5.99 1.14 3.39 1.87 8.28	16.1 5.98 1.16 3.38 1.83 8.25	15.9 5.96 1.17 3.37 1.79 8.22	15.7 5.95 1.19 3.37 1.75 8.19	15.7 5.93 1.18 3.37 1.75 8.20	15.7 5.91 1.18 3.37 1.75 8.20	15.7 5.90 1.19 3.37 1.75 8.20	15.7 5.88 1.18 3.36 1.75 8.19
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35 1.95 8.25 2.98	16.5 6.02 1.13 3.38 1.91 8.31 3.00	16.3 5.99 1.14 3.39 1.87 8.28 3.01	16.1 5.98 1.16 3.38 1.83 8.25 3.02	15.9 5.96 1.17 3.37 1.79 8.22 3.02	15.7 5.95 1.19 3.37 1.75 8.19 3.03	15.7 5.93 1.18 3.37 1.75 8.20 3.03	15.7 5.91 1.18 3.37 1.75 8.20 3.03	15.7 5.90 1.19 3.37 1.75 8.20 3.03	15.7 5.88 1.18 3.36 1.75 8.19 3.03
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gi Laying hens	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35 1.95 8.25 2.98 0.198	16.5 6.02 1.13 3.38 1.91 8.31 3.00 0.193 0.0632 0.319	16.3 5.99 1.14 3.39 1.87 8.28 3.01 0.189 0.0635 0.305	16.1 5.98 1.16 3.38 1.83 8.25 3.02 0.184 0.0637 0.291	15.9 5.96 1.17 3.37 1.79 8.22 3.02 0.180 0.0640 0.277	15.7 5.95 1.19 3.37 1.75 8.19 3.03 0.175 0.0642 0.262	15.7 5.93 1.18 3.37 1.75 8.20 3.03 0.175	15.7 5.91 1.18 3.37 1.75 8.20 3.03 0.175	15.7 5.90 1.19 3.37 1.75 8.20 3.03 0.175 0.0642 0.262	15.7 5.88 1.18 3.36 1.75 8.19 3.03 0.175
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gi Broilers	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35 1.95 8.25 2.98 0.198 0.0665	16.5 6.02 1.13 3.38 1.91 8.31 3.00 0.193 0.0632	16.3 5.99 1.14 3.39 1.87 8.28 3.01 0.189 0.0635	16.1 5.98 1.16 3.38 1.83 8.25 3.02 0.184 0.0637	15.9 5.96 1.17 3.37 1.79 8.22 3.02 0.180 0.0640	15.7 5.95 1.19 3.37 1.75 8.19 3.03 0.175 0.0642	15.7 5.93 1.18 3.37 1.75 8.20 3.03 0.175 0.0642	15.7 5.91 1.18 3.37 1.75 8.20 3.03 0.175 0.0642	15.7 5.90 1.19 3.37 1.75 8.20 3.03 0.175 0.0642	15.7 5.88 1.18 3.36 1.75 8.19 3.03 0.175 0.0642
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gii Broilers 3B4gii Turkeys	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35 1.95 8.25 2.98 0.198 0.0665 0.312	16.5 6.02 1.13 3.38 1.91 8.31 3.00 0.193 0.0632 0.319	16.3 5.99 1.14 3.39 1.87 8.28 3.01 0.189 0.0635 0.305	16.1 5.98 1.16 3.38 1.83 8.25 3.02 0.184 0.0637 0.291	15.9 5.96 1.17 3.37 1.79 8.22 3.02 0.180 0.0640 0.277	15.7 5.95 1.19 3.37 1.75 8.19 3.03 0.175 0.0642 0.262	15.7 5.93 1.18 3.37 1.75 8.20 3.03 0.175 0.0642 0.262	15.7 5.91 1.18 3.37 1.75 8.20 3.03 0.175 0.0642 0.262	15.7 5.90 1.19 3.37 1.75 8.20 3.03 0.175 0.0642 0.262	15.7 5.88 1.18 3.36 1.75 8.19 3.03 0.175 0.0642 0.262
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4d Goats 3B4d Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gi Broilers 3B4gii Turkeys 3B4giv Other poultry: Growers	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35 1.95 8.25 2.98 0.198 0.0665 0.312 0.0773	16.5 6.02 1.13 3.38 1.91 8.31 3.00 0.193 0.0632 0.319 0.0757	16.3 5.99 1.14 3.39 1.87 8.28 3.01 0.189 0.0635 0.305 0.305 0.0743	16.1 5.98 1.16 3.38 1.83 8.25 3.02 0.184 0.0637 0.291 0.0729	15.9 5.96 1.17 3.37 1.79 8.22 3.02 0.180 0.0640 0.277 0.0715	15.7 5.95 1.19 3.37 1.75 8.19 3.03 0.175 0.0642 0.262 0.0701	15.7 5.93 1.18 3.37 1.75 8.20 3.03 0.175 0.0642 0.262 0.0701	15.7 5.91 1.18 3.37 1.75 8.20 3.03 0.175 0.0642 0.262 0.0701	15.7 5.90 1.19 3.37 1.75 8.20 3.03 0.175 0.0642 0.262 0.0701	15.7 5.88 1.18 3.36 1.75 8.19 3.03 0.175 0.0642 0.262 0.262 0.0701
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4d Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gi Broilers 3B4gii Urtheys 3B4giv Other poultry: Growers 3B4giv Other poultry: Other	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35 1.95 8.25 2.98 0.198 0.0665 0.312 0.0773 0.171	16.5 6.02 1.13 3.38 1.91 8.31 3.00 0.193 0.0632 0.319 0.0757 0.171	16.3 5.99 1.14 3.39 1.87 8.28 3.01 0.189 0.0635 0.305 0.305 0.0743 0.169	16.1 5.98 1.16 3.38 1.83 8.25 3.02 0.184 0.0637 0.291 0.0729 0.166	15.9 5.96 1.17 3.37 1.79 8.22 3.02 0.180 0.0640 0.277 0.0715 0.164	15.7 5.95 1.19 3.37 1.75 8.19 3.03 0.175 0.0642 0.262 0.262 0.0701 0.161	15.7 5.93 1.18 3.37 1.75 8.20 3.03 0.175 0.0642 0.262 0.262 0.0701 0.161	15.7 5.91 1.18 3.37 1.75 8.20 3.03 0.175 0.0642 0.262 0.262 0.0701 0.161	15.7 5.90 1.19 3.37 1.75 8.20 3.03 0.175 0.0642 0.262 0.262 0.0701 0.161	15.7 5.88 1.18 3.36 1.75 8.19 3.03 0.175 0.0642 0.262 0.262 0.0701 0.161
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers 3B4giii Turkeys 3B4giy Other poultry: Growers 3B4giy Other poultry: Other 3B4gh Rabbits	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	16.4 5.96 1.16 3.35 1.95 8.25 2.98 0.198 0.0665 0.312 0.0773 0.171 0.230	16.5 6.02 1.13 3.38 1.91 8.31 3.00 0.193 0.0632 0.319 0.0757 0.171 0.230	16.3 5.99 1.14 3.39 1.87 8.28 3.01 0.189 0.0635 0.305 0.0743 0.169 0.230	16.1 5.98 1.16 3.38 1.83 8.25 3.02 0.184 0.0637 0.291 0.0729 0.166 0.230	15.9 5.96 1.17 3.37 1.79 8.22 3.02 0.180 0.0640 0.277 0.0715 0.164 0.230	15.7 5.95 1.19 3.37 1.75 8.19 3.03 0.175 0.0642 0.262 0.0701 0.161 0.230	15.7 5.93 1.18 3.37 1.75 8.20 3.03 0.175 0.0642 0.262 0.0701 0.161 0.230	15.7 5.91 1.18 3.37 1.75 8.20 3.03 0.175 0.0642 0.262 0.0701 0.161 0.230	15.7 5.90 1.19 3.37 1.75 8.20 3.03 0.175 0.0642 0.262 0.0701 0.161 0.230	15.7 5.88 1.18 3.36 1.75 8.19 3.03 0.175 0.0642 0.262 0.0701 0.161 0.230

Table 5-10 Time series of NOx emission factors for livestock categories (3B4a Buffalos: IE (3B1a)).

NOx emission factors	unit	1990	1995	2000	2005	2010	Ì				
3B1a Dairy cattle	g/animal	858	829	773	742	730					
3B1b Other mature cattle	g/animal	635	657	558	535	518					
3B1b Growing cattle	g/animal	318	317	282	267	268					
3B2 Sheep	g/animal	171	174	150	142	170					
3B3 Swine	g/animal	94.3	92.1	73.0	62.9	60.8					
3B4d Goats	g/animal	317	314	280	264	265					
3B4e Horses	g/animal	624	623	569	547	546					
3B4f Mules and asses	g/animal	229	229	223	209	202					
3B4gi Laying hens	g/animal	2.33	2.32	2.24	2.35	2.45					
3B4gii Broilers	g/animal	1.31	1.31	1.31	1.40	1.47					
3B4giii Turkeys	g/animal	4.60	4.58	4.50	4.49	4.51					
3B4giv Other poultry: Growers	g/animal	1.12	1.11	1.11	1.05	1.000					
3B4giv Other poultry: Other	g/animal	1.84	1.84	1.80	1.81	1.80					
3B4h Rabbits	g/animal	31.5	31.5	31.5	31.5	31.5					
3B4h Bisons	g/animal	NO	908	892	813	799					
3B4h Camels and Ilamas	g/animal	NO	NO	262	224	252					
3B4h Deer	g/animal	459	502	415	383	450					
NOx emission factors	unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	unit	2014	2015	2010	2017	2010	2019	2020	2021	2022	2023
3B1a Dairy cattle	g/animal	720	717	715	713	711	707	705	-	703	702
3B1a Dairy cattle 3B1b Other mature cattle									-	-	
	g/animal	720	717	715	713	711	707	705	704 493	703	702
3B1b Other mature cattle	g/animal g/animal	720 502	717 498	715 498	713 497	711 497	707 496	705 494	704 493 248	703 492	702 492
3B1b Other mature cattle 3B1b Growing cattle	g/animal g/animal g/animal	720 502 260	717 498 259	715 498 257	713 497 255	711 497 253	707 496 251	705 494 250	704 493 248 159	703 492 248	702 492 249
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep	g/animal g/animal g/animal g/animal	720 502 260 156	717 498 259 152	715 498 257 153	713 497 255 156	711 497 253 157	707 496 251 159	705 494 250 159	704 493 248 159 60.0	703 492 248 159	702 492 249 159
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine	g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6	717 498 259 152 59.7	715 498 257 153 60.1	713 497 255 156 59.9	711 497 253 157 59.8	707 496 251 159 59.9	705 494 250 159 59.8	704 493 248 159 60.0	703 492 248 159 59.9	702 492 249 159 59.7
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats	g/animal g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6 274	717 498 259 152 59.7 269	715 498 257 153 60.1 263	713 497 255 156 59.9 258	711 497 253 157 59.8 253	707 496 251 159 59.9 248	705 494 250 159 59.8 248	704 493 248 159 60.0 248	703 492 248 159 59.9 248	702 492 249 159 59.7 248
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses	g/animal g/animal g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6 274 560	717 498 259 152 59.7 269 565	715 498 257 153 60.1 263 562	713 497 255 156 59.9 258 558	711 497 253 157 59.8 253 555 210	707 496 251 159 59.9 248 552	705 494 250 159 59.8 248 552	704 493 248 159 60.0 248 553	703 492 248 159 59.9 248 552	702 492 249 159 59.7 248 552
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6 274 560 204	717 498 259 152 59.7 269 565 205	715 498 257 153 60.1 263 562 206	713 497 255 156 59.9 258 558 208	711 497 253 157 59.8 253 555 210	707 496 251 159 59.9 248 552 211	705 494 250 159 59.8 248 552 211	704 493 248 159 60.0 248 553 211 2.44	703 492 248 159 59.9 248 552 211	702 492 249 159 59.7 248 552 211
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gi Laying hens	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6 274 560 204 2.44	717 498 259 152 59.7 269 565 205 2.44	715 498 257 153 60.1 263 562 206 2.44	713 497 255 156 59.9 258 558 208 2.44	711 497 253 157 59.8 253 555 210 2.44	707 496 251 159 59.9 248 552 211 2.44	705 494 250 159 59.8 248 552 211 2.44	704 493 248 159 60.0 248 553 211 2.44	703 492 248 159 59.9 248 552 211 2.44	702 492 249 159 59.7 248 552 211 2.44
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6 274 560 204 2.44 1.24	717 498 259 152 59.7 269 565 205 2.44 1.18	715 498 257 153 60.1 263 562 206 2.44 1.18	713 497 255 156 59.9 258 558 208 2.44 1.18	711 497 253 157 59.8 253 555 210 2.44 1.18	707 496 251 159 59.9 248 552 211 2.44 1.18	705 494 250 159 59.8 248 552 211 2.44 1.18	704 493 248 159 60.0 248 553 211 2.44 1.18	703 492 248 159 59.9 248 552 211 2.44 1.18	702 492 249 159 59.7 248 552 211 2.44 1.18
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B44 Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers 3B4gii Turkeys	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6 274 560 204 2.44 1.24 4.47	717 498 259 152 59.7 269 565 205 2.44 1.18 4.46	715 498 257 153 60.1 263 562 206 2.44 1.18 4.46	713 497 255 156 59.9 258 558 208 2.44 1.18 4.46	711 497 253 157 59.8 253 555 210 2.44 1.18 4.46	707 496 251 159 59.9 248 552 211 2.44 1.18 4.46	705 494 250 159 59.8 248 552 211 2.44 1.18 4.46	704 493 248 159 60.0 248 553 211 2.44 1.18 4.46 0.961	703 492 248 159 59.9 248 552 211 2.44 1.18 4.46	702 492 249 159 59.7 248 552 211 2.44 1.18 4.46
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4d Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gi Broilers 3B4giy Other poultry: Growers	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6 274 560 204 2.04 1.24 4.47 0.977	717 498 259 152 59.7 269 565 205 2.44 1.18 4.46 0.972	715 498 257 153 60.1 263 562 206 2.44 1.18 4.46 0.969	713 497 255 156 59.9 258 558 208 2.44 1.18 4.46 0.966	711 497 253 157 59.8 253 555 210 2.44 1.18 4.46 0.964	707 496 251 159 59.9 248 552 211 2.44 1.18 4.46 0.961	705 494 250 159 59.8 248 552 211 2.44 1.18 4.46 0.961	704 493 248 159 60.0 248 553 211 2.44 1.18 4.46 0.961 1.78	703 492 248 159 59.9 248 552 211 2.44 1.18 4.46 0.961	702 492 249 159 59.7 248 552 211 2.44 1.18 4.46 0.961
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4d Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers 3B4gii Urkeys 3B4giv Other poultry: Growers 3B4giv Other poultry: Other	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6 274 560 204 2.44 1.24 4.47 0.977 1.79	717 498 259 152 59.7 269 565 205 2.44 1.18 4.46 0.972 1.79	715 498 257 153 60.1 263 562 206 2.44 1.18 4.46 0.969 1.79	713 497 255 156 59.9 258 558 208 2.44 1.18 4.46 0.966 1.79	711 497 253 157 59.8 253 555 210 2.44 1.18 4.46 0.964 1.78	707 496 251 159 59.9 248 552 211 2.44 1.18 4.46 0.961 1.78	705 494 250 159 59.8 248 552 211 2.44 1.18 4.46 0.961 1.78	704 493 248 159 60.0 248 553 211 2.44 1.18 4.46 0.961 1.78	703 492 248 159 59.9 248 552 211 2.44 1.18 4.46 0.961 1.78	702 492 249 159 59.7 248 552 211 2.44 1.18 4.46 0.961 1.78
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4d Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers 3B4gii Uniters 3B4gii Vother poultry: Growers 3B4giy Other poultry: Other 3B4gi Qother poultry: Other	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	720 502 260 156 59.6 274 560 204 2.44 1.24 4.47 0.977 1.79 31.5	717 498 259 152 59.7 269 565 205 2.05 2.05 2.44 1.18 4.46 0.972 1.79 31.5	715 498 257 153 60.1 263 562 206 2.44 1.18 4.46 0.969 1.79 31.5	713 497 255 156 59.9 258 558 208 2.44 1.18 4.46 0.966 1.79 31.5	711 497 253 157 59.8 253 555 210 2.44 1.18 4.46 0.964 1.78 31.5	707 496 251 159 59.9 248 552 211 2.44 1.18 4.46 0.961 1.78 31.5	705 494 250 159 59.8 248 552 211 2.44 1.18 4.46 0.961 1.78 31.5	704 493 248 159 60.0 248 553 211 2.44 1.18 4.46 0.961 1.78 31.5	703 492 248 159 59.9 248 552 211 2.44 1.18 4.46 0.961 1.78 31.5	702 492 249 159 59.7 248 552 211 2.44 1.18 4.46 0.961 1.78 31.5

255

For all cattle categories country specific NMVOC emission factors are used based on a comprehensive study in which emission measurements were carried out in an experimental dairy housing (Schrade et al. 2025). NMVOC emissions from dairy cattle with and without silage feeding were measured during summer, winter and transitional season. For a representative determination of emissions from silage, measurements were carried out with three different silage rations. Based on these measurements, NMVOC emission factors were derived for dairy cattle with and without silage for the lowlands and mountain area, respectively, see Table 5-11. A distinction was also made between the summer and winter feeding period, as there are clear differences between the proportions of dairy cows with and without silage feeding in the two feeding periods. For silage feeding, emission factors (weighted for feeding periods) of 24.0 kg/animal and 21.9 kg/animal resulted for dairy cattle in the lowlands and the mountain area, respectively. The values are higher than the default Tier 1 emission factor of 17.937 provided in the EMEP/EEA guidebook (EMEP/EEA 2023, chp. 3B Manure management, Table 3.4). It should be noted that the weight of Swiss dairy cattle (660 kg, Richner and Sinaj 2017) is higher than the one of dairy cattle in EMEP/EEA (2023) (600 kg, chp. 3B, Table A1.7). On the other hand, the emission factors without silage feeding (weighted for feeding periods) of 1.1 kg/animal and 0.9 kg/animal for the lowlands and the mountain area, respectively, are considerably lower than the one given in EMEP/EEA (2023) (8.047 kg/animal). For non-dairy cattle the same emission factors are assumed whereas for young cattle categories, the emission factors were scaled with the ratio of the gross energy intake of the respective categories related to the one of dairy cattle. For the calculation of NMVOC emissions, the proportion of animals kept in the lowlands and mountain area as well as their proportion with and without silage feeding were taken into account, see Table 5-12. The proportions are derived from the on-farm surveys on farm and manure management conducted by HAFL (2002, 2007, 2010, 2015 and 2019) in connection with the AGRAMMON model (Kupper and Häni 2022). The relatively high proportion of dairy cattle that is fed without silage in Switzerland is due to the fact that unpasteurised milk is used for hard cheese production and that farms producing milk for hard cheese production are not allowed to produce and use silage for all cattle. Between 1990 and 2019, the share of dairy cattle receiving silage increased almost continuously, e.g. in the lowlands from 37 % to 61 %. For all livestock categories other than cattle, the NMVOC emission factors are based on default Tier 1 emission factors (EMEP/EEA 2023, chp. 3B Manure management, Table 3.4). As the livestock category swine comprises of five categories, namely boars, dry sows, nursing sows (including suckling piglets), fattening pigs and weaned piglets, the NMVOC emission factor is an implied factor based on the default Tier 1 emission factors for swine (sows) and swine (finishing pigs) and also takes into account the empty periods for fattening pigs. The resulting NMVOC emission factors for cattle categories and swine as well as the default emission factors for all other animal categories are given in Table 5-13.

3B1 Dairy cattle	Silage	w/o Silage
NMVOC emission factors	kg/animal	kg/animal
Lowlands, summer feeding	26.5	1.3
Lowlands, winter feeding	20.6	0.8
Lowlands, weighted for feeding periods	24.0	1.1
Mountain area, summer feeding	24.5	1.1
Mountain area, winter feeding	19.3	0.7
Mountain area, weighted for feeding	21.9	0.9

Table 5-11 NMVOC emission factors of dairy cattle with and without silage feeding derived by Schrade et al. 2025 for the Swiss lowlands and mountain area.

Table 5-12 Time series of the share of cattle categories kept in the lowlands as well as of animals receiving silage feeding in the lowlands and mountain area, respectively.

	1990	1995	2000	2005	2010					
3B1a Dairy cattle										
Lowlands	62%	61%	60%	60%	60%					
Silage feeding, lowlands	37%	41%	45%	53%	56%					
Silage feeding, mountain area	30%	31%	33%	38%	39%					
3B1b Other mature cattle										
Lowlands	62%	61%	58%	58%	58%					
Silage feeding, lowlands	95%	95%	95%	95%	95%					
Silage feeding, mountain area	95%	95%	95%	95%	95%					
3B1c Growing cattle										
Lowlands	51%	51%	55%	56%	56%					
Silage feeding, lowlands	48%	52%	56%	64%	70%					
Silage feeding, mountain area	43%	46%	43%	47%	58%					
1	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
3B1a Dairy cattle			2010		2010			2021		2020
Lowlands	60%	60%	60%	60%	60%	59%	59%	59%	59%	59%
Lowlands	60% 56%	60% 56%	60% 57%	60% 59%	60% 60%	59% 61%	59% 61%	59% 61%	59% 61%	59% 61%
Lowlands Silage feeding, lowlands										
Lowlands	56%	56%	57%	59%	60%	61%	61%	61%	61%	61%
Lowlands Silage feeding, lowlands Silage feeding, mountain area	56%	56%	57%	59%	60%	61%	61%	61%	61%	61%
Lowlands Silage feeding, lowlands Silage feeding, mountain area 3B1b Other mature cattle	56% 42%	56% 43%	57% 42%	59% 41%	60% 41%	61% 40%	61% 40%	61% 40%	61% 40%	61% 40%
Lowlands Silage feeding, lowlands Silage feeding, mountain area 3B1b Other mature cattle Lowlands	56% 42% 57%	56% 43% 57%	57% 42% 56%	59% 41% 56%	60% 41% 56%	61% 40% 56%	61% 40% 56%	61% 40% 56%	61% 40% 56%	61% 40% 56%
Lowlands Silage feeding, lowlands Silage feeding, mountain area 3B1b Other mature cattle Lowlands Silage feeding, lowlands	56% 42% 57% 95%	56% 43% 57% 95%	57% 42% 56% 95%	59% 41% 56% 95%	60% 41% 56% 95%	61% 40% 56% 95%	61% 40% 56% 95%	61% 40% 56% 95%	61% 40% 56% 95%	61% 40% 56% 95%
Lowlands Silage feeding, lowlands Silage feeding, mountain area 3B1b Other mature cattle Lowlands Silage feeding, lowlands Silage feeding, mountain area	56% 42% 57% 95%	56% 43% 57% 95%	57% 42% 56% 95%	59% 41% 56% 95%	60% 41% 56% 95%	61% 40% 56% 95%	61% 40% 56% 95%	61% 40% 56% 95%	61% 40% 56% 95%	61% 40% 56% 95%
Lowlands Silage feeding, lowlands Silage feeding, mountain area 3B1b Other mature cattle Lowlands Silage feeding, lowlands Silage feeding, mountain area 3B1c Growing cattle	56% 42% 57% 95% 95%	56% 43% 57% 95% 95%	57% 42% 56% 95% 95%	59% 41% 56% 95% 95%	60% 41% 56% 95% 95%	61% 40% 56% 95% 95%	61% 40% 56% 95% 95%	61% 40% 56% 95% 95%	61% 40% 56% 95% 95%	61% 40% 56% 95% 95%

Table 5-13 Time series of NMVOC emission factors for livestock categories (3B4a Buffalos: IE (3B1a)).

NMVOC emission factors	unit	1990	1995	2000	2005	2010					
3B1a Dairy cattle	kg/animal	8.19	8.84	9.63	11.1	11.7					
3B1b Other mature cattle	kg/animal	22.1	22.0	22.0	22.0	22.0					
3B1b Growing cattle	kg/animal	4.58	4.72	4.60	4.78	5.24					
3B2 Sheep	kg/animal	0.169	0.169	0.169	0.169	0.169					
3B3 Swine	kg/animal	0.573	0.569	0.553	0.551	0.549					
3B4d Goats	kg/animal	0.542	0.542	0.542	0.542	0.542					
3B4e Horses	kg/animal	4.28	4.28	4.28	4.28	4.28					
3B4f Mules and asses	kg/animal	1.47	1.47	1.47	1.47	1.47					
3B4gi Laying hens	kg/animal	0.165	0.165	0.165	0.165	0.165					
3B4gii Broilers	kg/animal	0.108	0.108	0.108	0.108	0.108					
3B4giii Turkeys	kg/animal	0.489	0.489	0.489	0.489	0.489					
3B4giv Other poultry: Growers	kg/animal	0.165	0.165	0.165	0.165	0.165					
3B4giv Other poultry: Other	kg/animal	0.489	0.489	0.489	0.489	0.489					
3B4h Rabbits	kg/animal	0.0590	0.0590	0.0590	0.0590	0.0590					
3B4h Bisons	kg/animal	NO	3.60	3.60	3.60	3.60					
3B4h Camels and Ilamas	kg/animal	NO	NO	0.271	0.271	0.271					
3B4h Deer	kg/animal	0.0450	0.0450	0.0450	0.0450	0.0450					
NMVOC emission factors	unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
3B1a Dairy cattle	kg/animal	12.1	12.2	12.2	12.3	12.3	12.4	12.4	12.4	12.4	12.4
3B1a Dairy cattle 3B1b Other mature cattle	kg/animal kg/animal	12.1 22.0	12.2 22.0	12.2 22.0	12.3 22.0	12.3 22.0	12.4 22.0	12.4 22.0	12.4 22.0	12.4 22.0	12.4 22.0
	U U				-						
3B1b Other mature cattle	kg/animal	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
3B1b Other mature cattle 3B1b Growing cattle	kg/animal kg/animal	22.0 5.40	22.0 5.39	22.0 5.33	22.0 5.31	22.0 5.23	22.0 5.23	22.0 5.20	22.0 5.15	22.0 5.18	22.0 5.09
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep	kg/animal kg/animal kg/animal	22.0 5.40 0.169	22.0 5.39 0.169	22.0 5.33 0.169	22.0 5.31 0.169	22.0 5.23 0.169	22.0 5.23 0.169	22.0 5.20 0.169	22.0 5.15 0.169	22.0 5.18 0.169	22.0 5.09 0.169
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses	kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.169 0.548 0.542 4.28	22.0 5.39 0.169 0.551 0.542 4.28	22.0 5.33 0.169 0.551 0.542 4.28	22.0 5.31 0.169 0.550 0.542 4.28	22.0 5.23 0.169 0.548 0.542 4.28	22.0 5.23 0.169 0.548 0.542 4.28	22.0 5.20 0.169 0.545 0.542 4.28	22.0 5.15 0.169 0.546 0.542 4.28	22.0 5.18 0.169 0.547 0.542 4.28	22.0 5.09 0.169 0.547 0.542 4.28
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats	kg/animal kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.169 0.548 0.542	22.0 5.39 0.169 0.551 0.542	22.0 5.33 0.169 0.551 0.542	22.0 5.31 0.169 0.550 0.542	22.0 5.23 0.169 0.548 0.542	22.0 5.23 0.169 0.548 0.542	22.0 5.20 0.169 0.545 0.542	22.0 5.15 0.169 0.546 0.542	22.0 5.18 0.169 0.547 0.542	22.0 5.09 0.169 0.547 0.542
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.169 0.548 0.542 4.28	22.0 5.39 0.169 0.551 0.542 4.28	22.0 5.33 0.169 0.551 0.542 4.28	22.0 5.31 0.169 0.550 0.542 4.28	22.0 5.23 0.169 0.548 0.542 4.28	22.0 5.23 0.169 0.548 0.542 4.28	22.0 5.20 0.169 0.545 0.542 4.28	22.0 5.15 0.169 0.546 0.542 4.28	22.0 5.18 0.169 0.547 0.542 4.28	22.0 5.09 0.169 0.547 0.542 4.28
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.169 0.548 0.542 4.28 1.47	22.0 5.39 0.169 0.551 0.542 4.28 1.47	22.0 5.33 0.169 0.551 0.542 4.28 1.47	22.0 5.31 0.169 0.550 0.542 4.28 1.47	22.0 5.23 0.169 0.548 0.542 4.28 1.47	22.0 5.23 0.169 0.548 0.542 4.28 1.47	22.0 5.20 0.169 0.545 0.542 4.28 1.47	22.0 5.15 0.169 0.546 0.542 4.28 1.47	22.0 5.18 0.169 0.547 0.542 4.28 1.47	22.0 5.09 0.169 0.547 0.542 4.28 1.47
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gi Laying hens	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.169 0.548 0.542 4.28 1.47 0.165	22.0 5.39 0.169 0.551 0.542 4.28 1.47 0.165	22.0 5.33 0.169 0.551 0.542 4.28 1.47 0.165	22.0 5.31 0.169 0.550 0.542 4.28 1.47 0.165	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165	22.0 5.20 0.169 0.545 0.542 4.28 1.47 0.165	22.0 5.15 0.169 0.546 0.542 4.28 1.47 0.165	22.0 5.18 0.169 0.547 0.542 4.28 1.47 0.165	22.0 5.09 0.169 0.547 0.542 4.28 1.47 0.165
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.39 0.551 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.33 0.169 0.551 0.542 4.28 1.47 0.165 0.108	22.0 5.31 0.169 0.550 0.542 4.28 1.47 0.165 0.108	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.20 0.169 0.545 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.15 0.169 0.546 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.18 0.169 0.547 0.542 4.28 1.47 0.165 0.108	22.0 5.09 0.169 0.547 0.542 4.28 1.47 0.165 0.108
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers 3B4gii Turkeys	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489	22.0 5.39 0.551 0.551 4.28 1.47 0.165 0.108 0.489	22.0 5.33 0.169 0.551 0.542 4.28 1.47 0.165 0.108 0.489	22.0 5.31 0.169 0.550 0.542 4.28 1.47 0.165 0.108 0.489	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489	22.0 5.20 0.545 0.542 4.28 1.47 0.165 0.108 0.489	22.0 5.15 0.169 0.546 4.28 1.47 0.165 0.108 0.489	22.0 5.18 0.169 0.547 0.542 4.28 1.47 0.165 0.108 0.489	22.0 5.09 0.169 0.547 0.542 4.28 1.47 0.165 0.108 0.489
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4d Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gi Broilers 3B4giv Other poultry: Growers	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.39 0.551 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.33 0.169 0.551 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.31 0.169 0.550 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.20 0.169 0.545 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.15 0.169 0.546 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.18 0.547 0.542 4.28 1.47 0.165 0.108 0.489 0.165	22.0 5.09 0.169 0.547 0.542 4.28 1.47 0.165 0.108 0.489 0.165
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4d Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers 3B4gii Other poultry: Growers 3B4giv Other poultry: Other	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590 3.60	22.0 5.39 0.169 0.551 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590 3.60	22.0 5.33 0.169 0.551 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.165 0.489 0.360	22.0 5.31 0.169 0.550 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.165 0.489 0.165 0.489 0.165 0.489	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590 3.60	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590 3.60	22.0 5.20 0.169 0.545 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590 3.60	22.0 5.15 0.169 0.546 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590 3.60	22.0 5.18 0.169 0.547 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590 3.60	22.0 5.09 0.169 0.547 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590 3.60
3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4d Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers 3B4gii Other poultry: Growers 3B4giy Other poultry: Other 3B4gi Qother poultry: Other	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	22.0 5.40 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.489 0.0590	22.0 5.39 0.169 0.551 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.489 0.0590	22.0 5.33 0.169 0.551 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.489 0.0590	22.0 5.31 0.169 0.550 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.489 0.0590	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590	22.0 5.23 0.169 0.548 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590	22.0 5.20 0.169 0.545 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590	22.0 5.15 0.169 0.546 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590	22.0 5.18 0.169 0.547 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.489 0.0590	22.0 5.09 0.547 0.542 4.28 1.47 0.165 0.108 0.489 0.165 0.489 0.0590

The particulate matter emission factors (PM2.5, PM10, and TSP) are listed in Table 5-14. They are based on a comprehensive literature study by Bühler and Kupper (2018). The emission factors of all cattle categories were derived from literature data and expert judgment distinguishing loose- and tied-housing systems. For dairy cattle, the emission factors are based on PM10 emission measurements in a loose-housing system in

Switzerland (Schrade 2009). For all livestock categories other than cattle, except for fattening pigs (TSP) and sheeps and goats (PM2.5 and PM10) default Tier 1 emission factors from the EMEP/EEA guidebook (EMEP/EEA 2023, chp. 3B, Table 3.5) are used. For the mentioned exceptions other literature values are assumed. For camels/llamas, deer and bisons the same emission factors as for goats are assumed whereas for rabbits the emission factors of fur animals are applied. All these emission factors are kept constant over the entire time series, except for the emission factors of the aggregated category swine. For the animals outside agriculture, i.e. sheeps, goats, horses, mules and asses the same emission factors as for the corresponding agricultural animals are applied (see chp. 7.2.2).

3B Manure management	Unit of	PM2.5 nx	PM10 nx	TSP nx
3D Manure management	activity data	g/	g/	g/
3B1a Dairy cattle	animal	43	177	609
3B1b Other mature cattle	animal	22	92	314
3B1b Growing cattle	animal	22	91	313
3B2 Sheep	animal	2.0	50	140
3B3 Swine	animal	4.5	101	439
3B4d Goats	animal	2.0	50	140
3B4e Horses	animal	140	220	480
3B4f Mules and asses	animal	100	160	340
3B4gi Laying hens	animal	3.0	40	190
3B4gii Broilers	animal	2.0	20	40
3B4giii Turkeys	animal	20	110	110
3B4giv Other poultry: Growers	animal	2.0	20	40
3B4giv Other poultry: Other	animal	25	190	190
3B4h Rabbits	animal	4.0	8.0	18
3B4h Bisons	animal	2.0	50	140
3B4h Camels and Ilamas	animal	2.0	50	140
3B4h Deer	animal	2.0	50	140

Table 5-14 Emission factors of PM2.5, PM10 and TSP for livestock categories (3B4a Buffalos: IE (3B1a)) for the years 1990-2023 (based on measurements in Switzerland, literature data and EMEP/EEA 2023.

Activity data (3B)

The number of animals in the different livestock categories (SBV 2024, FSO 2024a) for the time period 1990 to 2023 is shown in Table 5-15. The figures represent harmonised livestock numbers coming from various sources since 1990. The methodology of the harmonisation, which was a joint effort of the Agroscope Reckenholz Tänikon Research Station (ART) and the Swiss College of Agriculture (SHL) in 2011 for the 1990-2010 time series, is documented in ART/SHL (2012). The livestock category swine comprises the five categories boars, dry sows, nursing sows (including suckling piglets), fattening pigs (> 25 kg) and weaned piglets (up to 25 kg). Because the official livestock census statistics are based on a key date (1st May until 2014, 1st January since 2015), the Federal Office of Statistics provided a dataset with average livestock numbers over the whole year, as suggested by the EMEP/EEA guidebook (EMEP/EEA 2023). Thus, for fattening pigs over 25 kg and broilers also empty periods were taken into account. Data for horses, mules and asses were derived from background data of the gross nutrient balance of the Swiss Federal Statistical Office (FSO 2024b).

3B Manure management (number of animals)	Unit	1990	1995	2000	2005	2010					
3B1a Dairy cattle	1000 animals	783	740	669	621	589					
3B1b Other mature cattle	1000 animals	12	23	45	78	111					
3B1b Growing cattle	1000 animals	1'060	986	874	856	891					
3B2 Sheep	1000 animals	395	387	421	446	434					
3B3 Swine	1000 animals	1'965	1'739	1'670	1'744	1'750					
3B4d Goats	1000 animals	68	53	62	74	83					
3B4e Horses	1000 animals	28	41	50	55	62					
3B4f Mules and asses	1000 animals	5.9	7.6	12	16	20					
3B4gi Laying hens	1000 animals	3'083	2'118	2'150	2'189	2'438					
3B4gii Broilers	1000 animals	3'392	3'637	3'985	5'711	7'184					
3B4giii Turkeys	1000 animals	95	170	173	132	58					
3B4giv Other poultry: Growers	1000 animals	719	714	832	868	926					
3B4giv Other poultry: Other	1000 animals	22	17	21	11	23					
3B4h Rabbits	1000 animals	61	41	28	25	35					
3B4h Bisons	1000 animals	NO	0.10	0.26	0.37	0.51					
3B4h Camels and Ilamas	1000 animals	NO	NO	1.0	3.1	6.1					
3B4h Deer	1000 animals	0.17	1.4	2.8	3.8	5.5					
3B Manure management (number of animals)	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
3B Manure management (number of animals) 3B1a Dairy cattle	Unit 1000 animals	2014 587	2015 583	2016 576	2017 569	2018 564	2019 555	2020 546	2021 546	2022 543	2023 532
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle	1000 animals	587 118 857	583 118 853	576 121 859	569 123 852	564 125 854	555 128 842	546 131 837	546 135 833	543 138 845	532 140 856
3B1a Dairy cattle 3B1b Other mature cattle	1000 animals 1000 animals	587 118	583 118	576 121	569 123	564 125	555 128	546 131	546 135	543 138	532 140
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle	1000 animals 1000 animals 1000 animals	587 118 857	583 118 853	576 121 859	569 123 852	564 125 854	555 128 842	546 131 837	546 135 833	543 138 845	532 140 856
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep	1000 animals 1000 animals 1000 animals 1000 animals	587 118 857 403	583 118 853 395	576 121 859 397	569 123 852 398	564 125 854 403	555 128 842 400 1'447 92	546 131 837 398	546 135 833 398	543 138 845 403	532 140 856 409
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine	1000 animals 1000 animals 1000 animals 1000 animals 1000 animals	587 118 857 403 1'631	583 118 853 395 1'605	576 121 859 397 1'553	569 123 852 398 1'546	564 125 854 403 1'501	555 128 842 400 1'447	546 131 837 398 1'449	546 135 833 398 1'470	543 138 845 403 1'475	532 140 856 409 1'409
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats	1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals	587 118 857 403 1'631 85 57 20	583 118 853 395 1'605 84 55 20	576 121 859 397 1'553 85 56 20	569 123 852 398 1'546 88 56 21	564 125 854 403 1'501 91 46 34	555 128 842 400 1'447 92 47 34	546 131 837 398 1'449 90 47 33	546 135 833 398 1'470 91 47 33	543 138 845 403 1'475 92 48 33	532 140 856 409 1'409 92 48 33
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B46 Goats 3B4e Horses	1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals	587 118 857 403 1'631 85 57	583 118 853 395 1'605 84 55	576 121 859 397 1'553 85 56	569 123 852 398 1'546 88 56	564 125 854 403 1'501 91 46	555 128 842 400 1'447 92 47	546 131 837 398 1'449 90 47	546 135 833 398 1'470 91 47	543 138 845 403 1'475 92 48	532 140 856 409 1'409 92 48
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses	1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals	587 118 857 403 1'631 85 57 20 2'665 8'506	583 118 853 395 1'605 84 55 20	576 121 859 397 1'553 85 56 20	569 123 852 398 1'546 88 56 21 3'174 8'857	564 125 854 403 1'501 91 46 34	555 128 842 400 1'447 92 47 34 3'486 9'593	546 131 837 398 1'449 90 47 33	546 135 833 398 1'470 91 47 33	543 138 845 403 1'475 92 48 33	532 140 856 409 1'409 92 48 33
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4f Mules and asses 3B4f Mules and asses 3B4fgi Laying hens	1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals	587 118 857 403 1'631 85 57 20 2'665	583 118 853 395 1'605 84 55 20 2'822	576 121 859 397 1'553 85 56 20 3'056	569 123 852 398 1'546 88 56 21 3'174	564 125 854 403 1'501 91 46 34 3'371	555 128 842 400 1'447 92 47 34 3'486	546 131 837 398 1'449 90 47 33 3'854	546 135 833 398 1'470 91 47 33 3'867	543 138 845 403 1'475 92 48 33 3'893	532 140 856 409 1'409 92 48 33 3'841
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4gi Laying hens 3B4gi Broilers	1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals 1000 animals	587 118 857 403 1'631 85 57 20 2'665 8'506	583 118 853 395 1'605 84 55 20 2'822 8'614	576 121 859 397 1'553 85 56 20 3'056 9'064	569 123 852 398 1'546 88 56 21 3'174 8'857	564 125 854 403 1'501 91 46 34 3'371 9'430	555 128 842 400 1'447 92 47 34 3'486 9'593	546 131 837 398 1'449 90 47 33 3'854 10'097	546 135 833 398 1'470 91 47 33 3'867 10'522	543 138 845 403 1'475 92 48 33 3'893 10'702	532 140 856 409 1'409 92 48 33 3'841 10'596
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4e Horses 3B4f Mules and asses 3B4f Mules and asses 3B4gi Laying hens 3B4gii Broilers 3B4gii Turkeys	1000 animals 1000 animals	587 118 857 403 1'631 85 57 20 2'665 8'506 57	583 118 853 395 1'605 84 55 20 2'822 8'614 49	576 121 859 397 1'553 85 56 20 3'056 9'064 71 959 30	569 123 852 398 1'546 88 56 21 3'174 8'857 77	564 125 854 403 1'501 91 46 34 3'371 9'430 84	555 128 842 400 1'447 92 47 34 3'486 9'593 75	546 131 837 398 1'449 90 47 33 3'854 10'097 88	546 135 833 398 1'470 91 47 33 3'867 10'522 83	543 138 845 403 1'475 92 48 33 3'893 10'702 82	532 140 856 409 1'409 92 48 33 3'841 10'596 121
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4d Horses 3B4f Mules and asses 3B4fgi Laying hens 3B4gi Broilers 3B4gi Turkeys 3B4gi Other poultry: Growers	1000 animals	587 118 857 403 1'631 85 57 20 2'665 8'506 57 57 1'196	583 118 853 395 1'605 84 55 20 2'822 8'614 49 1'033 23 25	576 121 859 397 1'553 85 56 20 3'056 9'064 9'064 9'064 71 71 959 30 25	569 123 852 398 1'546 888 566 21 3'174 8'857 77 77 1'084 166 22	564 125 854 403 1'501 91 46 34 3'371 9'430 84 1'078	555 128 842 400 1'447 92 47 34 3'486 9'593 75 1'242	546 131 837 398 1'449 90 47 33 3'854 10'097 88 1'150	546 135 833 398 1'470 91 47 33 3'867 10'522 83 1'177	543 138 845 403 1'475 92 48 33 3'893 10'702 82 1'300	532 140 856 409 1'409 92 48 33 3'841 10'596 121 1'231
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B4d Goats 3B4f Mules and asses 3B4f Mules and asses 3B4gii Broilers 3B4gii Other poultry: Growers 3B4gy Other poultry: Other	1000 animals	587 118 857 403 1'631 85 57 20 2'665 8'506 57 1'196 22	583 118 853 395 1'605 84 55 20 2'822 8'614 49 1'033 23	576 121 859 397 1'553 85 56 20 3'056 9'064 71 959 30	569 123 852 398 1'546 88 56 21 3'174 8'857 77 1'084 16	564 125 854 403 1'501 91 46 34 3'371 9'430 84 1'078 20	555 128 842 400 1'447 92 47 34 3'486 9'593 75 1'242 21	546 131 837 398 1'449 90 47 33 3'854 10'097 88 1'150 24	546 135 833 398 1'470 91 47 33 3'867 10'522 83 1'177 25	543 138 845 403 1'475 92 48 33 3'893 10'702 82 1'300 28	532 140 856 409 1'409 92 48 33 3'841 10'596 121 1'231 26
3B1a Dairy cattle 3B1b Other mature cattle 3B1b Growing cattle 3B2 Sheep 3B3 Swine 3B44 Goats 3B44 Horses 3B44 Houles and asses 3B4gli Environment 3B4gli Broilers 3B4gli Broilers 3B4gli Porter poultry: Growers 3B4gly Rober poultry: Other 3B4gli Rabbits	1000 animals 1000 animals	587 118 857 403 1'631 85 57 20 2'665 8'506 57 2'665 8'506 57 1'196 22 27	583 118 853 395 1'605 84 55 20 2'822 8'614 49 1'033 23 25	576 121 859 397 1'553 85 56 20 3'056 9'064 9'064 9'064 71 71 959 30 25	569 123 852 398 1'546 888 566 21 3'174 8'857 77 77 1'084 166 22	564 125 854 403 1'501 91 46 34 3'371 9'430 84 1'078 20 22	555 128 842 400 1'447 92 47 3'48 3'486 9'593 75 1'242 21 21	546 131 837 398 1'449 90 47 33 3'854 10'097 88 1'150 24 19	546 135 833 398 1'470 91 47 33 3'867 10'522 83 1'177 25 17	543 138 845 403 1'475 92 48 33 3'893 10'702 82 1'300 28 16	532 140 856 409 1'409 92 48 33 3'841 10'596 121 1'231 26 14

Table 5-15 Time series of animal numbers for livestock categories (in thousand animals, 3B4a Buffalos: IE (3B1a)).

5.2.3 Category-specific recalculations 3B Manure management

The following recalculations were implemented in submission 2025.

- 3B1: Updated data on the amount of manure digested anaerobically (SFOE 2024b, particularly in the years 1990-1999) led to minimal changes in the NO_x emission factors for manure management and application for all cattle categories (3B1, 3Da2a1, 3Da31).
- 3B3: The activity data and emission factors (NO_x, NMVOC, NH₃, PM2.5, PM10 and TSP) of 3B3 Manure management Swine were recalculated for the years 2021 and 2022 due to updated data for fattening pigs >25 kg from FSO 2024b.
- 3B4gii: The activity data of 3B4gii Manure management Broilers was recalculated for the years 2021 and 2022 due to updated data from FSO 2024b.
- 3B4h: Allocation of manure to the different management systems (MS) was revised for "other roughage eaters" (Bisons, Camelids, Deer, Rabbits) based on Kupper et al. 2022 yielding changes in the NO_x emission factors of source categories 3B4h Manure management - Other animals for the entire time series (1990-2022).

5.3 Source category 3D – Crop production and agricultural soils

5.3.1 Source category description of 3D Crop production and agricultural soils

This chapter contains direct and indirect emissions from agricultural soils, from all fertilisers (mineral (inorganic N-) fertiliser, sewage sludge, compost and other residue fertilisers) and animal manure applied on these soils as well as excretions during grazing.

Note that the application of HCB as a fungicide is prohibited in Switzerland since 1972 and its application as a seed-dressing agent since 1978 (LUBW 1995). Emissions due to potential HCB impurities or by-products in certain pesticides (3Df) are not estimated.

3D	Source category	Specification
3Da1	Inorganic N-fertilisers	Application of urea-containing fertilisers and other inorganic fertilisers
3Da2a	Livestock manure applied to soils	Application of livestock manure (incl. digestate from agricultural biogas plants) to soils (dairy cattle, non-dairy cattle, sheep, swine, buffalos, goats, horses, mules/asses, laying hens, broilers, turkeys, growers, other poultry, other animals)
3Da2b	Sewage sludge applied to soils	Application of sewage sludge to soils (NO after 2009)
3Da2c	Other organic fertilisers applied to soils (including compost)	Application of compost derived from organic residues (incl. liquid and solid digestate from non-agricultural biogas plants)
3Da3	Urine and dung deposited by grazing livestock	Deposition of urine and dung by grazing livestock
3De	Cultivated crops	For particulate matter emissions: Soil cultivation and crop harvesting (operation of tractors and machinery). For NMVOC emissions: Crop production, differentiated for cropland, grassland and summering pastures

Table 5-17 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 3D Agricultural Soils.

NFR code	Source category	Pollutant	Identification criteria
3Da1	Inorganic N-fertilizers (includes also urea application)	NOx	L2, T2
3Da1	Inorganic N-fertilizers (includes also urea application)	NH3	L1, L2, T1, T2
3Da2a	Animal manure applied to soils	NOx	L2, T1, T2
3Da2a	Animal manure applied to soils	NH3	L1, L2, T1, T2
3Da2b	Sewage sludge applied to soils	NH3	T1
3Da2c	Other organic fertilisers applied to soils (including compost)	NOx	T2
3Da2c	Other organic fertilisers applied to soils (including compost)	NH3	T1, T2
3Da3	Urine and dung deposited by grazing animals	NOx	L2, T2
3Da3	Urine and dung deposited by grazing animals	NH3	L2, T1, T2
3De	Cultivated crops	PM10	L1, L2, T1, T2

5.3.2 Methodological issues of 3D Crop production and agricultural soils

Methodology (3D)

The emissions are calculated by Tier 3 (3Da2a, 3Da3 (NH_3)), Tier 2 (3Da1, 3De) and Tier 1 (3Da2b, 3Da2c, 3Da3 (NO_x)) methods based on the decision tree in Fig. 3.1 in chapter 3D Crop production and agricultural soils of the EMEP/EEA guidebook (EMEP/EEA 2023).

- 3Da1: For the application of nitrogen containing inorganic fertilisers the Tier 2 method and NH₃ emission factors according to the EMEP/EEA guidebook (EMEP/EEA 2019) were used. In 3Da1 only the agricultural use of inorganic fertilisers is reported, while private use is reported under 6A3.
- 3Da2a: As described in chapter 5.2.2, emissions from livestock manure management are calculated with livestock specific emission factors multiplied by the number of livestock. Both the emission factors for 3B and 3D are generated from stratified samples considering different farm types, regions, height above sea level and application

techniques (Tier 3). This category also includes emissions from digestate originating from agricultural biogas plants (at least 80 % of the substrate is livestock manure).

- 3Da2b/3Da2c: NH₃ and NO_x emissions from field application of sewage sludge and compost (including solid and liquid digestate from non-agricultural sources) derived from organic residues are included in this category (Tier 1 except for NH₃ from 3Da2c). For NH₃ emissions from 3Da2c, a Tier 2 method based on Kupper et al. (2022) is used. In Switzerland, the application of sewage sludge as fertiliser is prohibited since 2006 (with some exceptions, it was applied in certain cantons until the end of 2008).
- 3Da3: NH₃ emission from urine and dung deposited by grazing livestock are determined by multiplying animal specific emission factors (see chapter 5.2.2) with the number of animals. For NO_x emissions, the Tier 1 method and emission factors described in the EMEP/EEA guidebook (EMEP/EEA 2023) were used.
- 3De: In this source category, NMVOC and particulate matter (PM2.5, PM10 and TSP) emissions from agricultural soils are reported based on a study by Bühler and Kupper (2018). The NMVOC emissions from agricultural soils are estimated with a Tier 2 approach according to the EMEP/EEA guidebook (EMEP/EEA 2016, unchanged in EMEP/EEA 2023) differentiating three agricultural areas, i.e. cropland, grassland and summering pastures. The particulate matter emissions from soil cultivation and crop harvesting originate at the sites at which the tractors and other machinery operate and are thought to consist of a mixture of organic fragments from the crop and soil mineral and organic matter. There is considerable settling of dust close to the sources and washing out of fine particles by large particles. Field operations may also lead to the resuspension of dust that has already settled (reentrainment). For the emission calculation it was differentiated between cropland and grassland.
- Since the publication of the EMEP/EEA guidebook version 2023, (EMEP/EEA 2023), it is recommended to report the activity "Sewage sludge spreading" within 3D instead of 5E. Sewage sludge spreading as a sludge drying process is not occurring in Switzerland, mostly due to restrictions in available space. In Swiss wastewater treatment plants, sewage sludge, after anaerobic digestion and generation of biogas, is stored in sludge tanks and in a first step, chemical and mechanical means are applied to dehydrate the sludge. Of the dehydrated sewage sludge, 70 80 % is incinerated in municipal solid waste incineration plants or in dedicated sewage sludge incineration plants. The remaining 20 30 % is used as alternative fuel in the cement industry (1A2f). For this purpose, the water content of the sludge has to be reduced to 10 %, which requires thermal drying processes. The thermal drying predominantly occurs in large thermal drying plants equipped with flue gas treatment systems.

Emission factors (3Da)

For fertiliser, default Tier 2 NH₃ emission factors from the EMEP/EEA guidebook (EMEP/EEA 2019, 3D Crop production and agricultural soils, Table 3.2) were used for the whole time series. The climate zone for Switzerland is "cool". Based on official fertiliser trade statistics (Agricura 2023) and an assessment of soil pH based on the Swiss agricultural soil use capability map (Frei et al. 1980), 54 % of fertilisers are used on soils with pH > 7.0 and 46 % on soils with pH > 7.0.

 NH_3 -emission factors for 3Da2c are based on Kupper et al. (2022; chp. 7.4.2). The emission factors used were 60 % of TAN for liquid residues and 80 % of TAN for solid residues.

Table 5-18 shows NH_3 and NO_x emission factors for nitrogen containing fertiliser, sewage sludge and compost applied to soils. For other synthetic N fertilisers, they are weighted mean factors. A fertiliser-induced emission (FIE) value of 0.55 % from Stehfest and Bouwman

(2006) is used for NO_x emission factors, both for mineral and organic fertiliser. This means that $0.0055/14*46 \text{ kg NO}_x$ (as NO₂) is emitted per ton of nitrogen applied.

Table 5-18 NH₃ and NO_x emission factors 2023 for nitrogen containing fertiliser.

3Da Direct emissions from managed soils	Unit of	NOx	NH3
SDa Direct emissions nom managed solls	activity data	g/	g/
3Da1 Urea containing fertiliser	kg N	18	159
3Da1 Other synthetic N-fertiliser	kg N	18	37
3Da2b Sewage sludge applied to soils	kg N	NO	NO
3Da2c Other organic fertilisers applied to soils	kg N	18	154

Emission factors for the application of animal manure are displayed in Table 5-19 and Table 5-20. They are based on the livestock category specific N flow calculations with AGRAMMON (see chapter 5.2.2).

Table 5-19 Time series of NH_3 emission factors for the application of animal manure to soils (3Da2a, Buffalos: IE (Dairy cattle)).

NH3 emission factors	unit	1990	1995	2000	2005	2010					
3Da2a Dairy cattle	kg/animal	26.0	25.7	23.1	23.0	22.6					
3Da2a Other mature cattle	kg/animal	13.4	12.7	11.4	12.0	12.3					
3Da2a Growing cattle	kg/animal	6.61	6.54	5.60	5.37	5.29					
3Da2a Sheep	kg/animal	0.225	0.228	0.191	0.204	0.250					
3Da2a Swine	kg/animal	3.26	3.09	2.00	1.58	1.44					
3Da2a Goats	kg/animal	0.444	0.440	0.334	0.497	0.408					
3Da2a Horses	kg/animal	1.76	1.76	1.57	1.52	1.47					
3Da2a Mules and asses	kg/animal	0.648	0.648	0.621	0.611	0.651					
3Da2a Laying hens	kg/animal	0.0594	0.0615	0.0671	0.0746	0.0874					
3Da2a Broilers	kg/animal	0.0634	0.0645	0.0526	0.0544	0.0627					
3Da2a Turkey	kg/animal	0.222	0.221	0.206	0.180	0.170					
3Da2a Other poultry: Growers	kg/animal	0.0230	0.0268	0.0321	0.0322	0.0351					
3Da2a Other poultry: Other	kg/animal	0.0746	0.0746	0.0700	0.0537	0.0769					
3Da2a Rabbits	kg/animal	0.0368	0.0368	0.0357	0.0354	0.0353					
3Da2a Bisons	kg/animal	NO	0.841	0.834	0.747	0.731					
3Da2a Camels and Ilamas	kg/animal	NO	NO	0.227	0.195	0.225					
3Da2a Deer	kg/animal	0.376	0.411	0.359	0.332	0.401					
NH3 emission factors	unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
NH3 emission factors 3Da2a Dairy cattle	unit kg/animal	2014 21.5	2015 21.3	2016 21.3	2017 21.2	2018 21.2	2019 21.2	2020 21.2	2021 21.2	2022 21.2	2023 21.2
3Da2a Dairy cattle	kg/animal	21.5	21.3	21.3	21.2	21.2 11.5 4.99	21.2	21.2	21.2	21.2	21.2
3Da2a Dairy cattle 3Da2a Other mature cattle	kg/animal kg/animal	21.5 11.9	21.3 11.8	21.3 11.7	21.2 11.6	21.2 11.5	21.2 11.5	21.2 11.5	21.2 11.5	21.2 11.5	21.2 11.5
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle	kg/animal kg/animal kg/animal	21.5 11.9 5.08	21.3 11.8 5.02	21.3 11.7 5.00	21.2 11.6 5.00	21.2 11.5 4.99	21.2 11.5 5.00	21.2 11.5 4.97	21.2 11.5 4.96	21.2 11.5 4.95	21.2 11.5 4.92
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep	kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212	21.3 11.8 5.02 0.201	21.3 11.7 5.00 0.205	21.2 11.6 5.00 0.211	21.2 11.5 4.99 0.215	21.2 11.5 5.00 0.219	21.2 11.5 4.97 0.219	21.2 11.5 4.96 0.218	21.2 11.5 4.95 0.219	21.2 11.5 4.92 0.219
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine	kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433 1.56	21.3 11.8 5.02 0.201 1.35 0.428 1.60	21.3 11.7 5.00 0.205 1.36 0.431 1.58	21.2 11.6 5.00 0.211 1.36 0.434 1.56	21.2 11.5 4.99 0.215 1.36 0.437 1.53	21.2 11.5 5.00 0.219 1.36 0.440 1.51	21.2 11.5 4.97 0.219 1.36 0.440 1.51	21.2 11.5 4.96 0.218 1.36 0.440 1.51	21.2 11.5 4.95 0.219 1.36 0.440 1.51	21.2 11.5 4.92 0.219 1.36 0.440 1.51
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats	kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433	21.3 11.8 5.02 0.201 1.35 0.428	21.3 11.7 5.00 0.205 1.36 0.431	21.2 11.6 5.00 0.211 1.36 0.434	21.2 11.5 4.99 0.215 1.36 0.437	21.2 11.5 5.00 0.219 1.36 0.440	21.2 11.5 4.97 0.219 1.36 0.440	21.2 11.5 4.96 0.218 1.36 0.440	21.2 11.5 4.95 0.219 1.36 0.440	21.2 11.5 4.92 0.219 1.36 0.440
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433 1.56	21.3 11.8 5.02 0.201 1.35 0.428 1.60	21.3 11.7 5.00 0.205 1.36 0.431 1.58	21.2 11.6 5.00 0.211 1.36 0.434 1.56	21.2 11.5 4.99 0.215 1.36 0.437 1.53	21.2 11.5 5.00 0.219 1.36 0.440 1.51	21.2 11.5 4.97 0.219 1.36 0.440 1.51	21.2 11.5 4.96 0.218 1.36 0.440 1.51	21.2 11.5 4.95 0.219 1.36 0.440 1.51	21.2 11.5 4.92 0.219 1.36 0.440 1.51
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Mules and asses	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433 1.56 0.613	21.3 11.8 5.02 0.201 1.35 0.428 1.60 0.604	21.3 11.7 5.00 0.205 1.36 0.431 1.58 0.620	21.2 11.6 5.00 0.211 1.36 0.434 1.56 0.637	21.2 11.5 4.99 0.215 1.36 0.437 1.53 0.653	21.2 11.5 5.00 0.219 1.36 0.440 1.51 0.670	21.2 11.5 4.97 0.219 1.36 0.440 1.51 0.670	21.2 11.5 4.96 0.218 1.36 0.440 1.51 0.670	21.2 11.5 4.95 0.219 1.36 0.440 1.51 0.670	21.2 11.5 4.92 0.219 1.36 0.440 1.51 0.670
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Mules and asses 3Da2a Laying hens	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433 1.56 0.613 0.0946 0.0511 0.161	21.3 11.8 5.02 0.201 1.35 0.428 1.60 0.604 0.0964	21.3 11.7 5.00 0.205 1.36 0.431 1.58 0.620 0.0957	21.2 11.6 5.00 0.211 1.36 0.434 1.56 0.637 0.0950	21.2 11.5 4.99 0.215 1.36 0.437 1.53 0.653 0.0943	21.2 11.5 5.00 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152	21.2 11.5 4.97 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152	21.2 11.5 4.96 0.218 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152	21.2 11.5 4.95 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152	21.2 11.5 4.92 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Mules and asses 3Da2a Laying hens 3Da2a Broilers	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433 1.56 0.613 0.0946 0.0511	21.3 11.8 5.02 0.201 1.35 0.428 1.60 0.604 0.0964 0.0964	21.3 11.7 5.00 0.205 1.36 0.431 1.58 0.620 0.0957 0.0485	21.2 11.6 5.00 0.211 1.36 0.434 1.56 0.637 0.0950 0.0489	21.2 11.5 4.99 0.215 1.36 0.437 1.53 0.653 0.0943 0.0493	21.2 11.5 5.00 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496	21.2 11.5 4.97 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496	21.2 11.5 4.96 0.218 1.36 0.440 1.51 0.670 0.0936 0.0496	21.2 11.5 4.95 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496	21.2 11.5 4.92 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Hules and asses 3Da2a Laying hens 3Da2a Eroilers 3Da2a Turkey	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433 1.56 0.613 0.0946 0.0511 0.161	21.3 11.8 5.02 0.201 1.35 0.428 1.60 0.604 0.0964 0.0964 0.0482 0.159	21.3 11.7 5.00 0.205 1.36 0.431 1.58 0.620 0.0957 0.0485 0.158	21.2 11.6 5.00 0.211 1.36 0.434 1.56 0.637 0.0950 0.0489 0.156	21.2 11.5 4.99 0.215 1.36 0.437 1.53 0.653 0.0943 0.0493 0.154	21.2 11.5 5.00 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152	21.2 11.5 4.97 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152	21.2 11.5 4.96 0.218 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152	21.2 11.5 4.95 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152	21.2 11.5 4.92 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Goats 3Da2a Horses 3Da2a Mules and asses 3Da2a Laying hens 3Da2a Broilers 3Da2a Turkey 3Da2a Other poultry: Growers	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433 1.56 0.613 0.0946 0.0511 0.161 0.0387 0.0665 0.0353	21.3 11.8 5.02 0.201 1.35 0.428 1.60 0.604 0.0964 0.0482 0.159 0.0396 0.0396 0.0639 0.0353	21.3 11.7 5.00 0.205 1.36 0.431 1.58 0.620 0.0957 0.0485 0.158 0.0365 0.0641 0.0353	21.2 11.6 5.00 0.211 1.36 0.434 1.56 0.637 0.0950 0.04950 0.156 0.0334 0.0643 0.0353	21.2 11.5 4.99 0.215 1.36 0.437 1.53 0.653 0.0943 0.0493 0.154 0.0303 0.0644 0.0352	21.2 11.5 5.00 0.219 1.36 0.440 1.51 0.670 0.0936 0.0936 0.0496 0.152 0.0272	21.2 11.5 4.97 0.219 1.36 0.440 1.51 0.670 0.0936 0.0936 0.0496 0.152 0.0272	21.2 11.5 4.96 0.218 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272	21.2 11.5 4.95 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272	21.2 11.5 4.92 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Mules and asses 3Da2a Laying hens 3Da2a Turkey 3Da2a Other poultry: Growers 3Da2a Other poultry: Other	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433 1.56 0.613 0.0946 0.0511 0.161 0.0387 0.0665	21.3 11.8 5.02 0.201 1.35 0.428 1.60 0.604 0.0964 0.0964 0.0964 0.0482 0.159 0.0396 0.0639	21.3 11.7 5.00 0.205 1.36 0.431 1.58 0.620 0.0957 0.0485 0.158 0.0365 0.0641	21.2 11.6 5.00 0.211 1.36 0.434 1.56 0.637 0.0950 0.0950 0.0489 0.156 0.0334 0.0643	21.2 11.5 4.99 0.215 1.36 0.437 1.53 0.653 0.0943 0.0493 0.0493 0.154 0.0303 0.0644	21.2 11.5 5.00 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272 0.0646	21.2 11.5 4.97 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272 0.0646	21.2 11.5 4.96 0.218 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272 0.0646	21.2 11.5 4.95 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272 0.0646	21.2 11.5 4.92 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272 0.0646
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Aules and asses 3Da2a Evolution and the set of th	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	21.5 11.9 5.08 0.212 1.36 0.433 1.56 0.613 0.0946 0.0511 0.161 0.0387 0.0665 0.0353	21.3 11.8 5.02 0.201 1.35 0.428 1.60 0.604 0.0964 0.0482 0.159 0.0396 0.0396 0.0639 0.0353	21.3 11.7 5.00 0.205 1.36 0.431 1.58 0.620 0.0957 0.0485 0.158 0.0365 0.0641 0.0353	21.2 11.6 5.00 0.211 1.36 0.434 1.56 0.637 0.0950 0.04950 0.156 0.0334 0.0643 0.0353	21.2 11.5 4.99 0.215 1.36 0.437 1.53 0.653 0.0943 0.0493 0.154 0.0303 0.0644 0.0352	21.2 11.5 5.00 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272 0.0646 0.0352	21.2 11.5 4.97 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272 0.0646 0.0352	21.2 11.5 4.96 0.218 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272 0.0646 0.0352	21.2 11.5 4.95 0.219 1.36 0.440 1.51 0.670 0.0936 0.0496 0.152 0.0272 0.0646 0.0352	21.2 11.5 4.92 0.219 1.36 0.440 1.51 0.0936 0.0496 0.152 0.0272 0.0646 0.0352

NOx emission factors	unit	1990	1995	2000	2005	2010					
3Da2a Dairy cattle	g/animal	1'443	1'427	1'322	1'305	1'347					
3Da2a Other mature cattle	g/animal	875	859	761	785	818					
3Da2a Growing cattle	g/animal	416	414	360	341	347					
3Da2a Sheep	g/animal	68.3	69.3	59.9	57.0	68.4					
3Da2a Swine	g/animal	200	192	136	110	112					
3Da2a Goats	g/animal	127	126	112	107	107					
3Da2a Horses	g/animal	527	526	481	462	460					
3Da2a Mules and asses	g/animal	194	194	189	178	171					
3Da2a Laying hens	g/animal	7.76	7.82	7.99	8.79	9.85					
3Da2a Broilers	g/animal	5.70	5.73	5.74	6.18	6.69					
3Da2a Turkey	g/animal	19.9	19.8	19.7	19.5	20.0					
3Da2a Other poultry: Growers	g/animal	3.48	3.63	4.03	3.95	4.11					
3Da2a Other poultry: Other	g/animal	7.35	7.35	7.12	7.13	7.09					
3Da2a Rabbits	g/animal	12.7	12.7	12.7	12.7	12.7					
3Da2a Bisons	g/animal	NO	364	352	321	315					
3Da2a Camels and Ilamas	g/animal	NO	NO	103	87.6	99.0					
3Da2a Deer	g/animal	184	201	163	149	176					
NOx emission factors	unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
NOx emission factors 3Da2a Dairy cattle	unit g/animal	2014 1'356	2015 1'359	2016 1'357	2017 1'355	2018 1'353	2019 1'351	2020 1'351	2021 1'351	2022 1'351	2023 1'351
									-	-	
3Da2a Dairy cattle	g/animal	1'356	1'359	1'357	1'355 806 348	1'353	1'351	1'351 799 345	1'351	1'351	1'351 799 342
3Da2a Dairy cattle 3Da2a Other mature cattle	g/animal g/animal	1'356 814	1'359 813	1'357 810	1'355 806	1'353 803	1'351 799	1'351 799	1'351 799	1'351 799	1'351 799
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle	g/animal g/animal g/animal	1'356 814 352	1'359 813 352	1'357 810 350	1'355 806 348	1'353 803 347	1'351 799 346	1'351 799 345	1'351 799 344	1'351 799 343	1'351 799 342
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep	g/animal g/animal g/animal g/animal	1'356 814 352 62.6	1'359 813 352 60.7	1'357 810 350 61.1	1'355 806 348 62.4	1'353 803 347 63.0	1'351 799 346 63.8	1'351 799 345 63.5	1'351 799 344 63.6	1'351 799 343 63.8	1'351 799 342 63.6
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine	g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110	1'359 813 352 60.7 110	1'357 810 350 61.1 111	1'355 806 348 62.4 110	1'353 803 347 63.0 110	1'351 799 346 63.8 111	1'351 799 345 63.5 111	1'351 799 344 63.6 111	1'351 799 343 63.8 111	1'351 799 342 63.6 110
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats	g/animal g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110 111	1'359 813 352 60.7 110 109	1'357 810 350 61.1 111 107	1'355 806 348 62.4 110 105	1'353 803 347 63.0 110 103	1'351 799 346 63.8 111 101	1'351 799 345 63.5 111 101	1'351 799 344 63.6 111 101	1'351 799 343 63.8 111 101	1'351 799 342 63.6 110 101
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses	g/animal g/animal g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110 111 471	1'359 813 352 60.7 110 109 476	1'357 810 350 61.1 111 107 473	1'355 806 348 62.4 110 105 470	1'353 803 347 63.0 110 103 467	1'351 799 346 63.8 111 101 464	1'351 799 345 63.5 111 101 464	1'351 799 344 63.6 111 101 465	1'351 799 343 63.8 111 101 464	1'351 799 342 63.6 110 101 464
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Mules and asses	g/animal g/animal g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110 111 471 172	1'359 813 352 60.7 110 109 476 173	1'357 810 350 61.1 111 107 473 174	1'355 806 348 62.4 110 105 470 176	1'353 803 347 63.0 110 103 467 178	1'351 799 346 63.8 111 101 464 179	1'351 799 345 63.5 111 101 464 179	1'351 799 344 63.6 111 101 465 179	1'351 799 343 63.8 111 101 464 179	1'351 799 342 63.6 110 101 464 179
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Horses 3Da2a Mules and asses 3Da2a Laying hens	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110 111 471 172 10.1	1'359 813 352 60.7 110 109 476 173 10.2	1'357 810 350 61.1 107 473 174 10.3	1'355 806 348 62.4 110 105 470 176 10.3	1'353 803 347 63.0 110 103 467 178 10.4	1'351 799 346 63.8 111 101 464 179 10.5	1'351 799 345 63.5 111 101 464 179 10.5	1'351 799 344 63.6 111 101 465 179 10.5	1'351 799 343 63.8 111 101 464 179 10.5	1'351 799 342 63.6 110 101 464 179 10.5
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Hules and asses 3Da2a Laying hens 3Da2a Broilers	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110 111 471 172 10.1 5.63	1'359 813 352 60.7 110 109 476 173 10.2 5.37	1'357 810 350 61.1 107 473 174 10.3 5.36	1'355 806 348 62.4 110 105 470 176 10.3 5.36	1'353 803 347 63.0 110 103 467 178 10.4 5.35	1'351 799 346 63.8 111 101 464 179 10.5 5.34	1'351 799 345 63.5 111 101 464 179 10.5 5.34	1'351 799 344 63.6 111 101 465 179 10.5 5.34	1'351 799 343 63.8 111 101 464 179 10.5 5.34	1'351 799 342 63.6 110 101 464 179 10.5 5.34
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Laying hens 3Da2a Broilers 3Da2a Turkey	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110 111 471 172 10.1 5.63 19.3	1'359 813 352 60.7 110 109 476 173 10.2 5.37 19.1	1'357 810 350 61.1 107 473 174 10.3 5.36 19.3	1'355 806 348 62.4 110 105 470 176 10.3 5.36 19.5	1'353 803 347 63.0 110 103 467 178 10.4 5.35 19.7	1'351 799 346 63.8 111 101 464 179 10.5 5.34 20.0	1'351 799 345 63.5 111 101 464 179 10.5 5.34 20.0	1'351 799 344 63.6 111 101 465 179 10.5 5.34 20.0	1'351 799 343 63.8 111 101 464 179 10.5 5.34 20.0	1'351 799 342 63.6 110 101 464 179 10.5 5.34 20.0
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Laying hens 3Da2a Turkey 3Da2a Other poultry: Growers	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110 111 471 172 10.1 5.63 19.3 4.08	1'359 813 352 60.7 110 109 476 173 10.2 5.37 19.1 4.07	1'357 810 350 61.1 107 473 174 10.3 5.36 19.3 4.08	1'355 806 348 62.4 110 105 470 176 10.3 5.36 19.5 4.09	1'353 803 347 63.0 110 103 467 178 10.4 5.35 19.7 4.09	1'351 799 346 63.8 111 101 464 179 10.5 5.34 20.0 4.10	1'351 799 345 63.5 111 101 464 179 10.5 5.34 20.0 4.10	1'351 799 344 63.6 111 101 465 179 10.5 5.34 20.0 4.10	1'351 799 343 63.8 111 101 464 179 10.5 5.34 20.0 4.10	1'351 799 342 63.6 110 101 464 179 10.5 5.34 20.0 4.10
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Aurile and asses 3Da2a Laying hens 3Da2a Turkey 3Da2a Other poultry: Growers 3Da2a Other poultry: Other	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110 111 471 172 10.1 5.63 19.3 4.08 7.03	1'359 813 352 60.7 110 109 476 173 10.2 5.37 19.1 4.07 7.01	1'357 810 350 61.1 107 473 174 10.3 5.36 19.3 4.08 7.05	1'355 806 348 62.4 110 105 470 176 10.3 5.36 19.5 4.09 7.08	1'353 803 347 63.0 110 103 467 178 10.4 5.35 19.7 4.09 7.11	1'351 799 346 63.8 111 101 464 179 10.5 5.34 20.0 4.10 7.14	1'351 799 345 63.5 111 101 464 179 10.5 5.34 20.0 4.10 7.14	1'351 799 344 63.6 111 101 465 179 10.5 5.34 20.0 4.10 7.14	1'351 799 343 63.8 111 101 464 179 10.5 5.34 20.0 4.10 7.14	1'351 799 342 63.6 110 101 464 179 10.5 5.34 20.0 4.10 7.14
3Da2a Dairy cattle 3Da2a Other mature cattle 3Da2a Growing cattle 3Da2a Sheep 3Da2a Swine 3Da2a Goats 3Da2a Horses 3Da2a Auries 3Da2a Roiters 3Da2a Turkey 3Da2a Other poultry: Growers 3Da2a Robits	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	1'356 814 352 62.6 110 111 471 172 10.1 5.63 19.3 4.08 7.03 12.7	1'359 813 352 60.7 110 109 476 173 10.2 5.37 19.1 4.07 7.01 12.7	1'357 810 350 61.1 111 107 473 174 10.3 5.36 19.3 4.08 7.05 12.7	1'355 806 348 62.4 110 105 470 105 105 105 10.3 5.36 19.5 4.09 7.08 12.7	1'353 803 347 63.0 110 103 467 178 10.4 5.35 19.7 4.09 7.11 12.7	1'351 799 346 63.8 111 101 464 179 10.5 5.34 20.0 4.10 7.14 12.7	1'351 799 345 63.5 111 101 464 179 10.5 5.34 5.34 2.00 4.10 7.14 12.7	1'351 799 344 63.6 111 101 465 179 10.5 5.34 20.0 4.10 7.14 12.7	1'351 799 343 63.8 111 101 464 179 10.5 5.34 20.0 4.10 7.14 12.7	1'351 799 342 63.6 110 101 464 179 10.5 5.34 2.0.0 4.10 7.14 12.7

Table 5-20 Time series of NO_x emission factors for the application of animal manure to soils (3Da2a, Buffalos: IE (Dairy cattle)).

In the following, Table 5-21 and Table 5-22 list the emission factors for NH_3 and NO_x for N excretion on pasture and paddock during grazing. They are based on the livestock category specific N flow calculations with AGRAMMON (see chapter 5.2.2). The considerable increase between 1990 and 2010 (e.g. dairy cattle, young cattle (calves), sheep, goats, horses) was a consequence of a strong increase of grazing linked to animal welfare incentives.

NH3 emission factors	unit	1990	1995	2000	2005	2010					
3Da3 Dairy cattle	kg/animal	0.470	0.550	0.871	1.03	1.06					
3Da3 Other mature cattle	kg/animal	1.39	1.39	1.63	1.48	1.38					
3Da3 Growing cattle	kg/animal	0.288	0.292	0.442	0.466	0.449					
3Da3 Sheep	kg/animal	0.136	0.139	0.212	0.230	0.199					
3Da3 Swine	kg/animal	NO	NO	0.00356	0.0100	0.00457					
3Da3 Goats	kg/animal	0.0921	0.0914	0.166	0.188	0.192					
3Da3 Horses	kg/animal	0.338	0.337	0.543	0.630	0.635					
3Da3 Mules and asses	kg/animal	0.124	0.124	0.146	0.198	0.224					
3Da3 Laying hens	kg/animal	NO	0.00213	0.0144	0.0243	0.0281					
3Da3 Broilers	kg/animal	NO	0.000801	0.00121	0.00213	0.000974					
3Da3 Turkey	kg/animal	NO	0.00280	0.0158	0.0171	0.0135					
3Da3 Other poultry: Growers	kg/animal	NO	0.00102	0.000952	0.00149	0.00294					
3Da3 Other poultry: Other	kg/animal	NO	NO	0.00626	0.00462	0.00573					
3Da3 Rabbits	kg/animal	NO	NO	NO	NO	NO					
3Da3 Bisons	kg/animal	NO	0.660	0.845	0.846	0.792					
3Da3 Camels and Ilamas	kg/animal	NO	NO	0.376	0.359	0.293					
3Da3 Deer	kg/animal	0.433	0.474	0.594	0.613	0.521					
NH3 emission factors	unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
3Da3 Dairy cattle	kg/animal	1.03	1.02	1.03	1.03	1.03	1.04	1.04	1.04	1.04	1.04
3Da3 Other mature cattle	kg/animal	1.38	1.38	1.40	1.42	1.44	1.46	1.46	1.46	1.46	1.46
3Da3 Growing cattle	kg/animal	0.445	0.442	0.441	0.444	0.441	0.441	0.438	0.440	0.439	0.433
2Do2 Choop			0.232	0.000	0.007	0.224	0.221	0.001			0.000
3Da3 Sheep	kg/animal	0.226	0.232	0.228	0.227			0.221	0.220	0.221	0.220
3Da3 Sheep 3Da3 Swine	kg/animal kg/animal	0.226	0.232	0.228	0.227					0.221	
	0				-						
3Da3 Swine 3Da3 Goats 3Da3 Horses	kg/animal	0.00207	0.00146 0.196 0.575	0.00132	0.00117	0.00102	0.000872	0.000870	0.000869	0.000866	0.000860
3Da3 Swine 3Da3 Goats	kg/animal kg/animal	0.00207 0.199	0.00146 0.196 0.575 0.215	0.00132	0.00117	0.00102 0.224 0.610 0.196	0.000872	0.000870	0.000869	0.000866	0.000860
3Da3 Swine 3Da3 Goats 3Da3 Horses	kg/animal kg/animal kg/animal	0.00207 0.199 0.590 0.217 0.0286	0.00146 0.196 0.575 0.215 0.0287	0.00132 0.205 0.587 0.209 0.0288	0.00117 0.215 0.599 0.203 0.0288	0.00102 0.224 0.610 0.196 0.0289	0.000872 0.233 0.624 0.190 0.0290	0.000870 0.233 0.623 0.190 0.0290	0.000869 0.233 0.622 0.190 0.0290	0.000866 0.233 0.623 0.190 0.0290	0.000860 0.233 0.624 0.190 0.0290
3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Mules and asses	kg/animal kg/animal kg/animal kg/animal	0.00207 0.199 0.590 0.217 0.0286	0.00146 0.196 0.575 0.215 0.0287	0.00132 0.205 0.587 0.209 0.0288	0.00117 0.215 0.599 0.203 0.0288	0.00102 0.224 0.610 0.196 0.0289	0.000872 0.233 0.624 0.190 0.0290	0.000870 0.233 0.623 0.190 0.0290	0.000869 0.233 0.622 0.190 0.0290	0.000866 0.233 0.623 0.190	0.000860 0.233 0.624 0.190 0.0290
3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Mules and asses 3Da3 Laying hens	kg/animal kg/animal kg/animal kg/animal kg/animal	0.00207 0.199 0.590 0.217 0.0286	0.00146 0.196 0.575 0.215 0.0287	0.00132 0.205 0.587 0.209 0.0288	0.00117 0.215 0.599 0.203 0.0288	0.00102 0.224 0.610 0.196 0.0289	0.000872 0.233 0.624 0.190 0.0290	0.000870 0.233 0.623 0.190 0.0290	0.000869 0.233 0.622 0.190 0.0290	0.000866 0.233 0.623 0.190 0.0290 0.000939	0.000860 0.233 0.624 0.190 0.0290
3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Mules and asses 3Da3 Laying hens 3Da3 Broilers	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	0.00207 0.199 0.590 0.217 0.0286 0.000638	0.00146 0.196 0.575 0.215 0.0287 0.000554	0.00132 0.205 0.587 0.209 0.0288 0.000650 0.0219	0.00117 0.215 0.599 0.203 0.0288 0.000746	0.00102 0.224 0.610 0.196 0.0289 0.000843	0.000872 0.233 0.624 0.190 0.0290 0.000939	0.000870 0.233 0.623 0.190 0.0290 0.000939	0.000869 0.233 0.622 0.190 0.0290 0.000939	0.000866 0.233 0.623 0.190 0.0290 0.000939 0.0219	0.000860 0.233 0.624 0.190 0.0290 0.000939
3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Hules and asses 3Da3 Laying hens 3Da3 Broilers 3Da3 Turkey	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	0.00207 0.199 0.590 0.217 0.0286 0.000638 0.0202	0.00146 0.196 0.575 0.215 0.0287 0.000554 0.0219	0.00132 0.205 0.587 0.209 0.0288 0.000650 0.0219	0.00117 0.215 0.599 0.203 0.0288 0.000746 0.0219	0.00102 0.224 0.610 0.196 0.0289 0.000843 0.0219	0.000872 0.233 0.624 0.190 0.0290 0.00939 0.0219 0.00382	0.000870 0.233 0.623 0.190 0.0290 0.000939 0.0219	0.000869 0.233 0.622 0.190 0.0290 0.000939 0.0219	0.000866 0.233 0.623 0.190 0.0290 0.00939 0.0219 0.00382	0.000860 0.233 0.624 0.190 0.0290 0.000939 0.0219
3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Mules and asses 3Da3 Laying hens 3Da3 Broilers 3Da3 Turkey 3Da3 Other poultry: Growers	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	0.00207 0.199 0.590 0.217 0.0286 0.000638 0.0202 0.00234	0.00146 0.196 0.575 0.215 0.0287 0.000554 0.0219 0.00220	0.00132 0.205 0.587 0.209 0.0288 0.000650 0.0219 0.00260	0.00117 0.215 0.599 0.203 0.0288 0.000746 0.0219 0.00301	0.00102 0.224 0.610 0.196 0.0289 0.000843 0.0219 0.00341	0.000872 0.233 0.624 0.190 0.0290 0.00939 0.0219 0.00382	0.000870 0.233 0.623 0.190 0.0290 0.00939 0.0219 0.00382	0.000869 0.233 0.622 0.190 0.0290 0.00939 0.0219 0.00382	0.000866 0.233 0.623 0.190 0.0290 0.00939 0.0219 0.00382	0.000860 0.233 0.624 0.190 0.0290 0.00939 0.0219 0.00382
3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Mules and asses 3Da3 Laying hens 3Da3 Broilers 3Da3 Other poultry: Growers 3Da3 Other poultry: Other	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	0.00207 0.199 0.590 0.217 0.0286 0.000638 0.0202 0.00234 0.00772	0.00146 0.196 0.575 0.215 0.0287 0.000554 0.00219 0.00220 0.00821	0.00132 0.205 0.587 0.209 0.0288 0.000650 0.0219 0.00260 0.00835	0.00117 0.215 0.599 0.203 0.0288 0.000746 0.0219 0.00301 0.00849	0.00102 0.224 0.610 0.196 0.0289 0.000843 0.0219 0.00341 0.00863	0.000872 0.233 0.624 0.190 0.0290 0.00939 0.0219 0.00382 0.00876	0.000870 0.233 0.623 0.190 0.0290 0.000939 0.0219 0.00382 0.00876	0.000869 0.233 0.622 0.190 0.0290 0.00939 0.0219 0.00382 0.00876	0.000866 0.233 0.623 0.190 0.0290 0.000939 0.0219 0.00382 0.00876	0.000860 0.233 0.624 0.190 0.0290 0.000939 0.0219 0.00382 0.00876
3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Horses 3Da3 Laying hens 3Da3 Broilers 3Da3 Turkey 3Da3 Other poultry: Growers 3Da3 Other poultry: Other 3Da3 Rabbits	kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal kg/animal	0.00207 0.199 0.590 0.217 0.0286 0.000638 0.0202 0.00234 0.00772 NO	0.00146 0.196 0.575 0.215 0.0287 0.000554 0.0219 0.00220 0.00821 NO	0.00132 0.205 0.587 0.209 0.0288 0.000650 0.0219 0.00260 0.00835 NO	0.00117 0.215 0.599 0.203 0.0288 0.000746 0.0219 0.00301 0.00849 NO	0.00102 0.224 0.610 0.196 0.0289 0.000843 0.0219 0.00341 0.00863 NO	0.000872 0.233 0.624 0.190 0.0290 0.00939 0.0219 0.00382 0.00876 NO	0.000870 0.233 0.623 0.190 0.0290 0.000939 0.0219 0.00382 0.00876 NO	0.000869 0.233 0.622 0.190 0.0290 0.000939 0.0219 0.00382 0.00876 NO	0.000866 0.233 0.623 0.190 0.0290 0.000939 0.0219 0.00382 0.00876 NO	0.000860 0.233 0.624 0.190 0.0290 0.00939 0.0219 0.00382 0.00876 NO

Table 5-21 Time series of NH_3 emission factors for N excretion during grazing (3Da3) for different livestock categories (Buffalos: IE: (Dairy cattle)).

Table 5-22 Time series of NOx emission factors for N excretion during grazing (3Da3) for different livestock categories (Buffalos: IE (Dairy cattle)).

NOx emission factors	unit	1990	1995	2000	2005	2010					
3Da3 Dairy cattle	g/animal	150	176	280	333	342					
3Da3 Other mature cattle	g/animal	455	455	532	482	451					
3Da3 Growing cattle	g/animal	93.9	95.1	144	152	146					
3Da3 Sheep	g/animal	40.6	41.5	63.0	68.6	59.3					
3Da3 Swine	g/animal	NO	NO	0.379	1.07	0.486					
3Da3 Goats	g/animal	27.4	27.2	49.4	56.0	57.0					
3Da3 Horses	g/animal	101	100	162	187	189					
3Da3 Mules and asses	g/animal	37.0	37.0	43.5	58.9	66.8					
3Da3 Laying hens	g/animal	NO	0.0756	0.509	0.862	0.997					
3Da3 Broilers	g/animal	NO	0.0284	0.0429	0.0756	0.0345					
3Da3 Turkey	g/animal	NO	0.0994	0.562	0.607	0.479					
3Da3 Other poultry: Growers	g/animal	NO	0.0362	0.0337	0.0529	0.104					
3Da3 Other poultry: Other	g/animal	NO	NO	0.222	0.164	0.203					
3Da3 Rabbits	g/animal	NO	NO	NO	NO	NO					
3Da3 Bisons	g/animal	NO	173	251	252	235					
3Da3 Camels and Ilamas	g/animal	NO	NO	110	109	88.1					
3Da3 Deer	g/animal	109	120	175	185	157					
NOx emission factors	unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
	unit g/animal	333	331	333	334	335	337	337	337	2022 337	337
		-							-	-	337 476
3Da3 Dairy cattle 3Da3 Other mature cattle	g/animal	333	331	333	334	335	337	337	337	337	337
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle	g/animal g/animal	333 449	331 449 144 68.9	333 456	334 462	335 469	337 476	337 476	337 476	337 476	337 476
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle	g/animal g/animal g/animal	333 449 145	331 449 144	333 456 144	334 462 145	335 469 144	337 476 144	337 476 143	337 476 144	337 476 143	337 476 141
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Swine	g/animal g/animal g/animal g/animal	333 449 145 67.4	331 449 144 68.9	333 456 144 67.9	334 462 145 67.6	335 469 144 66.5	337 476 144 65.7	337 476 143 65.7	337 476 144 65.6	337 476 143 65.7	337 476 141 65.6
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Swine 3Da3 Goats	g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220	331 449 144 68.9 0.155	333 456 144 67.9 0.141	334 462 145 67.6 0.125	335 469 144 66.5 0.108	337 476 144 65.7 0.0927	337 476 143 65.7 0.0924	337 476 144 65.6 0.0924	337 476 143 65.7 0.0920	337 476 141 65.6 0.0914
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Swine 3Da3 Goats 3Da3 Horses	g/animal g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220 59.3	331 449 144 68.9 0.155 58.3	333 456 144 67.9 0.141 61.1	334 462 145 67.6 0.125 63.9	335 469 144 66.5 0.108 66.6	337 476 144 65.7 0.0927 69.4	337 476 143 65.7 0.0924 69.4	337 476 144 65.6 0.0924 69.5	337 476 143 65.7 0.0920 69.4	337 476 141 65.6 0.0914 69.4
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Mules and asses	g/animal g/animal g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220 59.3 176	331 449 144 68.9 0.155 58.3 171	333 456 144 67.9 0.141 61.1 175	334 462 145 67.6 0.125 63.9 178	335 469 144 66.5 0.108 66.6 182	337 476 144 65.7 0.0927 69.4 186	337 476 143 65.7 0.0924 69.4 185	337 476 144 65.6 0.0924 69.5 185	337 476 143 65.7 0.0920 69.4 185	337 476 141 65.6 0.0914 69.4 186
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Swine 3Da3 Goats 3Da3 Horses	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220 59.3 176 64.5	331 449 144 68.9 0.155 58.3 171 63.9	333 456 144 67.9 0.141 61.1 175 62.1	334 462 145 67.6 0.125 63.9 178 60.3	335 469 144 66.5 0.108 66.6 182 58.5	337 476 144 65.7 0.0927 69.4 186 56.7	337 476 143 65.7 0.0924 69.4 185 56.7	337 476 144 65.6 0.0924 69.5 185 56.7	337 476 143 65.7 0.0920 69.4 185 56.7	337 476 141 65.6 0.0914 69.4 186 56.7
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Horses 3Da3 Mules and asses 3Da3 Laying hens	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220 59.3 176 64.5 1.01	331 449 144 68.9 0.155 58.3 171 63.9 1.02	333 456 144 67.9 0.141 61.1 175 62.1 1.02	334 462 145 67.6 0.125 63.9 178 60.3 1.02	335 469 144 66.5 0.108 66.6 182 58.5 1.03	337 476 144 65.7 0.0927 69.4 186 56.7 1.03	337 476 143 65.7 0.0924 69.4 185 56.7 1.03	337 476 144 65.6 0.0924 69.5 185 56.7 1.03	337 476 143 65.7 0.0920 69.4 185 56.7 1.03	337 476 141 65.6 0.0914 69.4 186 56.7 1.03
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Horses 3Da3 Mules and asses 3Da3 Laying hens 3Da3 Broilers	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220 59.3 176 64.5 1.01 0.0226	331 449 144 68.9 0.155 58.3 171 63.9 1.02 0.0196	333 456 144 67.9 0.141 61.1 175 62.1 1.02 0.0230	334 462 145 67.6 0.125 63.9 178 60.3 1.02 0.0264	335 469 144 66.5 0.108 66.6 182 58.5 1.03 0.0299	337 476 144 65.7 0.0927 69.4 186 56.7 1.03 0.0333	337 476 143 65.7 0.0924 69.4 185 56.7 1.03 0.0333	337 476 144 65.6 0.0924 69.5 185 56.7 1.03 0.0333	337 476 143 65.7 0.0920 69.4 185 56.7 1.03 0.0333	337 476 141 65.6 0.0914 69.4 186 56.7 1.03 0.0333
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Horses 3Da3 Mules and asses 3Da3 Laying hens 3Da3 Broilers 3Da3 Turkey 3Da3 Other poultry: Growers	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220 59.3 176 64.5 1.01 0.0226 0.717	331 449 144 68.9 0.155 58.3 171 63.9 1.02 0.0196 0.776	333 456 144 67.9 0.141 61.1 175 62.1 1.02 0.0230 0.776	334 462 145 67.6 0.125 63.9 178 60.3 1.02 0.0264 0.776	335 469 144 66.5 0.108 66.6 182 58.5 1.03 0.0299 0.776	337 476 144 65.7 0.0927 69.4 186 56.7 1.03 0.0333 0.776	337 476 143 65.7 0.0924 69.4 185 56.7 1.03 0.0333 0.776	337 476 144 65.6 0.0924 69.5 185 56.7 1.03 0.0333 0.776	337 476 143 65.7 0.0920 69.4 185 56.7 1.03 0.0333 0.776	337 476 141 65.6 0.0914 69.4 186 56.7 1.03 0.0333 0.776
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Horses 3Da3 Horses 3Da3 Mules and asses 3Da3 Laying hens 3Da3 Broilers 3Da3 Turkey 3Da3 Other poultry: Growers 3Da3 Other poultry: Other	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220 59.3 176 64.5 1.01 0.0226 0.717 0.0831	331 449 144 68.9 0.155 58.3 171 63.9 1.02 0.0196 0.776 0.0778	333 456 144 67.9 0.141 61.1 175 62.1 1.02 0.0230 0.776 0.0922	334 462 145 67.6 0.125 63.9 178 60.3 1.02 0.0264 0.776 0.106	335 469 144 66.5 0.108 66.6 182 58.5 1.03 0.0299 0.776 0.121	337 476 144 65.7 0.0927 69.4 186 56.7 1.03 0.0333 0.776 0.135	337 476 143 65.7 0.0924 69.4 185 56.7 1.03 0.0333 0.776 0.135	337 476 144 65.6 0.0924 69.5 185 56.7 1.03 0.0333 0.776 0.135	337 476 143 65.7 0.0920 69.4 185 56.7 1.03 0.0333 0.776 0.135	337 476 141 65.6 0.0914 69.4 186 56.7 1.03 0.0333 0.776 0.135
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Sheep 3Da3 Swine 3Da3 Goats 3Da3 Horses 3Da3 Mules and asses 3Da3 Mules and asses 3Da3 Laying hens 3Da3 Broilers 3Da3 Broilers 3Da3 Turkey 3Da3 Other poultry: Growers 3Da3 Other poultry: Other 3Da3 Rabbits	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220 59.3 176 64.5 1.01 0.0226 0.717 0.0831 0.273	331 449 144 68.9 0.155 58.3 171 63.9 1.02 0.0196 0.776 0.0778 0.291	333 456 144 67.9 0.141 61.1 175 62.1 1.02 0.0230 0.776 0.0922 0.296	334 462 145 67.6 0.125 63.9 178 60.3 1.02 0.0264 0.776 0.106 0.301	335 469 144 66.5 0.108 66.6 182 58.5 1.03 0.0299 0.776 0.121 0.306	337 476 144 65.7 0.0927 69.4 186 56.7 1.03 0.0333 0.776 0.135 0.311	337 476 143 65.7 0.0924 69.4 185 56.7 1.03 0.0333 0.776 0.135 0.311	337 476 144 65.6 0.0924 69.5 185 56.7 1.03 0.0333 0.776 0.135 0.311	337 476 143 65.7 0.0920 69.4 185 56.7 1.03 0.0333 0.776 0.135 0.311	337 476 141 65.6 0.0914 69.4 186 56.7 1.03 0.0333 0.776 0.135 0.311
3Da3 Dairy cattle 3Da3 Other mature cattle 3Da3 Growing cattle 3Da3 Sheep 3Da3 Sheep 3Da3 Goats 3Da3 Goats 3Da3 Horses 3Da3 Mules and asses 3Da3 Laying hens 3Da3 Broilers 3Da3 Turkey	g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal g/animal	333 449 145 67.4 0.220 59.3 176 64.5 1.01 0.0226 0.717 0.0831 0.273 NO	331 449 144 68.9 0.155 58.3 171 63.9 1.02 0.0196 0.0776 0.0778 0.291 NO	333 456 144 67.9 0.141 61.1 175 62.1 1.02 0.0230 0.0230 0.0220 0.0922 0.296 NO	334 462 145 67.6 0.125 63.9 178 60.3 1.02 0.0264 0.776 0.106 0.301 NO	335 469 144 66.5 0.108 66.6 182 58.5 1.03 0.0299 0.776 0.121 0.306 NO	337 476 144 65.7 69.4 186 56.7 1.03 0.0333 0.776 0.135 0.311 NO	337 476 143 65.7 0.0924 69.4 185 56.7 1.03 0.0333 0.776 0.135 0.311 NO	337 476 144 65.6 0.0924 69.5 185 56.7 1.03 0.0333 0.776 0.135 0.311 NO	337 476 143 65.7 0.0920 69.4 185 56.7 1.03 0.0333 0.776 0.135 0.311 NO	337 476 141 65.6 0.0914 69.4 186 56.7 1.03 0.0333 0.776 0.135 0.311 NO

Emission factors (3De)

For the calculation of the NMVOC emissions from crop production and agricultural soils three types of agricultural areas are differentiated, i.e. cropland, grassland and summering pastures. The NMVOC emission factors for cropland and grassland are based on the values for wheat and grass (15°C), respectively, of Table 3-4 of the EMEP/EEA guidebook (EMEP/EEA 2023) taking into account country-specific values for the mean dry matter yield (Richner and Sinaj 2017). For summering pastures, the same NMVOC emission value as of grass (15°C) and a fraction of the growing period of 0.3 (Bühler and Kupper 2018) are assumed using a country-specific value for the mean dry matter yield (Richner and Sinaj 2017). The resulting NMVOC emission factors are constant for the entire time series and are given in Table 5-23.

The particulate matter emission factors consist of an operation-specific emission factor for soil cultivation or harvesting and a factor for the annual number of the respective agricultural operation. The crop- and operation-specific emission factors are based on the Tier 2 emission factors for wet conditions of the EMEP/EEA guidebook (EMEP/EEA 2023, chp. 3D, Tables 3-6 and 3-8). The factors for the annual number of agricultural operations are country-specific and are based mainly on expert judgements (Bühler and Kupper 2018). Only for the number of grass harvests literature values are available (Richner and Sinaj 2017) for five different altitude classes. In order to derive the emission factors of the aggregated source categories cropland and grassland, the emissions from the cultivation of each single type of crop and of grassland have to be calculated, summed up and then divided by the total area of the respective crop and grassland types. Since the relative shares of grassland in the valley and the alpine area remain about constant over the entire time period constant (aggregated) emission factors result for grassland.

Unfortunately, the guidebook provides emission factors for PM10 and PM2.5 only. A couple of European countries assume for TSP the same values as of PM10. But this assumption is not reasonable since particulate matter emissions from soil cultivation and harvesting have a large mass fraction in the coarse fraction. Therefore, the TSP emission factors have been estimated according to the Danish emission inventory (Danish Informative Inventory Report 2018) with a fraction of PM10/TSP of 10 %. The particulate matter emission factors are also given in Table 5-23.

3De Cultivated crops	Unit of activity data	NMVOC	PM2.5 nx	PM10 nx	TSP nx
SDe Cultivated clops	Onit of activity data	g/	g/	g/	g/
3De Cropland	ha cropland	376	40	752	7'520
3De Grassland	ha grassland	397	47	1'100	11'000
3De Summering pastures	ha summering pastures	141	NA	NA	NA

Table 5-23 NMVOC and PM2.5 emission factors of 2023 for 3De Crop production and agricultural soils.

Activity data (3Da)

The nitrogen amount applied with urea-containing and other synthetic fertilisers (SBV 2024, Agricura 2023, AGRAMMON 2018) as well as the amount applied with sewage sludge and compost (including solid and liquid digestate) derived from organic residues are shown in Table 5-24.

Activity data for emissions from N excretion resulting from the application of animal manure to soils (3Da2a) and from grazing (3Da3) are the livestock numbers for source category 3B. Manure management which are given in Table 5-15. The application of sewage sludge to soils has been prohibited (too high heavy metal content), therefore the activity data is NO from 2009 onwards.

The underlying data for compost and digestate (liquid and solid) from non agricultural biogas plants are based on a study from the year 2017 (Schleiss 2017, covering the period from

Agriculture: Source category 3D – Crop production and agricultural soils - Methodological issues of 3D Crop production and agricultural soils

1990 to 2015 and subsequent annual update) and on data from the statistics of renewable energies (SFOE 2024a), respectively, see description in chp. 6.3.2. Schleiss (2017) differentiates so-called back yard and industrial composting. The compost applied to soil as fertiliser in agriculture is part of the industrial compost.

Table 5-24 Time series of nitrogen amount applied on agricultural soils: synthetic N-fertilisers (urea-containing and other N-containing synthetic fertilisers), sewage sludge and compost (derived from organic residues in t N).

3Da Direct emissions from managed soils	Unit	1990	1995	2000	2005	2010					
3Da1 Urea containing fertiliser	t N	16'286	10'708	7'632	6'606	7'102					
3Da1 Other synthetic N-fertiliser	t N	50'398	47'659	43'048	43'485	45'991					
3Da2b Sewage sludge applied to soils	t N	4'815	4'942	3'356	1'054	NO					
3Da2c Other organic fertilisers applied to soils	t N	817	1'286	1'829	2'169	3'281					
3Da Direct emissions from managed soils	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
3Da1 Urea containing fertiliser	t N	7'943	7'224	8'873	9'251	8'325	7'754	7'398	8'101	6'913	8'180
3Da1 Other synthetic N-fertiliser	t N	41'399	36'527	37'537	40'119	37'439	32'406	33'700	37'270	31'523	25'526
3Da2b Sewage sludge applied to soils	t N	NO									
3Da2c Other organic fertilisers applied to soils	t N	4'709	4'908	5'435	5'542	5'669	6'211	6'357	6'548	6'394	6'766

3De Cultivated crops	Unit	1990	1995	2000	2005	2010					
3De Cropland	ha cropland	312'398	307'754	289'939	283'003	269'390					
3De Grassland	ha grassland	724'556	735'408	743'756	742'379	741'775					
3De Summering pastures	ha summering pastures	538'683	499'781	497'322	489'245	486'988					
	-										
3De Cultivated crops	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
3De Cultivated crops 3De Cropland	Unit ha cropland	2014 267'809					2019 265'917	2020 267'854	-		2023 267'971
			268'449	267'702	268'563			267'854	270'043	269'671	267'971

Activity data (3De)

As activity data of source category 3De Crop production and agricultural soils two different types of agricultural areas were considered, i.e. cropland and grassland. They consist of aggregated agricultural areas based on the (annual) farm structure survey of the Swiss Federal Statistical Office (FSO 2024i). In addition, for NMVOC emissions also the emissions from summering pastures (FSO 2024b) are included where no agricultural crop operations take place. The activity data of these agricultural areas are also given in Table 5-25. While cropland and grassland are part of the agricultural farms (farmland), summering pastures are alpine land (usually at an altitude of more than 1000-2500 m) which is grazed for around 100 days per year by dairy cows (for mountain cheese production), heifers, sheep and goats.

5.3.3 Category-specific recalculations for 3D Crop production and agricultural soils

The following recalculations were implemented in submission 2025.

- 3Da: Allocation of manure to the different management systems (MS) was revised for "other roughage eaters" (Bisons, Camelids, Deer, Rabbits) based on Kupper et al. 2022 yielding changes in the NO_x emission factors of source categories 3Da2a4h Animal manure applied to soils - Other animals and 3Da34h Urine and dung deposited by grazing animals - Other animals for the entire time series (1990-2022).
- 3Da: The activity data and emission factors (NO_x and NH₃) of 3Da2a3 Animal manure applied to soils - Swine and 3Da33 Urine and dung deposited by grazing animals - Swine were recalculated for the years 2021 and 2022 due to updated data for fattening pigs >25 kg from FSO 2024b.
- 3Da: The activity data of 3Da2a4 Animal manure applied to soils Broilers and 3Da34 Urine and dung deposited by grazing animals - Broilers were recalculated for the years 2021 and 2022 due to updated data from FSO 2024b.

- 3Da1: The amount of synthetic fertilisers applied in Liechtenstein was updated for the years 1990-2022 yielding revised activity data of source categories 3Da1 Inorganic Nfertilisers (including urea) for the entire time series.
- 3Da2a1: Updated data on the amount of manure digested anaerobically (SFOE 2024b, particularly in the years 1990-1999) led to minimal changes in the NO_x emission factors for manure management and application for all cattle categories (3B1, 3Da2a1, 3Da31).
- 3Da2c: The amount of nitrogen inputs from compost and digestates was updated for the years 1996-2022 due to new activity data from SFOE 2024a. This resulted in revised activity data and NH₃ emission factors of source category 3Da2c Other organic fertilisers applied to soils.
- 3Da31: Updated data on the amount of manure digested anaerobically (SFOE 2024b, particularly in the years 1990-1999) led to minimal changes in the NO_x emission factors for manure management and application for all cattle categories (3B1, 3Da2a1, 3Da31).
- 3De: The activity data of source category 3De Summering pastures were updated based on revised data from FSO 2024b for the entire time series.

5.4 Source category 3F – Field burning of agricultural residuals

Burning of crop residues in fields is prohibited in Switzerland. Only the burning of branches and twigs is allowed under certain conditions. These emissions are reported in source category 5C2 Open burning of agricultural waste.

6 Waste

6.1 Overview of emissions

In this introductory chapter, an overview of emissions, separated according to the most relevant pollutants, is presented. Trends and changes for individual source categories in the period between 1990 and 2023 are analysed and discussed. In absolute figures, processes in sector 5 Waste emit mainly NMVOC and NH_3 . The contributions of PM2.5, heavy metals (Pb and Hg) and PCDD/F are smaller in absolute terms, but larger relative to total national emissions.

The following source categories are reported:

- 5A Biological treatment of waste Solid waste disposal on land
- 5B Biological treatment of waste Composting and anaerobic digestion
- 5C Waste incineration and open burning of waste
- 5D Wastewater handling
- 5E Other waste

Please note that according to EMEP/EEA guidebook (EMEP/EEA 2023) all emissions from waste-to-energy, where waste material is used directly as fuel or converted into a fuel, are reported under the sector 1A Fuel combustion. Therefore, the largest share of waste-related emissions in Switzerland is not reported in sector 5 Waste but in sector 1 Energy.

6.1.1 Overview and trend for NMVOC

Figure 6-1 depicts the NMVOC emissions in the waste related sectors since 1990. A clear and increasing trend of total NMVOC emissions from 2006 to 2021 can be observed. This is mainly explained by the continuous positive trend for category 5B Biological treatment of waste - Composting and anaerobic digestion, which is a key category according to the trend assessment. The contribution of the waste sector still remains small in comparison to the national total. Therefore, there are no source categories from the waste sector that are key categories for NMVOC according to the level assessment.

The main sources of NMVOC emissions are 5B Biological treatment of solid waste and 5C Incineration and open burning of waste. Nowadays the bulk emissions in this sector originate from 5B Biological treatment of solid waste. The reason for this development is the increase in industrial and commercial composting activities, particularly the digestion of organic waste. The latter has become economically more beneficial due to cost covering feed-in tariffs for electricity and due to additional revenues as CO_2 compensation projects. The increase in digested quantities is also linked to population growth. 5A Solid waste disposal shows a decreasing trend.

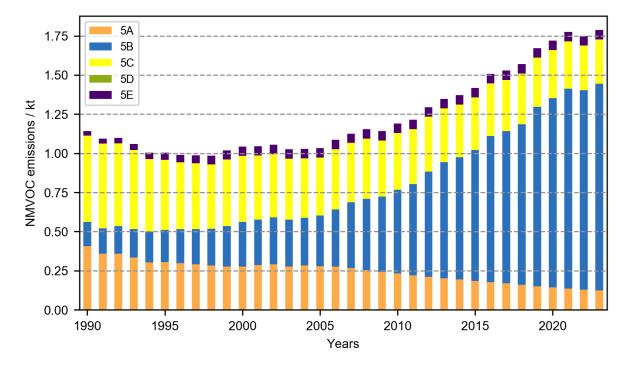


Figure 6-1 Switzerland's NMVOC emissions from the waste sector by source categories 5A-5E. The corresponding data can be found in Table 6-1.

NMVO	2	1990	1995	2000	2005	2010	
5A	kt	0.41	0.30	0.28	0.28	0.23	
5B	kt	0.15	0.21	0.28	0.32	0.54	
5C	kt	0.55	0.45	0.42	0.37	0.36	
5D	kt	0.00052	0.00041	0.00026	0.00011	0.000100	
5E	kt	0.028	0.045	0.060	0.060	0.060	
Sum	kt	1.1	1.0	1.0	1.0	1.2	
NMVO	2	2014	2015	2016	2017	2018	
5A	kt	0.19	0.19	0.18	0.17	0.16	
5B	kt	0.78	0.83	0.93	0.97	1.0	
5C	kt	0.34	0.34	0.34	0.33	0.32	
5D	kt	0.00012	0.00011	0.00012	0.00012	0.00012	
5E	kt	0.060	0.060	0.060	0.060	0.060	
Sum	kt	1.4	1.4	1.5	1.5	1.6	
NMVO	2	2019	2020	2021	2022	2023	2005-2023 (%)
5A	kt	0.15	0.14	0.14	0.13	0.12	-56
5B	kt	1.1	1.2	1.3	1.3	1.3	309
5C	kt	0.31	0.31	0.30	0.29	0.28	-24
5D	kt	0.00012	0.00012	0.00012	0.00013	0.00012	16
5E	kt	0.060	0.060	0.060	0.060	0.060	0.000000
Sum	kt	1.7	1.7	1.8	1.7	1.8	73

Table 6-1 NMVOC emissions from sector 5 Waste by source categories 5A-5E. The last column in the third part of the table indicates the relative trend.

6.1.2 Overview and trend for PM2.5

Figure 6-2 depicts the PM2.5 emissions in the waste related sectors since 1990. 5C Incineration and open burning of waste is significantly contributing to total PM2.5 emissions from the waste sector over the entire reporting period and thus is key category.

Between 1990 and 2023 a continuous decrease of total PM2.5 emissions occurred that largely can be affiliated with the emission reductions achieved in 5C Waste incineration. This is mainly due to emission reductions from sewage sludge incineration, refurbishment of crematoriums, the cessation of burning cable insulation in 1995 as well as clinical waste incineration in 2002 as well as due to an overall decreasing trend in the open burning of natural residues in agriculture and households.

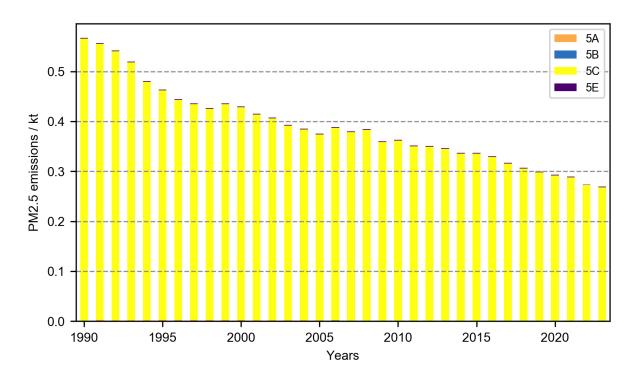


Figure 6-2 Switzerland's PM2.5 emissions from the waste sector by source categories 5 A-5C and 5E. Note that PM2.5 emissions from 5D are not occurring. The corresponding data can be found in Table 6-2.

PM2.5		1990	1995	2000	2005	2010	
5A	kt	0.00073	0.0021	0.0022	0.0014	0.00097	
5B	kt	NA	0.000001	0.000004	0.000007	0.000023	
5C	kt	0.57	0.46	0.43	0.37	0.36	
5D	kt	NA	NA	NA	NA	NA	
5E	kt	0.0014	0.0015	0.0015	0.0015	0.0015	
Sum	kt	0.57	0.46	0.43	0.38	0.36	
PM2.5		2014	2015	2016	2017	2018	
5A	kt	0.00054	0.00055	0.00055	0.00055	0.00055	2
5B	kt	0.000041	0.000044	0.000047	0.000049	0.000051	
5C	kt	0.33	0.33	0.33	0.31	0.31	
5D	kt	NA	NA	NA	NA	NA	
5E	kt	0.0015	0.0015	0.0015	0.0015	0.0015	
Sum	kt	0.34	0.34	0.33	0.32	0.31	
PM2.5		2019	2020	2021	2022	2023	2005-2023
5A	kt	0.00054	0.00054	0.00053	0.00051	0.00050	
5B	kt	0.000053	0.000054	0.000054	0.000054	0.000065	
5C	kt	0.30	0.29	0.29	0.27	0.27	
5D	kt	NA	NA	NA	NA	NA	
5E	kt	0.0015	0.0015	0.0015	0.0015	0.0015	0.000
Sum	kt	0.30	0.29	0.29	0.27	0.27	

Table 6-2 PM2.5 emissions from sector 5 Waste by source categories 5A-5C and 5E. The last column in the third part of the table indicates the relative trend.

6.2 Source category 5A – Biological treatment of waste - Solid waste disposal on land

6.2.1 Source category description of 5A Biological treatment of waste -Solid waste disposal on land

The source category 5A Biological treatment of waste - Solid waste disposal on land includes all emissions from solid waste handling on landfill sites. Since 1987 all deposited waste in Switzerland has been deposited on managed landfill sites.

In Switzerland, managed active landfill sites where organic material is degraded in biological processes are equipped to recover landfill gas (SFOE 2024a). The landfill gas is generally used in combined heat and power plants for the production of electricity and heat (reported under 1A Fuel combustion). A fraction of landfill gas is used to generate heat only. A very small fraction of the landfill gas is flared (reported under 5A).

Methane emissions are estimated by using a First Order Decay (FOD) model compliant with the 2006 IPCC Guidelines (IPCC 2006; see below). Following legal requirements and regulations it is assumed that open burning ceased after 1990 (Consaba 2016).

Table 6-3 Specification of source category 5A Biological treatment of waste - Solid waste disposal on land.

5A	Source category	Specification
5A	Solid waste disposal on land	Emissions from handling of solid waste on landfill sites

Table 6-4 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 5A Biological treatment of waste - Solid waste disposal on land.

Source category 5A Biological treatment of waste - Solid waste disposal on land is not a key category.

0000 28-

6.2.2 Methodological issues of 5A Biological treatment of waste - Solid waste disposal on land

Methodology (5A)

The emission modelling corresponds to a Tier 2 approach. See decision tree in chapter 5A Biological treatment of waste – Solid waste disposal on land of the EMEP/EEA guidebook (EMEP/EEA 2023).

The main emission from landfills is the greenhouse gas CH₄, which is not relevant for the CLRTAP Inventory. However, methane is used for combined heat and power generation, or it is flared. Thereby, other pollutants are produced and emitted. They are reported in the CLRTAP Inventory. Emissions from combined heat and power generation are reported in the energy sector (1A1a Public electricity and heat production), emissions from flaring in the waste sector.

The emissions of CH₄ are calculated in several steps, the details are described in Switzerland's National Inventory Report (FOEN 2024):

- 1. CH₄ emissions are modelled with the FOD model according to the 2006 IPCC Guidelines (IPCC 2006).
- 2. The amount of CH₄ that is recovered and used as fuel for combined heat and power generation as well as for flaring is subtracted from the total CH₄ generated in landfills.
- 3. Emissions of air pollutants from burning methane in engines and torches are calculated. Their amount is proportional to the CH₄ burnt.

The PCB emissions from landfills are modelled within the disposal category of the dynamic mass flow model developed for the usage of PCBs in Switzerland (Glüge et al. 2017), see Annex A2.2.

Emission factors (5A)

Emission factors are country-specific based on measurements and expert estimates, documented in EMIS (EMIS 2025/1A1a & 5A), see Table 6-5. The PCB emission factor expressed in units per tonnes of PCBs stored in landfills is based on the dynamic mass flow model for the usage of PCBs in Switzerland, see Annex A2.2. Emission factors for open burning of waste are not shown because open burning on solid waste disposal sites is assumed not to occur anymore in Switzerland since 1990.

Table 6-5 Emission factors 2023 for 5A Biological treatment of waste - Solid waste disposal on land.

5A Solid waste disposal on land	Unit of activity data	NOx	NMVOC	NH3	PM2.5 ex	PM10 ex	TSP ex	CO	PCB
SA Solid Waste disposal offiand	Unit of activity data	g/	g/	g/	g/	g/	g/	g/	mg/
Landfill: flaring	t CH4	1'000	82	NA	400	400	400	17'000	NA
Landfill: direct emissions	t CH4	NA	13'171	20'000	NA	NA	NA	NA	NA
Landfill: PCB quantity available in waste	g PCB	NA	NA	NA	NA	NA	NA	NA	0.010

Activity data (5A)

The main activity data for 5A Biological treatment of waste - Solid waste disposal on land are the waste quantities disposed on landfills that are used for calculating the amount of methane produced. Activity data are taken from EMIS 2025/1A1a & 5A. Table 6-6 documents the decrease of municipal solid waste, construction waste and sewage sludge disposed in landfill sites in the reporting period. The reason for this is that incineration of combustible waste is mandatory in Switzerland since the year 2000 and therefore amounts deposited have dropped to zero in the following years.

The resulting set of activity data for 5A Biological treatment of waste - Solid waste disposal on land is the amount of CH₄ flared (see Table 6-6). The quantity of CH₄ flared on Swiss landfill sites was assessed in 2015 and is documented in a separate report (Consaba 2016). For PCB emissions, the activity data is the amount of PCBs stored in landfills based on the dynamic mass flow model for the usage of PCBs in Switzerland, see Annex A2.2.

5A Solid waste disposal on land	Unit	1990	1995	2000	2005	2010					
Waste quantity: total	kt waste	860	628	350	2003	2010 NO					
					-	-					
Waste quantity: from municipal solid waste	kt waste	650	540	292	14	NO					
Waste quantity: from construction	kt waste	150	60	54	1.4	NO					
Waste quantity: from sewage sludge (dry)	kt waste	60	28	4.2	0.98	NO					
Landfill: flaring	kt CH4	1.8	5.3	5.6	3.4	2.4					
Landfill: direct emissions	kt CH4	31	23	21	21	18					
Landfill: PCB quantity available in waste	t PCB	395	374	353	333	319					
Landfill memo item: CH4 recovery	kt CH4	-4.9	-12	-11	-4.1	-0.97					
5A Solid waste disposal on land	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Waste quantity: total	kt waste	NO									
					110					NO	NO
Waste quantity: from municipal solid waste	kt waste	NO									
Waste quantity: from municipal solid waste Waste quantity: from construction	kt waste kt waste	-	-	-	-	-		-	-		-
		NO									
Waste quantity: from construction	kt waste	NO NO									
Waste quantity: from construction Waste quantity: from sewage sludge (dry)	kt waste kt waste	NO NO NO									
Waste quantity: from construction Waste quantity: from sewage sludge (dry) Landfill: flaring	kt waste kt waste kt CH4	NO NO NO 1.4	NO NO NO 1.3	NO NO NO 1.3	NO NO NO 1.2						

Table 6-6 Activity data of 5A Biological treatment of waste - Solid waste disposal on land.

The emissions from using methane as fuel for combined heat and power generation in engines are reported under 1A1a Energy industries.

6.2.3 Category-specific recalculations in 5A Biological treatment of waste - Solid waste disposal on land

There were no recalculations implemented in submission 2025.

6.3 Source category 5B - Biological treatment of waste -Composting and anaerobic digestion at biogas facilities

6.3.1 Source category description of 5B Biological treatment of waste -Composting and anaerobic digestion at biogas facilities

The source category 5B Biological treatment of waste comprises the emissions from 5B1 Composting and from 5B2 Anaerobic digestion at biogas facilities. Emissions from combined heat and power generation using biogas from digestion are reported under 1A2gviii Other and 1A4a Commercial/Institutional.

5B1 Composting distinguishes between industrial composting and backyard composting. Industrial composting covers emissions from centralized composting activities with a capacity of more than 100 tonnes of organic matter per year as well as the composting of organic material at the border of agricultural fields. Backyard composting in private households or communities is common practice in Switzerland. Activity data and emission factors for industrial and backyard composting have been thoroughly reassessed in 2017, new data were gained and EMIS 2025/5B1 Kompostierung has been revised accordingly.

Within 5B2 Anaerobic digestion at biogas facilities two plant types are distinguished: (1) industrial biogas plants and (2) agricultural biogas plants. Biogas upgrading is treated as a separate process covered in this source category; however, this only induces methane emissions due to leakage and is therefore not relevant for the CLRTAP Inventory. The digestion of organic waste takes place under anaerobic conditions. The digestate (solid and liquid output after completion of a process of anaerobic microbial degradation of organic

matter) is composted or directly used as fertiliser, respectively. The biogas generated during the digestion process is used for combined heat and power generation or upgraded and used as fuel for cars or fed into the natural gas grid.

Table 6-7 Specification of source category 5B Biological treatment of waste - Composting and anaerobic digestion at biogas facilities.

5B	Source category	Specification
5B1	Composting	Emissions from composting activities
5B2	Anaerobic digestion at biogas facilities	Emissions from digesting of organic waste at biogas facilities

Table 6-8 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 5B Biological treatment of waste – Composting and anaerobic digestion at biogas facilities

NFR code	Source category	Pollutant	Identification criteria
5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities	NMVOC	T1

6.3.2 Methodological issues of 5B Biological treatment of waste -Composting and anaerobic digestion at biogas facilities

Methodology (5B)

A Tier 2 method is applied to estimate emissions from 5B1 Composting (see decision tree in chapter 5B1 Biological treatment of waste – Composting of the EMEP/EEA guidebook (EMEP/EEA 2023).

Emissions from 5B2 Anaerobic digestion are estimated by applying a Tier 2 method (see decision tree in chapter 5B2 Biological treatment of waste – Anaerobic digestion at biogas facilities of the EMEP/EEA guidebook (EMEP/EEA 2023).

Figure 6-3 depicts a schematic design of an industrial biogas plant. Six emission-relevant process steps are taken into account. For each process step separate activity data and emission factors are used:

- P1: Emissions from the storage of organic waste
- P2: Emissions from fermentation
- P3: Emissions from the interim storage of liquid digestate
- P4: Emissions from on site aerobic after treatment of solid digestate
- P5: Emissions from the utilisation of biogas in combined heat and power generation units
- P6: Emissions from flaring of biogas

P5 as energy-related emissions are reported in sector 1 Energy source category 1A2gviii Other.

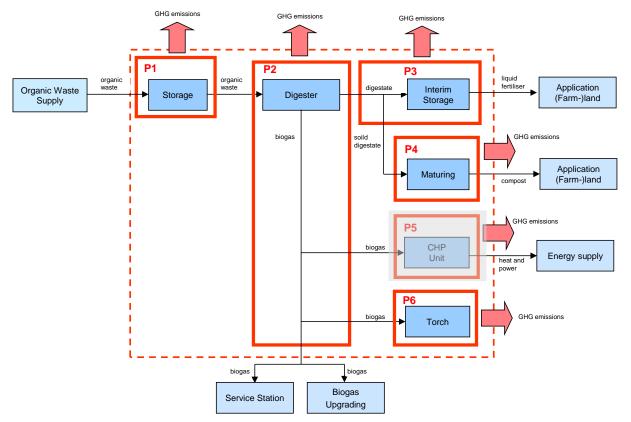


Figure 6-3 Schematic design of an industrial biogas plant.

Figure 6-4 depicts a schematic design of an agricultural biogas plant. It is very similar to the scheme of the industrial biogas plant described above. Seven process steps are distinguished where emissions might occur. For each process step separate activity data and emission factors are used:

- P1: Emissions from the intermediate storage of the waste from animal husbandry (liquid and solid manure) and the additional co-substrate.
- P2: Losses due to leakage from the fermenter, gas piping and overproduction
- P3: Emissions from the storage of liquid digestate
- P4: Emissions from aerobic after treatment of solid digestate
- P5: Emissions from the utilisation of biogas in combined heat and power generation units
- P6: Emissions from the utilisation of biogas in the gas boiler
- P7: Emissions from flaring of biogas

Emissions from P1 are reported in sector 3 Agriculture, and emissions from P5 and P6 are reported in sector 1 Energy source category 1A4ai Commercial/Institutional.

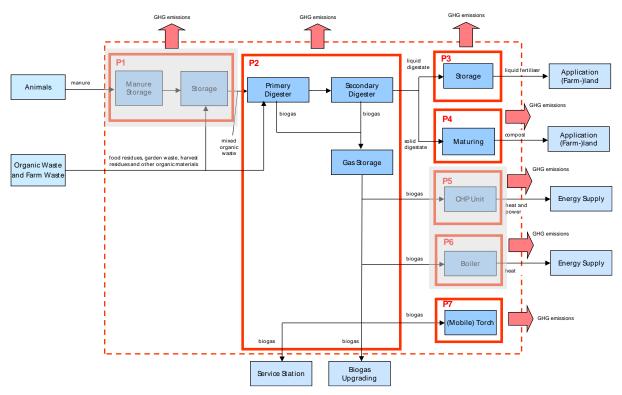


Figure 6-4 Schematic design of an agricultural biogas plant.

Emission factors (5B)

Emission factors for 5B1 Composting are country-specific based on measurements and expert estimates (EMIS 2025/5B1 Kompostierung). Emission factors are assumed to remain constant over the reporting period.

Emission factors for 5B2 Anaerobic digestion are country-specific based on measurements according to Edelmann and Schleiss (1999), Butz (2003) and Cuhls et al. (2010) as documented in comments to the database (EMIS 2025/1A2g and 5B2 Vergärung IG and EMIS 2025/1A4a and 5B2 Vergärung LW). Table 6-9 presents the emission factors used in 5B.

5B Biological treatment of solid waste	Unit of activity data	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	CO
SB Biological treatment of solid waste	Offic of activity data	g/	g/	g/	g/	g/	g/	g/	g/	g/
Composting: industrial	t composted waste (dry)	NA	750	NA	1'250	NA	NA	NA	NA	NA
Composting: backyard	t composted waste (dry)	NA	750	NA	1'250	NA	NA	NA	NA	NA
Digestion ind.: digestable waste / storage	t digestable waste (wet)	NA	70	NA	5.6	NA	NA	NA	NA	NA
Digestion ind.: digested waste liquid / storage	t digested waste liquid (wet)	NA	400	NA	80	NA	NA	NA	NA	NA
Digestion ind.: digested waste solid / rotting	t digested waste solid (wet)	NA	230	NA	104	NA	NA	NA	NA	NA
Digestion ind.: CH4 flaring	t CH4	4'066	82	616	NA	37	37	37	0.91	2'054
Digestion agri.: digested waste liquid / process water	t digested waste liquid (wet)	NA	400	NA	80	NA	NA	NA	NA	NA
Digestion agri.: digested waste solid / rotting	t digested waste solid (wet)	NA	230	NA	104	NA	NA	NA	NA	NA
Digestion agri.: CH4 flaring	t CH4	4'066	82	616	NA	37	37	37	0.91	2'054

Table 6-9 Emission factors of 5B Biological treatment of waste - Composting and anaerobic digestion at biogas facilities in 2023.

Activity data (5B)

Activity data for 5B Biological treatment of waste are extracted from EMIS 2025/5B1 Kompostierung, EMIS 2025/1A1a and 5B2 Vergärung IG and EMIS 2025/1A1a and 5B2 Vergärung LW. Activity data for digestion are based on reliable statistical data from the statistics of renewable energies (SFOE 2024a). Activity data for industrial and backyard composting are based on a study by Schleiss (2017) using data of the years 1989, 1993, 2000 and 2013, supplied by plant operators. From 2014 onwards, activity data for industrial composting are adopted from the annual statistical reports by the inspectorate system for the Composting and Fermentation Industry in Switzerland CVIS as recommended by Schleiss (2017). As of 2012, activity data for backyard composting are assumed to be constant as recommended by Schleiss (2017). Data on the amount of waste is provided in tonnes of wet matter. In order to comply with UNFCCC reporting guidelines, a factor 0.40 (Baier 2023) is applied for the conversion of wet substance to dry substance.

There is a continuous increase of organic material composted until the year 2000 and afterwards a strong increase of organic material digested.

5B Biological treatment of solid waste	Unit	1990	1995	2000	2005	2010					
Composting: industrial	kt composted waste (dry)	96	144	208	210	212					
Composting: backyard	kt composted waste (dry)	44	62	72	68	48					
Digestion ind.: digestable waste / storage	kt digestable waste (wet)	NO	27	60	108	289					
Digestion ind.: digested waste liquid / storage	kt digested waste liquid (wet)	NO	15	33	60	161					
Digestion ind.: digested waste solid / rotting	kt digested waste solid (wet)	NO	9.4	-	37	99					
Digestion ind.: CH4 flaring	kt CH4	NO	0.037	0.10	0.18	0.51					
Digestion agri.: digested waste liquid / process water	kt digested waste liquid (wet)	120	100	125	181	569					
Digestion agri.: digested waste solid / rotting	kt digested waste solid (wet)	6.3	5.2	6.5	9.5	30					
Digestion agri.: CH4 flaring	kt CH4	NO	NO	NO	NO	0.12					
5B Biological treatment of solid waste	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Composting: industrial	kt composted waste (dry)	191	172	201	196	190	218	209	219	194	194
Composting: backyard	kt composted waste (dry)	40	40	40	40	40	40	40	40	40	40
Digestion ind.: digestable waste / storage	kt digestable waste (wet)	590	650	695	712	729	770	792	792	794	866
Digestion ind.: digested waste liquid / storage	kt digested waste liquid (wet)	329	362	387	397	406	429	441	441	442	482
Digestion ind.: digested waste solid / rotting	kt digested waste solid (wet)	201	222	237	243	249	263	270	270	271	296
Digestion ind.: CH4 flaring	kt CH4	0.90	0.95	1.00	1.0	1.0	1.0	1.0	1.0	1.0	1.3
Digestion agri.: digested waste liquid / process water	kt digested waste liquid (wet)	940	1'053	1'201	1'290	1'416	1'619	1'767	1'914	1'949	2'002
Digestion agri.: digested waste solid / rotting	kt digested waste solid (wet)	50	55	63	68	75	85	93	101	103	105

Table 6-10 Activity data of 5B Biological treatment of waste.

6.3.3 Category-specific recalculations in 5B Biological treatment of waste - Anaerobic digestion at biogas facilities

The following recalculations were implemented in submission 2025.

 5B2: The activity data for 5B2 Anaerobic digestion at biogas facilities have been updated due to an update in the underlying statistics (Swiss statistics of renewable energies). This affects all years from 1994 until 2022.

6.4 Source category 5C – Waste incineration and open burning of waste

6.4.1 Source category description of 5C Waste incineration and open burning of waste

There is a long tradition in Switzerland for waste to be incinerated. Since 1991, the incineration of waste has only been legally permitted in appropriate plants with a rated thermal input of at least 350 kW (Ordinance on Air Pollution Control (Swiss Confederation 1985)). Consequently, the open burning of waste has been prohibited. It is a requirement that waste heat generated during the incineration in installations has to be recovered if technically and economically feasible. In accordance with the 2006 IPCC Guidelines provisions (IPCC 2006), emissions from the combustion of waste-to-energy activities are reported within 1A Fuel combustion activities. The sources included in source category 5C are given in Table 6-11.

5C	Source category	Specification
5C1a	Municipal waste incineration	Emissions from illegal incineration of municipal solid wastes at
		home; emissions from waste incineration at construction sites
		(open burning)
		Reported under 1A1a Public electricity and heat production:
		Emissions from waste incineration in municipal solid waste
		incineration plants; emissions from incinerating industrial and
		hazardous wastes
		Reported under 1A2f Non-metallic minerals: Emissions from waste
		incineration as alternative fuels in cement kilns
5C1bi	Industrial waste incineration	Emissions from incinerating cable insulation materials
5C1bii	1bii Hazardous waste incineration	PCB emissions from combustion of PCB contaminated waste oil
		(transformers and large capacitors, ceased in 1999)
		Reported under 1A1a Public electricity and heat production:
		Emissions from incinerating industrial and hazardous wastes
5C1biii	Clinical waste incineration	Emissions from incinerating hospital waste in hospital incinerators
		(ceased in 2002)
5C1biv	Sewage sludge incineration	Emissions from sewage sludge incineration plants
		Reported under 1A2d Pulp paper and print: Emissions from
		incineration of residues and sludge from industrial waste water
		treatment plants as fuel for paper/pulp production
5C1bv	Cremation	Emissions from the burning of dead bodies
5C2	Open burning of waste	Emissions from field burning of agricultural waste. Burning of
		gardening residues from private households is also integrated
		(small contribution compared to agriculture).

Table 6-11 Specification of source category 5C Waste incineration and open burning of waste, and indication of source categories where other waste incineration activities are reported in the national inventory.

Table 6-12 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 5C Waste incineration and open burning of waste.

NFR code	Source category	Pollutant	Identification criteria
5C1a	Municipal waste incineration	PM2.5	L1, L2
5C1a	Municipal waste incineration	PM10	L1

6.4.2 Methodological issues of 5C Waste incineration and open burning of waste

Methodology (5C)

For the calculation of the emissions from municipal waste incineration (illegal burning of municipal waste) a Tier 2 method is used (see decision tree in chapter 5C1a Municipal waste incineration, EMEP/EEA 2023).

For the calculation of the emissions from the incineration of insulation materials from cables a Tier 2 method is used (see decision tree in chapter 5C1b Industrial waste incineration including special waste and sewage sludge, EMEP/EEA 2023).

Until 1999, also PCB emissions from so-called open burning of PCB contaminated waste oil in outdoor fires (i.e. outside of a container) occurred in Switzerland. They are modelled within the disposal category of the dynamic mass flow model developed for the usage of PCBs in Switzerland (Glüge et al. 2017), see Annex A2.2.

For the calculation of the emissions from clinical waste incineration a Tier 2 method is used (see decision tree in chapter 5C1biii Clinical waste incineration, EMEP/EEA 2023).

For the calculation of the emissions from sewage sludge incineration plants a Tier 2 method is used (see decision tree in chapter 5C1b Industrial waste incineration including special waste and sewage sludge, EMEP/EEA 2023).

For the calculation of the emissions from cremation a Tier 2 method is used (see decision tree in chapter 5C1bv Cremation, EMEP/EEA 2023).

For the calculation of the emissions from burning of agricultural and private gardening waste a country-specific Tier 2 method is used (see decision tree in chapter 5C2 Open burning of waste, EMEP/EEA 2023).

Emission factors (5C)

Emission factors are country-specific based on measurements and expert estimates as documented in the EMIS database (EMIS 2025/5C1 Abfallverbrennung illegal, EMIS 2025/5C1 Kabelbrand, EMIS 2025/5C1 Spitalabfallverbrennung, EMIS 2025/5C1 Krematorien, EMIS 2025/5C1 Klärschlammverbrennung, EMIS 2025/5C2 Abfallverbrennung Land- und Forstwirtschaft).

The emission factor of dioxine for 5C1 Illegal waste incineration in particular is defined based on Wevers et al. (2004) and Lemieux et al. (2003). Emission factors for the other pollutants of 5C1 Illegal waste incineration are based on SAEFL (2000) and USEPA (1995, Chapter 2.5 Open Burning).

Emission factors for 5C2 Open burning of agricultural and private gardening waste were, upon recommendation by INFRAS (2014) taken from the EMEP/EEA guidebook (EMEP/EEA 2023, chp. 5.C.2, table 3-2). INFRAS (2014) concluded, that Tier 2 default emission factor for incineration of natural residues in forestry would best account for emission factors for incineration of natural residues in agriculture and private gardens as well, except for NH₃ (EMEP/EEA 2002), Hg (Sigler et al. 2003) and IcdP (USEPA 1998, Table 4.10.5-1 Open burning of Municipal Refuse).

The emission factors for 5C1b Sewage sludge incineration for the year 1990 are taken from SAEFL (2000). The emission factors for the year 2002 are based on emission declarations of plants in the region of Basel (accounting for about 1/3 of the national total quantities). Emission factors for 2015 have been re-investigated based on emission declarations of the same plants in the region of Basel. Based on 27 air pollution control measurement reports under the Ordinance on Air Pollution Control of 11 different sewage sludge incineration plants, emission factors have again been estimated for 2018 (TBF 2021). For documentation see EMIS 2025/5C1 (5C1biv UNECE) Klärschlammverbrennung. From 1990 to 2002 from

2002 to 2015 and from 2015 to 2018 emission factors are interpolated linearly. From 2018 onwards the emission factors are assumed to be constant.

The following Table 6-13 depicts the emission factors used in 5C.

5C Incineration and open burning of waste	Unit of activity data	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	CO
SC Incineration and open burning of waste	Unit of activity data	g/	g/	g/	g/	g/	g/	g/	g/	g/
Illegal incineration of biogenic waste	t waste biogenic	2'500	16'000	750	NA	14'400	16'000	20'000	1'008	50'000
Illegal incineration of fossil waste	t waste fossil	2'500	16'000	750	NA	14'400	16'000	20'000	1'008	50'000
Insulation material from cables	t cables	NO	NO	NO	NO	NO	NO	NO	NO	NO
Hazardous waste incineration of PCB	g PCB	NO	NO	NO	NO	NO	NO	NO	NO	NO
Clinical waste incineration	t waste fossil	NO	NO	NO	NO	NO	NO	NO	NO	NO
Sewage sludge incineration	t sewage sludge	400	189	162	19	28	40	40	0.25	97
Cremation	cremations	210	5.8	NA	NA	13	13	15	0.12	37
Open burning of natural residues in agriculture	t gardening waste	1'380	1'470	30	800	3'760	4'130	4'310	348	48'790
Open burning of natural residues in private households	t gardening waste	1'380	1'470	30	800	3'760	4'130	4'310	348	48'790
5C Incineration and open burning of waste	Unit of activity data	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	PCB
So memeration and open burning of waste	Official activity data	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	mg/
Illegal incineration of biogenic waste	t waste biogenic	100'000	200	100	160'000	0.34	0.20	0.27	0.100	NA
Illegal incineration of fossil waste	t waste fossil	100'000	200	100	160'000	0.34	0.20	0.27	0.100	NA
Insulation material from cables	t cables	NO	NO	NO	NO	NO	NO	NO	NO	NO
Hazardous waste incineration of PCB	g PCB	NO	NO	NO	NO	NO	NO	NO	NO	NO
Clinical waste incineration	t waste fossil	NO	NO	NO	NO	NO	NO	NO	NO	NO
Sewage sludge incineration	t sewage sludge	280	33	200	140	NA	NA	NA	NA	NA
Cremation	cremations	46	NA	86	500	NA	NA	NA	NA	NA
Open burning of natural residues in agriculture	t gardening waste	320	130	60	10'000	3'150	6'450	5'150	1'700	NA
Open burning of natural residues in private households	t gardening waste	320	130	60	10'000	3'150	6'450	5'150	1'700	NA

Table 6-13 Emission factors for 5C Waste incineration and open burning of waste in 2023.

Activity data (5C)

The clinical waste incineration quantities are based on rough expert estimates (EMIS 2025/5C1 Spitalabfallverbrennung).

Emissions from illegal waste incineration are based on the amount of municipal solid waste and waste from construction work burned in Switzerland. Due to the illegal nature of the process, there is a lack of reliable data. Thus, it is estimated that in 1990 1 % and in 2035 0.25 % of this amount is burned illegally (expert judgment). The shares for the years in between are interpolated. In order to estimate the quantity of illegal waste, the percentage quotation is multiplied by the total amount of municipal solid waste and waste from construction work (EMIS 2025/5C1 Abfallverbrennung illegal).

The sewage sludge quantity for 1990, 1994 and 1999 are taken from Külling and Stadelmann (2002). The total amount of sewage sludge produced in Switzerland as of 2000 is calculated by multiplying the per capita sludge production per person and year as reported by VBSA (2017) with the total population (FSO 2024c). The per capita sewage sludge production for 2000, 2004, 2008, 2012, 2016 and 2017 as reported in VBSA 2017 have been derived by compiling the respective amounts of sewage sludge incinerated in municipal solid waste incineration plant, sewage sludge incineration plants and used as alternative fuel in the cement industry and dividing it by the total population count (VBSA 2017). Per capita sludge productions for the intervening years were interpolated linearly. The total amount of sewage sludge incinerated is then calculated using the total amount generated minus the sewage sludge burnt in municipal solid waste incineration plants and sewage sludge used as alternative fuel in cement plants.

The activity data for burning of agricultural residues (see Table 6-14) is estimated based on a study conducted by INFRAS (2014). The burnt quantity is decreasing because legal burning is more strongly restricted since a revision of the corresponding article in the Swiss Federal Ordinance on Air Pollution Control in the year 2009 (EMIS 2024/5C2 Abfallverbrennung Land- und Forstwirtschaft). Since the greenhouse gas inventory UNFCC in-country review 2016, greenhouse gas emissions from open burning of natural residues in forestry (5C2ii) are reported under source category 4(IV)A1 in the greenhouse gas inventory. The corresponding

air pollutant emissions are reported under 11B Forest fires within the informative inventory report (chp. 7.3).

Table 6-14 Activity data for the various emission sources within source category 5C Waste incineration and open burning of waste.

5C Incineration and open burning of waste	Unit	1990	1995	2000	2005	2010					
Illegal incineration of biogenic waste	kt waste biogenic	16	13	12	11	11					
Illegal incineration of fossil waste	kt waste fossil	16	13	13	11	10					
Insulation material from cables	kt cables	7.5	NO	NO	NO	NO					
Hazardous waste incineration of PCB	t PCB	1.1	0.20	NO	NO	NO					
Clinical waste incineration	kt waste fossil	15	8.8	2.5	NO	NO					
Sewage sludge incineration	kt sewage sludge	57	50	64	95	90					
Cremation	cremations	37'513	40'968	44'821	48'169	52'813					
Open burning of natural residues in agriculture	kt gardening waste	13	12	12	12	11					
Open burning of natural residues in private households	kt gardening waste	4.4	3.6	2.8	2.0	1.2					
5C Incineration and open burning of waste	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Illegal incineration of biogenic waste	kt waste biogenic	10.0	9.9	9.8	9.3	9.1	8.8	8.5	8.3	7.8	7.6
Illegal incineration of fossil waste	kt waste fossil	9.3	9.4	9.3	9.0	8.8	8.6	8.4	8.3	7.8	7.7
Insulation material from cables	kt cables	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Insulation material from cables Hazardous waste incineration of PCB	kt cables t PCB	NO NO	NO NO	NO NO	NO NO	-	NO NO	NO NO	NO NO	NO NO	NO NO
		-		-	-	NO	-	-	NO	-	-
Hazardous waste incineration of PCB	t PCB	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Hazardous waste incineration of PCB Clinical waste incineration	t PCB kt waste fossil	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO 96	NO NO 97	NO NO
Hazardous waste incineration of PCB Clinical waste incineration Sewage sludge incineration Cremation	t PCB kt waste fossil kt sewage sludge	NO NO 93	NO NO 97	NO NO 99	NO NO 102	NO NO 98	NO NO 100	NO NO 97	NO NO 96 64'106	NO NO 97 65'688	NO NO 106

Note that since 2002, all specific clinical waste incineration plants have ceased operation and all hospital waste is incinerated in municipal solid waste incineration plants (accounted for in 1A1 Energy industry). All burning of insulation material cables (industrial waste incineration in the table above) has ceased as well since 1995.

6.4.3 Category-specific recalculations in 5C Waste incineration and open burning of waste

The following recalculations were implemented in submission 2025.

• 5C2: The activity data for 5C2 Open burning of waste was updated based on a newly used study (see method description). This leads to recalculations in the years 1990-2022.

6.5 Source category 5D – Wastewater handling

6.5.1 Source category description of 5D Wastewater handling

Source category 5D1 Domestic wastewater handling comprises all emissions from liquid waste handling and sludge from housing and commercial sources (including grey water and night soil). In Switzerland, municipal wastewater treatment plants treat wastewater from either individual cities or several cities and/or municipalities together. Wastewater in general is treated in three consecutive steps: 1. mechanical treatment, 2. biological treatment, and 3. chemical treatment. The treated wastewater flows into a receiving system (lake, river or stream). The wastewater treatment infrastructure in Switzerland is now virtually complete (FOEN 2017I). The vast majority of wastewater treatment plants apply anaerobic sludge treatment with sewage gas recovery and use the sewage gas for combined heat and power production.

The source category 5D2 Industrial wastewater handling includes all emissions from liquid wastes and sludge from industrial processes such as food processing, textiles, car-washing places and electroplating plants as well as pulp and paper production. These processes may result in effluents with a high load of organics. Depending on the contaminants, an on-site pre-treatment is necessary in order to reduce the load of pollutants in the wastewater to meet the regulatory standards (which are in place to preclude disruptions of the municipal wastewater treatment plants) and to reduce discharge fees. The on-site pre-treatment is

generally anaerobic, in order to use the sewage gas as source for combined heat and power production. The pre-treated wastewater is discharged to the domestic sewage systems, where the industrial wastewater is further treated, together with domestic wastewater in municipal wastewater treatment plants.

Table 6-15 Specification of source category 5D Wastewater handling.

5D	Source category	Specification
5D1	5	Emissions from liquid waste handling and sludge from housing and
		commercial sources
5D2	Industrial wastewater handling	Emissions from handling of liquid wastes and sludge from
		industrial processes

Table 6-16 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 5D Wastewater handling

Source category 5D Wastewater handling is not a key category.

The emissions related to wastewater treatment fall under various categories as laid out in Figure 6-5. The system boundaries of category 5D contain all emissions from direct wastewater handling, some emissions from sewage sludge drying and no emissions from sewage sludge use or disposal. The discharge of sewage sludge on agricultural soils has been phased out since 2003 and is generally forbidden since 2008, therefore this process is crossed out in the figure below. The same applies to solid waste disposal on land (5A). All sewage sludge is incinerated either in municipal solid waste incineration plants (1A1a), Sewage sludge incineration plants (5C) or used as alternative fuel in the cement industry (1A2f).

The emissions from the use of sewage gas for combined heat and power generation as well as in boilers are reported in sector 1 Energy in source category 1A2gviii Other.

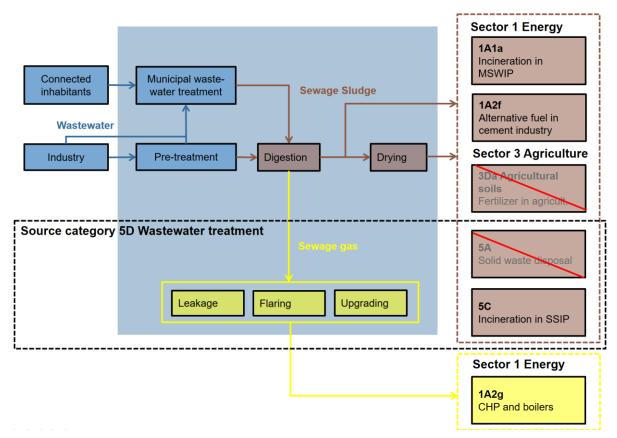


Figure 6-5 System boundaries of emissions related to wastewater handling. Abbreviations: CHP Combined Heat and Power Generation, MSWIP municipal solid waste incineration plant, SSIP sewage sludge incineration plant.

6.5.2 Methodological issues of 5D Wastewater handling

Methodology (5D)

For 5D1 Domestic wastewater handling and 5D2 Industrial wastewater handling, a Tier 2 method is used (see decision tree in chapter 5D Wastewater handling, EMEP/EEA 2023).

For 5D1 Domestic wastewater handling emission factors are calculated on the basis of the total emissions divided by the number of inhabitants (Swiss population, FSO 2024c). This number is not equivalent to the number of inhabitants connected to the wastewater system.

Emission factors (5D)

Emission factors are country-specific based on measurements and expert estimates, documented in the EMIS database (EMIS 2025/5D1, EMIS 2025/5D2), see Table 6-17.

5D Wastewaster handling	Unit of activity data	NOx	NMVOC	SOx	NH3	CO
5D Wastewaster Handling	Onit of activity data	g/	g/	g/	g/	g/
Domestic wastewater handling	inhabitants	0.57	0.011	0.0029	14	0.28
Industrial wastewater handling	inhabitants	0.13	0.0026	0.00064	NA	0.063

Table 6-17 Emission factors for 5D Wastewater handling in 2023.

Activity data (5D)

Activity data for 5D1 Domestic wastewater handling and 5D2 Industrial wastewater handling are the total number of inhabitants extracted from FSO (2024c). The number of inhabitants connected to the system is the product of the number of inhabitants and the service level. The fraction and number of persons connected to wastewater systems are indicated for informational reason in Table 6-18.

Table 6-18: Activity data in 5D Wastewater handling: Population and fraction connected to wastewater treatment plants. Emissions resulting from CH4 recovery are reported in Sector 1 in source category 1A2gviii Other.

5D Wastewaster handling	Unit	1990	1995	2000	2005	2010					
Domestic wastewater handling	inhabitants	6'712'000	7'041'000	7'184'000	7'437'000	7'825'000					
Fraction connected to wastewater treatment plants	% sewage sludge	90.0	93.7	95.4	96.8	97.2					
Inhabitants connected	inhabitants	5'998'514	6'551'235	6'805'561	7'148'623	7'552'659					
Domestic wastewater handling memo item: CH4 recovery	kt CH4	-26	-30	-34	-37	-41					
Industrial wastewater handling	inhabitants	6'712'000	7'041'000	7'184'000	7'437'000	7'825'000					
5D Wastewaster handling	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
5D Wastewaster handling Domestic wastewater handling	Unit inhabitants								2021 8'705'000		
				8'373'000	8'452'000	8'514'000	8'575'000		8'705'000		
Domestic wastewater handling	inhabitants	8'189'000 97.3	8'282'000 97.3	8'373'000 97.3	8'452'000 97.3	8'514'000	8'575'000 97.3	8'638'000 97.3	8'705'000	8'739'000 97.3	8'889'000 97.3
Domestic wastewater handling Fraction connected to wastewater treatment plants	inhabitants % sewage sludge	8'189'000 97.3	8'282'000 97.3	8'373'000 97.3	8'452'000 97.3	8'514'000 97.3 8'226'133	8'575'000 97.3	8'638'000 97.3	8'705'000 97.3	8'739'000 97.3	8'889'000 97.3

6.5.3 Category-specific recalculations in 5D Wastewater handling

There were no recalculations implemented in submission 2025.

6.6 Source category 5E – Other waste, shredding

6.6.1 Source category description of 5E Other waste, shredding

In source category 5E only shredding of cars and electronic waste containing PCBs in small capacitors is considered.

Table 6-19 Specification of source category 5E Other waste, shredding

5E	Source category	Specification
5E	Other waste	Emissions from car shredding plants;
		PCB emissions from shredding of electronic waste containing
		small capacitors

Table 6-20 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 5E Other waste, shredding

ource category 5E Other waste, shredding is not a key category.

6.6.2 Methodological issues of 5E Other waste, shredding

Methodology (5E)

For the emissions from car shredding a Tier 2 method is used (see decision tree in chapter 5E Other, EMEP/EEA 2023). Emissions are calculated by multiplying the quantity of scrap by respective emission factors. The PCB emissions from shredding of electronic waste containing PCBs in small capacitors are modelled within the treatment category of the dynamic mass flow model developed for the usage of PCBs in Switzerland (Glüge et al. 2017), see Annex A2.2.

Emission factors (5E)

For the emissions from car shredding country-specific emission factors are used (SAEFL 2000 and EMIS 2025/5E Shredder Anlagen). For all years, emission factors are considered to remain constant. The PCB emission factor expressed in units per tonnes of PCBs shredded is based on the dynamic mass flow model for the usage of PCBs in Switzerland, see Annex A2.2.

5E Other waste	Unit of activity data	NMVOC	PM2.5 nx	PM10 nx	TSP nx	CO	Pb	Cd	PCDD/ PCDF	PCB
	Offic of activity data	g/	g/	g/	g/	g/	mg/	mg/	ng I- Teq/	mg/
Car shredding	t scrap	200	5.0	10	12	5.0	22	2.5	400	NA
Shredder	g PCB	NA	NA	NA	NA	NA	NA	NA	NA	71

Table 6-21 Emission factors for 5E Other waste, car shredding and shredder in 2022.

Activity data (5E)

The quantities of shredded cars from 1990 are data provided by the Swiss shredder association. The data from 2003 and 2007 are taken from Swiss waste statistics. Data for the years in between is interpolated. From 2007 onwards the quantities are assumed to remain constant due to the lack of data (EMIS 2025/5E Shredder Anlagen). For PCB emissions, the activity data is the amount of PCBs shredded based on the dynamic mass flow model for the usage of PCBs in Switzerland, see Annex A2.2. As a consequence of the legal ban of disposal of combustible waste in landfills, a sharp increase in shredding of small capacitors

occurred in 1999 although they should have been treated as special waste from 1998 onwards.

Table 6-22 Activity data for car shredding (source EMIS 2025/5E Shredder Anlagen)

5E Other waste	Unit	1990	1995	2000	2005	2010					
Car shredding	kt scrap	280	300	300	300	300					
Shredder	t PCB	3.0	3.3	10	3.5	0.71					
5E Other waste	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Car shredding	kt scrap	300	300	300	300	300	300	300	300	300	300
Shredder	t PCB	0.31	0.25	0.20	0.15	0.12	0.092	0.070	0.053	0.040	0.030

6.6.3 Category-specific recalculations in 5E Other waste, car shredding

There were no recalculations implemented in submission 2025.

7 Other and natural emissions

7.1 Overview of emissions

In this introductory chapter, an overview of emissions separated according to the most relevant pollutants is presented. Trends and changes for individual source categories in the period between 1990 and 2023 are analysed and discussed. In sectors 6 Other and 11 Natural emissions NH_3 , NO_x , PM2.5 and NMVOC are the most relevant pollutants.

The following source categories are reported:

- 6A1 Humans
- 6A2 Pets
- 6A3 Fertilisers (private use)
- 6A4 Fire damages buildings and motor vehicles
- 6A5 Accidental PCB release (by fire and to soil)
- 11B Forest fires and open burning of residues in forestry
- 11C Other natural emissions (NMVOC from forest stands)

There are no emissions reported under memo item 6B Other.

Active volcanoes (11A) do not occur in Switzerland.

7.1.1 Overview and trend for NH₃

Figure 7-1 shows the trend of NH_3 emissions in sector 6 Other since 1990. The source category 6A Other sources is a key category for NH_3 . Total emissions fluctuate and have continuously slightly increased within the reporting period. Emissions from source category 6A2 Pets, which includes cats, dogs and livestock outside agriculture (i.e. asses, goats, horses and sheep) as well as zoo animals, contributes the largest share to total emissions. The emissions fluctuate due to the variability in the animal numbers. The emissions from 6A1 Humans show an increasing trend in line with the population growth, while the ones of 6A3 Fertilisers almost halved between 1990 and 1999 and have remained roughly constant since then. There is no ammonia emission from categories 6A4 Fire damages and 6A5 Accidental PCB release.

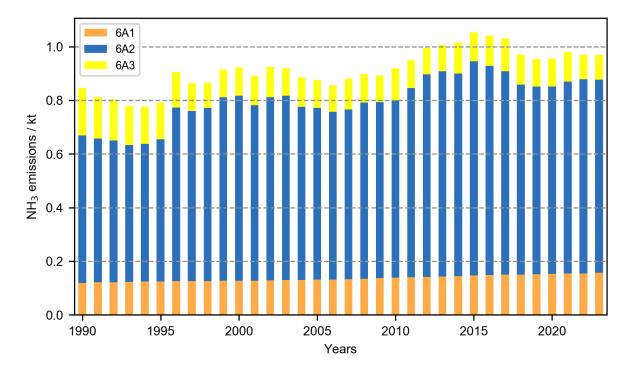


Figure 7-1 Switzerland's NH_3 emissions from sector 6 Other and natural emissions by source categories 6A1, 6A2 and 6A3. The corresponding data can be found in Table 7-1.

NH3		1990	1995	2000	2005	2010	
6A1	kt	0.12	0.12	0.13	0.13	0.14	
6A2	kt	0.55	0.53	0.69	0.64	0.66	
6A3	kt	0.18	0.14	0.11	0.10	0.12	
6A4	kt	NA	NA	NA	NA	NA	
Sum	kt	0.85	0.79	0.92	0.88	0.92	
NH3		2014	2015	2016	2017	2018	
6A1	kt	0.14	0.15	0.15	0.15	0.15	
6A2	kt	0.75	0.80	0.78	0.76	0.71	
6A3	kt	0.12	0.11	0.11	0.12	0.11	
6A4	kt	NA	NA	NA	NA	NA	
Sum	kt	1.0	1.1	1.0	1.0	0.97	
NH3		2019	2020	2021	2022	2023	2005-2023 (%)
6A1	kt	0.15	0.15	0.15	0.15	0.16	20
6A2	kt	0.70	0.70	0.72	0.72	0.72	12
6A3	kt	0.10	0.10	0.11	0.091	0.094	-10
6A4	kt	NA	NA	NA	NA	NA	-
Sum	kt	0.95	0.96	0.98	0.97	0.97	11

Table 7-1 NH_3 emissions from sector 6 Other by source categories 6A1, 6A2 and 6A3. The last column in the third part of the table indicates the relative trend.

7.1.2 Overview and trend for NO_x

 NO_x emissions from the source categories 6A2 Pets, 6A3 Fertilisers and 6A4 Fire damages buildings and motor vehicles between 1990 and 2023 are summarised in Figure 7-2. The contribution of sector 6A is very small in comparison to the national total and is not a key category for NO_x . The overall emissions fluctuate due to changes in the number of livestock outside agriculture (6A2) but remain at about the same (low) level within the reporting period. For all years, 6A2 Pets and 6A3 Fertilisers contribute the most to total emissions. Emissions from 6A3 Fertilisers and 6A4 Fire damages buildings and motor vehicles show a slight decrease during the reporting period.

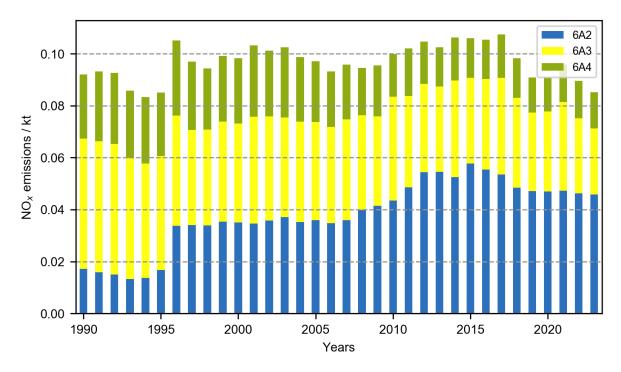


Figure 7-2 Switzerland's NO_x emissions from the sector 6 Other and natural emissions by source categories 6A2, 6A3 and 6A4. The corresponding data can be found in Table 7-2.

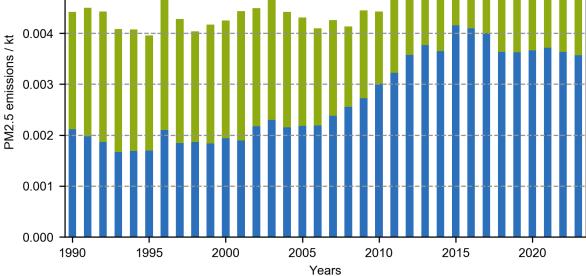
NOx		1990	1995	2000	2005	2010	
6A1	kt	NA	NA	NA	NA	NA	
6A2	kt	0.017	0.017	0.035	0.036	0.043	
6A3	kt	0.050	0.044	0.038	0.038	0.040	
6A4	kt	0.025	0.024	0.025	0.023	0.016	
Sum	kt	0.092	0.085	0.098	0.097	0.100	
NOx		2014	2015	2016	2017	2018	
6A1	kt	NA	NA	NA	NA	NA	
6A2	kt	0.053	0.058	0.055	0.054	0.048	
6A3	kt	0.037	0.033	0.035	0.037	0.034	
6A4	kt	0.017	0.015	0.015	0.017	0.015	
Sum	kt	0.11	0.11	0.11	0.11	0.098	
NOx		2019	2020	2021	2022	2023	2005-2023 (%)
6A1	kt	NA	NA	NA	NA	NA	-
6A2	kt	0.047	0.047	0.047	0.046	0.046	27
6A3	kt	0.030	0.031	0.034	0.029	0.025	-33
6A4	kt	0.013	0.013	0.014	0.014	0.014	-40
Sum	kt	0.091	0.091	0.096	0.090	0.085	-12

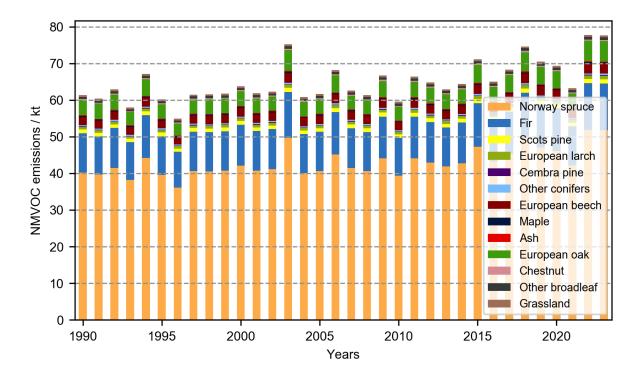
Table 7-2 NO_x emissions from sector 6 Other by source categories 6A2, 6A3 and 6A4. The last column in the third part of the table indicates the relative trend.

7.1.3 Overview and trend for PM2.5

Figure 7-3 depicts the trend of PM2.5 emissions in sector 6 Other since 1990. The contribution of sector 6A is very small in comparison to the national total and is not a key category for PM2.5. Emissions from source category 6A2 Pets originate from livestock outside agriculture. They fluctuate due to changes in animal numbers and show an increasing trend from 2008 to 2015. Emissions from 6A4 Fire damages buildings and motor vehicles have a decreasing trend over the entire time period because the number of building fires is decreasing.

0.005




Figure 7-3 Switzerland's PM2.5 emissions from the sector 6 Other emissions. The corresponding data can be found in Table 7-3.

PM2.5		1990	1995	2000	2005	2010	
6A1	kt	NA	NA	NA	NA	NA	
6A2	kt	0.0021	0.0017	0.0019	0.0022	0.0030	
6A3	kt	NA	NA	NA	NA	NA	
6A4	kt	0.0023	0.0023	0.0023	0.0021	0.0014	
Sum	kt	0.0044	0.0040	0.0042	0.0043	0.0044	
PM2.5		2014	2015	2016	2017	2018	
6A1	kt	NA	NA	NA	NA	NA	
6A2	kt	0.0036	0.0042	0.0041	0.0040	0.0036	-
6A3	kt	NA	NA	NA	NA	NA	-
6A4	kt	0.0014	0.0013	0.0013	0.0014	0.0013	
Sum	kt	0.0050	0.0054	0.0053	0.0054	0.0049	
PM2.5		2019	2020	2021	2022	2023	2005-2023 (%)
6A1	kt	NA	NA	NA	NA	NA	-
6A2	kt	0.0036	0.0037	0.0037	0.0036	0.0036	64
6A3	kt	NA	NA	NA	NA	NA	-
6A4	kt	0.0011	0.0010	0.0012	0.0011	0.0011	-47
Sum	kt	0.0047	0.0047	0.0049	0.0048	0.0047	8.8

Table 7-3 PM2.5 emissions from sector 6 Other by source categories 6A2 and 6A4. The last column in the third part of the table indicates the relative trend.

7.1.4 Overview and trend for NMVOC from Forests

Figure 7-4 depicts the trend of NMVOC emissions in the sector 11C Other natural emissions since 1990 for various tree species. The emissions stem predominantly from Norway spruce, fir and oak stands. They are considerably high in comparison to the national total of NMVOC emissions. However, sector 11C is reported as a memo item only and is therefore not a key category for NMVOC. Total emissions in 1990 were 60.8 kt; they are increasing on average by 0.34 % per year. The annual fluctuations are due to the meteorological conditions, which

influence the emission rates of the trees. The year 2023 was interpolated between 2022 and 2050.

Figure 7-4 Switzerland's NMVOC emissions from the sector 11C Other natural emissions (forest stands).

7.2 Source category 6 - Other emissions

7.2.1 Source category description of 6 Other emissions

Within the sector 6 Other emissions, emissions from the sources as shown in Table 7-4 are considered.

6A	Source category	Specification
6A1	Human emissions	NH3 emissions from respiration and transpiration and diapers
6A2	Pets and livestock outside agriculture	NOx, NMVOC, NH3, PM2.5, PM10 and TSP emissions of domestic and zoo animals and of livestock not included in sector 3 Agriculture
6A3	Private application of synthetic fertilizer and urea	NOx and NH3 emissions
6A4	Fire damages	Emissions from building fires and motor vehicle fires
6A5	Accidental PCB release	Emissions from accidental PCB releases by fire and to soil

Table 7-4 Specification of sector 6 Other emissions.

Table 7-5 Key categories, approaches 1 and 2, level assessment 2023 (L1, L2) and trend assessment 1990-2023 (T1, T2) for source category 6A Other emissions.

NFR code	Source category	Pollutant	Identification criteria
6A	Other sources	NH3	L2, T2

7.2.2 Methodological issues of 6 Other emissions

Methodology (6A)

Human emissions (6A1)

Ammonia emissions of human respiration and transpiration and of diapers are considered.

Emissions from pets and livestock outside agriculture (6A2)

Ammonia emissions of domestic animals such as cats and dogs as well as of zoo animals are considered.

Emissions of NO_x, NMVOC, NH₃ and particulate matter (PM2.5, PM10 and TSP) from manure management of so-called livestock outside agriculture (i.e. asses, goats, horses and sheep) are considered. This livestock is not covered by the agricultural census as it consists of animals held for non-agricultural purposes (e.g. horses for sports and leisure) and/or livestock held by private persons or enterprises that do not fulfil the criteria of an agricultural enterprise. The methodology is the same as for animal husbandry in agriculture (see chp. 5.2.2).

Emissions from private fertiliser use (6A3)

The methodology for calculating emissions of NO_x and NH_3 from private use of inorganic Nfertiliser is the same as for fertilisers used in the agricultural sector (see chp. 5.3.2). The methodology for calculating NH_3 emissions from application of inorganic fertilisers in agriculture (source category 3Da1) is a Tier 2 approach of the EMEP/EEA guidebook (EMEP/EEA 2019) taking into account the specified list of fertilisers, climate zone and pH. Emission factors and activity data are given in Table 7-6 and Table 7-13, respectively.

Emissions from fire damage buildings and motor vehicles (6A4)

Activity data for 6A4 Fire damage buildings are estimated yearly based on the number of building fires reported to insurance companies for the given year. This information is annually published by the fire insurance association of the cantons (Vereinigung kantonaler Feuerversicherungen, VKF).

VKF publishes the number of fire incidents in buildings each year and the total sum of monetary damage. Using the data from 1992 to 2001, the average damage sum per fire incident in buildings amounts to approximately CHF 16'000. This corresponds – based on the assumption of typical damage costs of CHF 20'000 per 1'000 kg of burnt material – to 800 kg of flammable material per case. It is further assumed that on average 50 % of the flammable material gets destroyed during an incident because of the intervention of the fire brigade, yet without actually being set on fire. Thus, an average amount of 400 kg of burnt material per fire case is estimated and held constant throughout the time series. This is the same order of magnitude as the range of 272–417 kg of burnt material estimated based on a test fire as published in FM Global (2010). With these assumptions, the amount of burnt material for each year can be estimated using the total number of building fires published by VKF (EMIS 2025/6A), multiplied by the burnt material (400 kg) per fire incident. The resulting value of 9 kt burnt goods is used for the year 1990.

Activity data for 6A4 Fire damage motor vehicles are estimated yearly based on the vehicle number published annually by the Federal Statistical Office FSO (EMIS 2025/6A). Based on data from a Swiss insurance company with 25 % market share in 2002, the number of reported cases of fire damage to vehicles was extrapolated to the total vehicle number in

Switzerland. This results in one fire case per 790 vehicles for the year 2002. It is assumed that this ratio has remained constant during the reporting period. By applying this ratio to the actual vehicle number published annually by the FSO, the total number of vehicles with fire damages in Switzerland can be calculated for each year. During a car fire incident, a car burns down only partially. It is assumed that approximately 100 kg of material burns down during a car fire. With these assumptions, the total amount of material burnt can be calculated from the total number of cars in Switzerland.

Emissions from accidental release of PCBs by fire and to soil (6A5)

From all PCB usage in transformers, large and small capacitors, anti-corrosive paints and joint-sealants, PCBs can be accidentally released by fire or spilling to soil. These PCB emissions are modelled within the accidental release category of the dynamic mass flow model developed for the usage of PCBs in Switzerland (Glüge et al. 2017), see Annex A2.2.

Emission factors (6A)

The emission factors for the source categories 6A1 to 6A3 are depicted in Table 7-6 to Table 7-8. Emission factors for fertiliser see also Table 5-18.

Ammonia emissions (6A1-6A3)

Emission factors for human ammonia emissions are extracted from Sutton et al. (2000). Emission factors for pet (cats, dogs and zoo animals) ammonia emissions are retrieved from Reidy and Menzi (2005). The ammonia emission factors for livestock outside agriculture are derived from source category 3B – Manure management (see chp. 5.2.2).

NOx, NMVOC, PM2.5, PM10 and TSP non-exhaust (6A2)

The emission factors for NOx, NMVOC, PM2.5, PM10 and TSP from livestock outside agriculture are implied values based on emission factors of the respective animal categories (asses, goats, horses and sheep) in source categories 3B Manure management and 3D Crop production and agricultural soils (see chp. 5.2.2 and chp. 5.3.2).

Table 7-6 Emission factors for the year 2023 in sector 6A1 Other emissions, Humans (source EMIS 2025/6A).

6A1 Humans	Unit of activity data	NH3
OATTIUMANS	Offit of activity data	g/
Aged inhabitants	persons	42
Children 1-3 years	children	15
Children <1 year	children	12
Human respiration	inhabitants	3.0
Human transpiration	inhabitants	14

Table 7-7 Emission factors for the year 2023 in sector 6A2 Other emissions, Pets (source EMIS 2025/6A).

6A2 Pets and livestock outside agriculture	Unit	NOx	NMVOC	NH3	PM2.5 nx	PM10 nx	TSP nx
OAZ Fets and investock outside agriculture	Offic	g/	g/	g/	g/	g/	g/
Livestock outside agriculture	number	457	980	3'281	36	90	217
Cats	number	NA	NA	90	NA	NA	NA
Dogs	number	NA	NA	400	NA	NA	NA
Weight of zoo and circus animals	t	NA	NA	41'400	NA	NA	NA

Table 7-8 Emission factors for the year 2023 in sector 6A3 Other emissions, Fertilisers (source EMIS 2025/6A).

6A3 Fertilisers	Unit of activity data	NOx	NH3	
	Onit of activity data	g/	g/	
Fertiliser outside agriculture	kg N	18	67	

Fire damages (6A4)

Fire damages buildings (EMIS 2025/6A Immobilienbraende): Emission factors for CO, NO_x and SO_x are country-specific based on measurements and expert estimates originally derived for illegal waste incineration. It is assumed that emissions are similar in fire damage in buildings. The emission factors for Cd and Hg are country-specific and based on measurements from a study about a cable recycling company in Switzerland (Graf 1990). For Pb, the emission factor is updated yearly and derived from a bottom-up estimation based on estimation of the fraction of new or renovated buildings (therefore without lead-containing paint) and a rough inventory of lead-containing items within a building. For Pb, the emission factor decreases gradually from 1990 until the reporting year, due to the progressive ban of lead in construction items and consumption goods, as enforced by the Chemical Risk Reduction Ordinance ORRChem. It is assumed that the PCDD/PCDF emission factor is the same as for illegal waste incineration. The emission factor for B(a)P is taken from USEPA 1998 (Table 4.10.5-1 Open burning of municipal refuse).

Fire damage motor vehicles (EMIS 2025/6A Fahrzeugbraende): The following emission factors are constant over the reporting period and derived from three scientific publications reporting estimations based on real car fire experiments:

- CO and NO_x (ADEME 2013, INERIS 2019)
- Heavy metals As, Cd, Cr, Cu, Hg, Ni, Se, Zn (Lönnermark and Blomqvist 2006 and ADEME 2013)
- PCB and PCDD/PCDF (INERIS 2019)

For Pb, the emission factor reported by Lönnermark and Blomqvist 2006 (820 g/t, car model from 1998) is significantly higher than the one reported in ADEME 2013 (31 g/t, car model between 2008 and 2013). This reported discrepancy may be explained by additional legal measures to decrease lead content in cars over the years. One such measure in Switzerland is the ban of lead as weel weight that entered into force in 2005. We therefore use for Pb an emission factor that is yearly updated and computed as an average of the two published values, weighted by the fraction of cars in service since 2005.

The emission factor for NMVOC, PM10, PM2.5 and SO_x are country-specific and based on measurements and expert estimates originally derived for wire burn off. The emission factors for PAH are determined by USEPA 1998 (chp. 4.10.2 Open burning of scrap tires). It is assumed that the emission factor for B(a)P is slightly higher than the study-based emission factor for B(a)P of car scrap due to higher B(a)P emission factor values of car tires.

Table 7-9 presents the emission factors used for the reporting year.

Table 7-9 Emission factors for fires reported under 6A4 Fire damages buildings and motor vehicles in 2023 as kg/t burned good and g/t burned good, respectively.

6A4 Fire damages	Unit of activity data	NOx	NMVOC	SOx	PM2.5 ex	PM10 ex	TSP ex	BC ex	CO	
one i ne damages	Onit of activity data	g/	g/	g/	g/	g/	g/	g/	g/	
Building fire	t burnt material biogenic	2'500	16'000	750	250	25'000	30'000	18	100'000	
Building fire	t burnt material fossil	2'500	16'000	750	250	25'000	30'000	18	100'000	
Fire damage motor vehicles combustion	t burnt material fossil	4'500	2'000	5'000	100	1'000	70'050	7.0	51'750	
6A4 Fire damages	Unit of activity data	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	PCB
une damages	Onit of activity data	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	mg/
Building fire	t burnt material biogenic	391'000	200	100	160'000	0.34	0.20	0.27	0.100	NA
Building fire	t burnt material fossil	391'000	200	100	160'000	0.34	0.20	0.27	0.100	NA
Fire damage motor vehicles combustion	t burnt material fossil	100'719	955	383	395'000	50'000	30'000	40'000	15'000	0.027

Emissions from accidental release of PCBs (6A5)

The PCB emission factors from accidental release of PCBs by fire and to soil are expressed in units per tonnes of PCBs incinerated and stored in soil, respectively, see Table 7-10. They are based on the dynamic mass flow model for the usage of PCBs in Switzerland, see Annex A2.2.

Table 7-10 PCB emission factors for accidental release of PCB by fire and to soil, respectively, reported under 6A5 Other emissions in 2023 as kg/t released PCB.

6A5 Accidental release of PCB	Unit of activity data	PCB
OAS Accidental release of FCD	Onit of activity data	mg/
Accidental release of PCB by fire	g PCB	100
Accidental release of PCB to soil	g PCB	0.36

Activity data (6A)

Human emissions (6A1)

Activity data for human ammonia emissions is retrieved from the Swiss Federal Statistical Office and consists of the number of inhabitants for the processes respiration and transpiration, whereas for the emissions from diapers the number of children younger than 1 year and 3 years respectively, are taken into account as well as the number of residents in nursing homes.

6A1 Humans	Unit	1990	1995	2000	2005	2010					
Aged inhabitants	persons	9'000	9'752	10'504	11'029	17'357					
Children 1-3 years	children	238'030	253'652	237'941	217'302	229'471					
Children <1 year	children	83'939	82'203	78'458	72'903	80'290					
Human respiration	inhabitants	6'712'000	7'041'000	7'184'000	7'437'000	7'825'000					
Human transpiration	inhabitants	6'712'000	7'041'000	7'184'000	7'437'000	7'825'000					
6A1 Humans	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Aged inhabitants	persons	18'679	19'278	19'244	19'793	20'337	20'661	19'827	19'946	20'957	20'957
Children 1-3 years	children	245'703	250'182	254'577	259'729	261'823	263'115	261'404	259'937	261'730	257'929
Children <1 year	children	85'287	86'559	87'883	87'381	87'851	86'172	85'914	89'644	82'371	80'024
Human respiration	inhabitants	8'189'000	8'282'000	8'373'000	8'452'000	8'514'000	8'575'000	8'638'000	8'705'000	8'739'000	8'889'000
Human transpiration	inhabitants	8'189'000	8'282'000	8'373'000	8'452'000	8'514'000	8'575'000	8'638'000	8'705'000	8'739'000	8'889'000

Table 7-11 Activity data causing N emissions in sector 6A1 Other emissions, Humans.

Pets and livestock outside agriculture (6A2)

Activity data for pet ammonia as well as NO_x, NMVOC, PM2.5, PM10 and TSP emissions (for livestock outside agriculture) are the number of domestic animals and the total live weight of zoo animals, respectively. For domestic animals, different publications are used as a source.

The number of the most important category of dogs and cats is provided by the Swiss Association for pet food⁵.

Table 7-12 Activity data in sector 6A2 Other emissions, Pets.

6A2 Pets and livestock outside agriculture	Unit	1990	1995	2000	2005	2010					
Livestock outside agriculture	number	16'326	18'649	88'285	89'276	95'332					
Cats	number	1'164'786	1'205'000	1'379'000	1'417'000	1'507'000					
Dogs	number	456'015	438'000	513'000	487'000	445'000					
Weight of zoo and circus animals	t	140	140	140	140	140					
6A2 Pets and livestock outside agriculture	1.134										
one i els ana mesiock outside agriculture	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Livestock outside agriculture	number	2014 108'866		2016 113'379	-						
0					-	107'715	103'135		102'912	100'749	100'222
Livestock outside agriculture	number	108'866	120'094 1'655'951	113'379	109'783	107'715 1'634'240	103'135 1'678'277	102'173 1'722'313	102'912 1'788'036	100'749 1'853'759	100'222 1'853'759

Emissions from private fertiliser use (6A3)

For 6A3 only mineral fertilisers (no urea-based fertilisers) are used for private applications outside agriculture.

Table 7-13 Activity data causing N emissions in sector 6 Other emissions.

6A3 Fertilisers	Unit	1990	1995	2000	2005	2010					
Fertiliser outside agriculture	t N	2'779	2'432	2'112	2'087	2'212					
6A3 Fertilisers	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Fertiliser outside agriculture	t N	2'056	1'823	1'934	2'057	1'907	1'673	1'712	1'890	1'602	1'404

Fire damages (6A4)

Activity data for source category 6A4 Fire damages are given in Table 7-14.

Table 7-14 Activity data in source	e category 6A4 Fire damages:	: Burnt goods (source EMIS 2025/6A).
------------------------------------	------------------------------	--------------------------------------

6A4 Fire damages	Unit	1990	1995	2000	2005	2010					
Building fire	kt burnt material biogenic	2.9	2.3	1.8	1.6	1.1					
Building fire	kt burnt material fossil	6.1	6.5	7.2	6.6	4.3					
Fire damage motor vehicles combustion	kt burnt material fossil	0.48	0.52	0.58	0.64	0.68					
6A4 Fire damages	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Building fire	kt burnt material biogenic	1.1	0.95	0.94	1.1	0.95	0.79	0.76	0.87	0.85	0.83
Building fire	kt burnt material fossil	4.2	3.8	3.8	4.2	3.8	3.2	3.0	3.5	3.4	3.3
Fire damage motor vehicles combustion	kt burnt material fossil	0.73	0.75	0.76	0.77	0.77	0.78	0.79	0.80	0.81	0.82

Accidental release of PCBs (6A5)

Activity data for source category 6A5 Accidental release of PCBs by fire and to soil are given in Table 7-15. The activity data are the amounts of PCBs incinerated and stored in soil, respectively, based on the dynamic mass flow model for the usage of PCBs in Switzerland, see Annex A2.2.

Table 7-15 Activity data in source category 6A5 Accidental release of PCB (source EMIS 2025/6A).

6A5 Accidental release of PCB	Unit	1990	1995	2000	2005	2010					
Accidental release of PCB by fire	t PCB	2.4	1.7	1.1	0.70	0.43					
Accidental release of PCB to soil	t PCB	39	41	41	41	41					
6A5 Accidental release of PCB	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
6A5 Accidental release of PCB Accidental release of PCB by fire	Unit t PCB	2014 0.29	2015 0.26	2016 0.24	-	2018 0.20	2019 0.18	2020 0.16			

⁵Verband für Heimtiernahrung VHN (<u>http://www.vhn.ch/)</u>

7.2.3 Recalculations in 6 Other emissions

The following recalculations were implemented in submission 2025:

- 6A3: The amount of synthetic fertilisers applied in Liechtenstein was updated for the years 1990-2022 yielding revised activity data and emission factors (NO_x, NH₃) of source category 6A3 Private application of inorganic N-fertilisers (including urea) for the entire time series.
- Remark to 6A: The former source categories 6Aa–d were renamed to 6A1–4, and accidental PCB emissions are now reported under 6A5.

7.3 Source category 11B - Forest fires

7.3.1 Source category description of 11B Forest fires

Within 11B Forest fires, emissions of NO_x , NMVOC, SO_x , NH_3 , particulate matter, CO, Pb, Cd, Hg, PCDD/PCDF and PAH are reported.

11B	Source category	Specification
11B	Forest fires	Emissions from natural wildfires on forest land and grassland;
		Emissions from open burning of natural residues in forestry

Table 7-16 Specification of source category 11B Forest fires in Switzerland.

Note that emissions are reported under 11B Natural emissions but are not accounted for in the national totals and are reported as memo item only. In the greenhouse gas inventory, wildfires are reported in sector 4(IV).

As a consequence of the greenhouse gas inventory UNFCC in-country review 2016, greenhouse gas emissions from open burning of natural residues in forestry (5C2ii) was moved from sector 5C to sector 4(IV)A1. The corresponding air pollutant emissions are reported here within source category 11B.

7.3.2 Methodology of 11B Forest fires

For calculating the emissions of forest fires a country-specific Tier 2 method is used (see decision tree in chapter 11B Forest fires in the EMEP/EEA guidebook (EMEP/EEA 2023). Emissions of wildfires are calculated by multiplying the annual area of forest and grassland burnt by the appropriate emission factors.

For the calculation of the emissions from burning of silvicultural residues a country-specific Tier 2 method is used (see decision tree in chapter 5C2 Open burning of waste, EMEP/EEA 2023).

Emission factors (11B)

Emission factors for forest and grassland fires are specified in the EMIS database (EMIS 2025/4VA1-11B-NFR_Waldbrände). Between 1900 and 1990, the available fuel on forest land, i.e. the mean biomass stocks, increased by a factor of 2.3 (Kurz et al. 1998). This information was used to calculate time series of the emission factors for most pollutants. For burnt grassland, the emission factors remain constant.

Emission factors for open burning of natural residues in forestry are taken from EMEP guidebook (EMEP/EEA 2023, chp. 5.C.2, table 3-2) and USEPA as documented in EMIS 2025/5C2 Abfallverbrennung Land- und Forstwirtschaft.

Table 7-17 Emission factors 2023 of 11B Forest fires, grassland fires and open burning of natural residues in forestry.

11B Forest fires	Unit of activity data	NOx	NMVOC	SOx	NH3	PM2.5 ex	PM10 ex	TSP ex	BC ex	CO
TTD T brest lifes	Only of activity data	g/	g/	g/	g/	g/	g/	g/	g/	g/
Forest wildfires	ha area burned	87'000	500'000	43'000	43'000	1'000'000	1'200'000	1'800'000	90'000	2'280'000
Grassland wildfires	ha area burned	13'000	34'000	3'000	3'000	110'000	140'000	210'000	9'900	373'000
Open burning of natural residues in forestry	t burned wood	1'380	1'470	30	800	3'760	4'130	4'310	348	48'790
11B Forest fires	Unit of activity data	Pb	Cd	Hg	PCDD/ PCDF	BaP	BbF	BkF	IcdP	
	Offic of activity data	mg/	mg/	mg/	ng I- Teq/	mg/	mg/	mg/	mg/	
Forest wildfires	ha area burned	NE	NE	1'400	400'000	80'000	140'000	140'000	180'000	
Grassland wildfires	ha area burned	NE	NE	1'400	400'000	80'000	140'000	140'000	180'000	
Open burning of natural residues in forestry	t burned wood	320	130	60	10'000	3'150	6'450	5'150	1'700	

Activity data (11B)

The area of forest land and grassland burnt is provided by swissfire, a database of wildfires managed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) as documented in the EMIS database (EMIS 2025/4VA1-11B-NFR_Waldbrände). For the years since 1990, the swissfire database is also used in the GHGI (FOEN 2025). Burned grassland areas also include woody grassland.

The activity data for burning of silvicultural residues is estimated based on a study conducted by INFRAS (2014). The burned quantity of silvicultural residues is decreasing since 1990 since legal burning is more strongly restricted, especially since the last revision of the corresponding article in the Swiss Federal Ordinance on Air Pollution Control in the year 2009 (Swiss Confederation 1985 as of 1 January 2009). Activity data are documented in EMIS 2025/5C2 Abfallverbrennung Land- und Forstwirtschaft.

11B Forest fires	Unit	1990	1995	2000	2005	2010	1				
Forest wildfires	ha area burned	1'067	363	58	41	42					
Grassland wildfires	ha area burned	637	82	22	20	1.3					
Open burning of natural residues in forestry	kt burned wood	34	28	23	17	11					
11B Forest fires	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
		10								074	
Forest wildfires	ha area burned	43	45	256	110	58	17	15	27	274	197
Forest wildfires Grassland wildfires	ha area burned ha area burned	43	45 14	256 213	-		17 16	15 31	27 9.9		197 9.1

Table 7-18 Activity data of 11B Forest fires, grassland fires and open burning of natural residues in forestry.

7.3.3 Recalculations in 11B Forest fires

The following recalculations were implemented in submission 2025:

• 11B: The activity data for source category 11B Open burning of natural residues from forestry was updated based on a newly used study (see method description). This leads to a recalculation the years 1990-2022.

7.4 Category 11C – Other natural emissions

7.4.1 Category description of 11C Other natural emissions

Within 11C Other natural emissions, NMVOC emissions of Swiss forest stands are reported for different tree species. 11C also includes NMVOC emissions from natural grassland.

Note that emissions are reported under Natural emissions (11C) but are not accounted for in the national totals and are reported as memo item only.

Table 7-19 Specification of source category 11C Other natural emissions in Switzerland.

11C	Source category	Specification
11C		Natural NMVOC emissions from forest trees; NMVOC emissions from natural grassland

7.4.2 Methodology of 11C Other natural emissions

The biogenic NMVOC emissions from forests were calculated for the years 1900-2022 and 2050 on the basis of monthly maps for the parameters temperature, vegetation period and for 12 different tree species (Meteotest 2019a, EMIS 2025/11C Wald). This corresponds to the simplified method according to chapter 11C (B1101 Non-managed & managed forests) in the EMEP/EEA guidebook (EMEP/EEA 2023) which represents a Tier 2 approach. With the method used, the emissions for isoprene, monoterpene and OVOC (Oxygenated VOC) could be modelled for each month with a spatial resolution of 100 x 100 m.

The NMVOC emission of natural grassland is 0.51 kt yr⁻¹ for all years according to SAEFL (1996a).

Emission factors (11C)

Emission factors for NMVOC emissions of different tree species are specified in the EMIS database (Table 7-20). They represent annual implied emission factors derived from the monthly emission maps. The values after 2022 are interpolated between the modelled years 2020 and 2050.

11C Other natural emissions	Unit of activity data	NMVOC
	Onit of activity data	g/
Natural emissions from forest	ha Norway spruce	88'427
Natural emissions from forest	ha fir	91'005
Natural emissions from forest	ha Scots pine	23'061
Natural emissions from forest	ha European larch	11'207
Natural emissions from forest	ha Cembra pine	15'156
Natural emissions from forest	ha Other conifers	123'074
Natural emissions from forest	ha European beech	11'594
Natural emissions from forest	ha maple	22'849
Natural emissions from forest	ha ash	8'437
Natural emissions from forest	ha European oak	221'081
Natural emissions from forest	ha chestnut	13'166
Natural emissions from forest	ha other broadleaf	11'487

Table 7-20 Implied emission factors 2023 of 11C NMVOC for different tree species.

Figure 7-5 shows the time series of emission factors for a coniferous species and a broadleaf species. The interannual variation is due to the monthly climatic data used in the model (Meteotest 2019a, EMIS 2025/11C Wald).

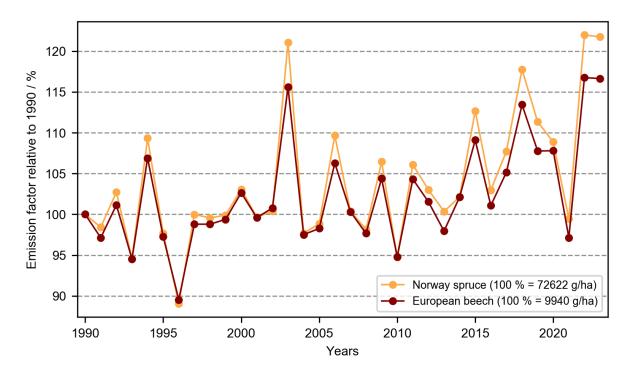


Figure 7-5 Relative trends of the (implied) NMVOC emission factors for two selected tree species 1990-2023.

Activity data (11C)

On the basis of several forest and area statistics, the area proportions of the various tree species and their temporal change over the years could be determined (Meteotest 2019a) as shown in Table 7-21.

11C Other natural emissions	Unit	1990	1995	2000	2005	2010					
Total		1'211'651	1'220'183	1'229'051	1'237'835	1'247'057					
Natural emissions from forest	ha Norway spruce	554'168	558'151	562'292	566'457	571'778					
Natural emissions from forest	ha fir	138'196	138'374	138'497	138'634	138'930					
Natural emissions from forest	ha Scots pine	49'503	49'823	50'136	50'400	50'688					
Natural emissions from forest	ha European larch	73'421	74'919	76'432	77'933	79'282					
Natural emissions from forest	ha Cembra pine	11'025	11'261	11'502	11'745	11'964					
Natural emissions from forest	ha Other conifers	3'257	3'261	3'268	3'269	3'278					
Natural emissions from forest	ha European beech	226'751	227'722	228'738	229'799	230'716					
Natural emissions from forest	ha maple	15'325	15'461	15'614	15'729	15'857					
Natural emissions from forest	ha ash	28'555	28'655	28'782	28'911	28'991					
Natural emissions from forest	ha European oak	24'911	24'919	24'978	25'023	25'027					
Natural emissions from forest	ha chestnut	26'877	27'097	27'353	27'578	27'674					
Natural emissions from forest	ha other broadleaf	59'662	60'540	61'459	62'357	62'872					
11C Other natural emissions	Unit	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
11C Other natural emissions Total	Unit	2014 1'254'489		2016 1'258'136	2017 1'260'026			2020 1'265'518		2022 1'269'355	2023 1'270'076
	Unit ha Norway spruce						1'263'687		1'267'457		
Total		1'254'489	1'256'307	1'258'136	1'260'026	1'261'840	1'263'687	1'265'518	1'267'457 584'087	1'269'355	1'270'076
Total Natural emissions from forest	ha Norway spruce	1'254'489 576'243	1'256'307 577'328	1'258'136 578'465	1'260'026 579'544	1'261'840 580'618	1'263'687 581'777	1'265'518 582'896	1'267'457 584'087 139'725	1'269'355 585'229	1'270'076 585'664
Total Natural emissions from forest Natural emissions from forest	ha Norway spruce ha fir	1'254'489 576'243 139'220	1'256'307 577'328 139'295	1'258'136 578'465 139'380	1'260'026 579'544 139'463	1'261'840 580'618 139'535	1'263'687 581'777 139'606	1'265'518 582'896 139'670	1'267'457 584'087 139'725	1'269'355 585'229 139'793	1'270'076 585'664 139'821
Total Natural emissions from forest Natural emissions from forest Natural emissions from forest	ha Norway spruce ha fir ha Scots pine	1'254'489 576'243 139'220 50'939	1'256'307 577'328 139'295 51'002	1'258'136 578'465 139'380 51'056	1'260'026 579'544 139'463 51'119	1'261'840 580'618 139'535 51'163	1'263'687 581'777 139'606 51'219	1'265'518 582'896 139'670 51'269	1'267'457 584'087 139'725 51'343	1'269'355 585'229 139'793 51'418	1'270'076 585'664 139'821 51'440
Total Natural emissions from forest Natural emissions from forest Natural emissions from forest Natural emissions from forest	ha Norway spruce ha fir ha Scots pine ha European larch	1'254'489 576'243 139'220 50'939 80'282	1'256'307 577'328 139'295 51'002 80'532	1'258'136 578'465 139'380 51'056 80'733 12'241	1'260'026 579'544 139'463 51'119 81'007	1'261'840 580'618 139'535 51'163 81'244	1'263'687 581'777 139'606 51'219 81'478	1'265'518 582'896 139'670 51'269 81'748	1'267'457 584'087 139'725 51'343 82'013	1'269'355 585'229 139'793 51'418 82'274	1'270'076 585'664 139'821 51'440 82'370
Total Natural emissions from forest Natural emissions from forest Natural emissions from forest Natural emissions from forest Natural emissions from forest	ha Norway spruce ha fir ha Scots pine ha European larch ha Cembra pine	1'254'489 576'243 139'220 50'939 80'282 12'161	1'256'307 577'328 139'295 51'002 80'532 12'196	1'258'136 578'465 139'380 51'056 80'733 12'241	1'260'026 579'544 139'463 51'119 81'007 12'296	1'261'840 580'618 139'535 51'163 81'244 12'353	1'263'687 581'777 139'606 51'219 81'478 12'395	1'265'518 582'896 139'670 51'269 81'748 12'442	1'267'457 584'087 139'725 51'343 82'013 12'505	1'269'355 585'229 139'793 51'418 82'274 12'552	1'270'076 585'664 139'821 51'440 82'370 12'571
Total Natural emissions from forest Natural emissions from forest Natural emissions from forest Natural emissions from forest Natural emissions from forest	ha Norway spruce ha fir ha Scots pine ha European Iarch ha Cembra pine ha Other conifers	1'254'489 576'243 139'220 50'939 80'282 12'161 3'286	1'256'307 577'328 139'295 51'002 80'532 12'196 3'288	1'258'136 578'465 139'380 51'056 80'733 12'241 3'292	1'260'026 579'544 139'463 51'119 81'007 12'296 3'295	1'261'840 580'618 139'535 51'163 81'244 12'353 3'299	1'263'687 581'777 139'606 51'219 81'478 12'395 3'303	1'265'518 582'896 139'670 51'269 81'748 12'442 3'306	1'267'457 584'087 139'725 51'343 82'013 12'505 3'316	1'269'355 585'229 139'793 51'418 82'274 12'552 3'318	1'270'076 585'664 139'821 51'440 82'370 12'571 3'319
Total Natural emissions from forest Natural emissions from forest	ha Norway spruce ha fir ha Scots pine ha European Iarch ha Cembra pine ha Other conifers ha European beech	1'254'489 576'243 139'220 50'939 80'282 12'161 3'286 231'422	1'256'307 577'328 139'295 51'002 80'532 12'196 3'288 231'609	1'258'136 578'465 139'380 51'056 80'733 12'241 3'292 231'780	1'260'026 579'544 139'463 51'119 81'007 12'296 3'295 231'974	1'261'840 580'618 139'535 51'163 81'244 12'353 3'299 232'161	1'263'687 581'777 139'606 51'219 81'478 12'395 3'303 232'314	1'265'518 582'896 139'670 51'269 81'748 12'442 3'306 232'462	1'267'457 584'087 139'725 51'343 82'013 12'505 3'316 232'615	1'269'355 585'229 139'793 51'418 82'274 12'552 3'318 232'790	1'270'076 585'664 139'821 51'440 82'370 12'571 3'319 232'861
Total Natural emissions from forest Natural emissions from forest	ha Norway spruce ha fir ha Scots pine ha European larch ha Cembra pine ha Other conifers ha European beech ha maple	1'254'489 576'243 139'220 50'939 80'282 12'161 3'286 231'422 15'982	1'256'307 577'328 139'295 51'002 80'532 12'196 3'288 231'609 16'007	1'258'136 578'465 139'380 51'056 80'733 12'241 3'292 231'780 16'039	1'260'026 579'544 139'463 51'119 81'007 12'296 3'295 231'974 16'067	1'261'840 580'618 139'535 51'163 81'244 12'353 3'299 232'161 16'095	1'263'687 581'777 139'606 51'219 81'478 12'395 3'303 232'314 16'125	1'265'518 582'896 139'670 51'269 81'748 12'442 3'306 232'462 16'158	1'267'457 584'087 139'725 51'343 82'013 12'505 3'316 232'615 16'180	1'269'355 585'229 139'793 51'418 82'274 12'552 3'318 232'790 16'210	1'270'076 585'664 139'821 51'440 82'370 12'571 3'319 232'861 16'221
Total Natural emissions from forest Natural emissions from forest	ha Norway spruce ha fir ha Scots pine ha European larch ha Cembra pine ha Cembra pine ha Cembra pine ha Cembra pine ha European beech ha maple ha ash	1'254'489 576'243 139'220 50'939 80'282 12'161 3'286 231'422 15'982 29'037	1'256'307 577'328 139'295 51'002 80'532 12'196 3'288 231'609 16'007 29'047	1'258'136 578'465 139'380 51'056 80'733 12'241 3'292 231'780 16'039 29'062	1'260'026 579'544 139'463 51'119 81'007 12'296 3'295 231'974 16'067 29'082	1'261'840 580'618 139'535 51'163 81'244 12'353 3'299 232'161 16'095 29'095	1'263'687 581'777 139'606 51'219 81'478 12'395 3'303 232'314 16'125 29'109	1'265'518 582'896 139'670 51'269 81'748 12'442 3'306 232'462 16'158 29'128	1'267'457 584'087 139'725 51'343 82'013 12'505 3'316 232'615 16'180 29'154	1'269'355 585'229 139'793 51'418 82'274 12'552 3'318 232'790 16'210 29'167	1'270'076 585'664 139'821 51'440 82'370 12'571 3'319 232'861 16'221 29'172

Table 7-21 Activity data of 11C; forest areas covered by the twelve main tree species.

7.4.3 Recalculations in 11C Other natural emissions

There were no recalculations implemented in submission 2025.

8 Recalculations and improvements

8.1 Explanations and justifications for recalculation

Several recalculations had to be carried out due to improvements in several sectors. They are listed sorted by sector in the following enumerations. Improvements realised for this submission and leading to recalculations are described in chp. 1.4.1.

8.1.1 1 Energy

8.1.1.1 Category specific recalculations for 1A1 Energy industries (stationary)

- 1A1, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A1a: The emission factors of NO_x and CO for natural gas and gas oil boilers were updated for 2022 based on the evaluation of a large number of air pollution control measurements of combustion installations in numerous Swiss cantons. This has resulted in revised emission factors of NO_x and CO for the boilers fuelled with gas oil and natural gas in source categories 1A1a Public electricity and heat production from 2011 onwards. In addition, the values of the NO_x and CO emission factors for the years 1990–2010 and 2001–2010 (gas oil, CO) were also adjusted. The projected emission factor values for all particulate matter fractions (2035, PM2.5, PM10, TSP and BC) were also updated, resulting in changes to the linearly interpolated emission factors for 2021 and 2022.
- 1A1a: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A1a: Due to new model-runs, there are small recalculations of activity data for all stationary engines and gas turbines 1990-2022.
- 1A1b: The emission factors of NO_x and CO for natural gas and gas oil boilers were updated for 2022 based on the evaluation of a large number of air pollution control measurements of combustion installations in numerous Swiss cantons. This has resulted in revised CO emission factors for the boilers fuelled with refinery liquefied petroleum gas and natural gas in source categories 1A1b Petroleum refining from 2011 onwards. The emission factor values for all particulate matter fractions (2035, PM2.5, PM10, TSP and BC) natural gas boilers were also updated, resulting in changes of the emission factor values in the years 1990–1994, 2001–2004 and 2021–2022.

8.1.1.2 Category-specific recalculations for 1A2 Stationary combustion in manufacturing industries and construction

 1A2: The emission factors of NO_x and CO for natural gas and gas oil boilers were updated for 2022 based on the evaluation of a large number of air pollution control measurements of combustion installations in numerous Swiss cantons. This has resulted in revised emission factors of NO_x and CO for all boilers fuelled with gas oil, liquefied petroleum gas and natural gas in source category 1A2 Stationary combustion in manufacturing industries and construction as well as 1A2c Cracker by-products, heating gas and 1A2gviii Fibreboard production (gas oil, natural gas) from 2011 onwards. The projected emission factor values for all particulate matter fractions (2035, PM2.5, PM10, TSP and BC) were also updated, resulting in changes to the linearly interpolated emission factors for 2021 and 2022.

- 1A2, activity data: Recalculations in all source categories 1A2a to 1A2g are due to reallocations of all fuel types in these sub-categories of 1A2 Manufacturing industries and construction in the year 2022. The reason is that during the surveys for the energy consumption statistics in the industry and services sectors for the most recent year, the reports from the previous year are reviewed again and, if necessary, adjusted retroactively. Generally, this only affects the disaggregation and not the total amount of fuels used in 1A2 Manufacturing industries and construction for that year. However, additional recalculations were introduced in the overall energy statistics with regard to the total fuel consumption in the industry sector for the following fuel types: Natural gas (2021, 2022), bituminous coal and lignite (2019–2022).
- 1A2, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A2a: A typing error in the activity data 2022 of source category 1A2a Iron foundries, cupola furnaces was corrected.
- 1A2d: The activity data of 1A2d Gas turbines (years 1992-2015, see Table 3-18) increased by a factor of 2 due to a calculation error. It will be corrected in the next submission.
- 1A2f: For source category 1A2f Cement production, the quantity of waste tyres burned was updated due to a change in the underlying statistics.
- 1A2gviii: The activity data 2022 of 1A2gviii Boiler, other bituminous coal and 1A2gviii Boiler, natural gas were revised due to corrections of a typing error in the activity data (other bituminous coal) of source category 1A2a Iron foundries, cupola furnaces and in the activity data (natural gas) of source category 1A2f Container glass.
- 1A2gviii: The Swiss statistics of energy consumption (SFOE 2024) has recalculated the amount of other bituminous coal used in industry for the years 2019-2022. This leads to recalculation in other industrial boilers of source category 1A2gviii Other.
- 1A2gviii: Activity data of automatic wood combustion installations (≥ 50 kW) in source category 1A2gviii were revised for 2019-2022 due to recalculations in the Swiss wood energy statistics (SFOE 2024b), with the largest changes occurring in 2022. In addition, a typing error in the activity data 2022 of plants for renewable waste from wood products was corrected.
- 1A2gviii: Due to new model-runs, there are small recalculations of activity data for all stationary engines and gas turbines 1990-2022.

8.1.1.3 Category-specific recalculations for 1A4 Stationary combustion in other sectors (commercial, residential, agriculture and forestry)

- 1A4: Activity data of automatic wood combustion installations (≥ 50 kW) in source categories 1A4ai, 1A4bi and 1A4ci were revised for 2019-2022 due to recalculations in the Swiss wood energy statistics (SFOE 2024b).
- 1A4: The emission factors of NO_x and CO for natural gas and gas oil boilers were updated for 2022 based on the evaluation of a large number of air pollution control measurements of combustion installations in numerous Swiss cantons. This has resulted in revised emission factors of NO_x and CO for all boilers fuelled with gas oil and natural

gas in source categories 1A4ai Commercial/Institutional and 1A4bi Residential as well as 1A4ai Boiler, sewage gas, 1A4ai Statistical difference, biogas, and 1A4ci Greenhouses (gas oil, natural gas) from 2011 onwards. In addition, the values of the NO_x and CO emission factors for the years 1990–2010 were also adjusted for 1A4ai Boiler, sewage gas, and 1A4ci Greenhouses (gas oil, natural gas) based on their nominal heat output. The projected emission factor values for all particulate matter fractions (2035, PM2.5, PM10, TSP and BC) were also updated, resulting in changes to the linearly interpolated emission factors for 2021 and 2022.

- 1A4: Due to new model-runs, there are small recalculations of activity data for all stationary engines and gas turbines 1990-2022 in source categories 1A4ai, 1A4bi and 1A4ci.
- 1A4, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A4ai: Activity data of mobile pellet combustion installations were revised for 2021 and 2022 due to recalculations in the Swiss wood energy statistics publication (SFOE 2024b, chp. 1.3).
- 1A4ai: The Swiss statistic of energy consumption (SFOE 2024) has newly added the amount of Liquefied Natural Gas (LNG) used to the total amount of natural gas used for the years 2020-2022. This leads to small recalculations mainly in source categories 1A3b Road transportation, 1A4ai Commercial/institutional (stationary) and 1B2b Natural gas losses.

8.1.1.4 Category-specific recalculations for 1A2 Mobile combustion in manufacturing industry and construction (1A2gvii)

- 1A2gvii: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A2gvii: An update of the fuel mix and consumption from non-road machineries leads to small recalculations in all source categories affected by the non-road transportation model and for all years 1990-2022.

8.1.1.5 Category-specific recalculations for 1A3 Transport

- 1A3, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A3b: The Swiss statistic of energy consumption (SFOE 2024) has newly added the amount of Liquefied Natural Gas (LNG) used to the total amount of natural gas used for the years 2020-2022. This leads to small recalculations mainly in source categories 1A3b Road transportation, 1A4ai Commercial/institutional (stationary) and 1B2b Natural gas losses.

- 1A3b, 1A3d: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A3b: The difference between the fuel used approach from the road transportation model and the fuel sold information from the energy statistics was previously referred to as "fuel tourism and statistical difference". This was determined using average emission factors for each fuel type to calculate the difference in emissions. The resulting differences in activity data and emissions were subtracted from the activity data and the previously calculated territorial emissions of each main vehicle category and fuel type in 1A3b Road transportation. Now the relative difference between the territorial fuel consumption modelled by the road transportation model (fuel used) and the fuel sold from the energy statistics is calculated first. The difference in fuel consumption per fuel type is then proportionally allocated to each vehicle category, thus adjusting the activity data to reflect the fuel sold. The emissions per fuel type are then calculated using vehicle category specific emission factors and the adjusted activity data. Therefore, the activity data for 1A3b Road transportation (fuel sold) have been updated for all fuel types and for all years 1990-2022.
- 1A3b: The use of bioethanol has been adopted to the reported amount of bioethanol sold in the Swiss energy statistics. Therefore, missing activity data have been implemented in 1A3b Road Transportation for all processes using bioethanol for the years 2005-2009.
- 1A3b: For the road traffic model in 1A3b Road transportation, adjustments were made to driving performance, mileage and energy consumption and emission factors were adopted to the Handbook for Emission Factors (HBEFA) version 4.2. This leads to recalculations of activity data end emissions for all years 1990-2022.
- 1A3d: An update of the fuel mix and consumption from non-road machineries leads to small recalculations in all source categories affected by the non-road transportation model and for all years 1990-2022.

8.1.1.6 Category-specific recalculations for 1A4 Non-road and machinery in other sectors (commercial, residential, agriculture and forestry)

- 1A4, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A4aii, 1A4bii, 1A4cii: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A4aii, 1A4bii, 1A4cii: An update of the fuel mix and consumption from non-road machineries leads to small recalculations in all source categories affected by the non-road transportation model and for all years 1990-2022.

8.1.1.7 Category-specific recalculations for 1A5b Other, mobile (Military)

- 1A5b, year 2022: Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO₂ emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated.
- 1A5b: The fossil carbon fraction in biodiesel is now estimated based on the method described in Sebos (2022). The fossil fraction of FAME (Fatty Acid Methyl Ester) is based on the values from HBEFA 4.1 (relevant for the whole EU), while all carbon in HVO (Hydrotreated Vegetable Oil) is considered of biogenic origin. Because biodiesel as reported by Switzerland consists of the sum of FAME and HVO, the fossil fraction of biodiesel varies over time. Overall, around 4.0 to 5.4 % of the total biodiesel are now reported under "fossil liquid fuels" for the years 1996–2022 (no biodiesel in the years before). In consequence, this leads to recalculations in fuel categories including biodiesel as "biomass" or "biofuels" and "liquid fuels" as well.
- 1A5b: An update of the fuel mix and consumption from non-road machineries leads to small recalculations in all source categories affected by the non-road transportation model and for all years 1990-2022.

8.1.1.8 Category-specific recalculations for 1B Fugitive emissions from fuels

- 1B1a: The Swiss statistic of energy consumption (SFOE 2024) has recalculated the amount of other bituminous coal used in industry for the years 2019-2022. This leads to recalculation in 1B1a Coal handing in these years, too.
- 1B2b: The Swiss statistic of energy consumption (SFOE 2024) has newly added the amount of Liquefied Natural Gas (LNG) used to the total amount of natural gas used for the years 2020-2022. This leads to small recalculations mainly in source categories 1A3b Road transportation, 1A4ai Commercial/institutional (stationary) and 1B2b Natural gas losses.

8.1.2 2 Industrial processes and product use

8.1.2.1 Category-specific recalculations in 2A Mineral products

 2A5a: The emission factors of PM2.5, PM10, TSP of source category 2A5a Gravel plants were revised based on the 2A5a Quarrying and mining calculation model 2023 (EMEP/EEA 2023) for the entire time series. Also, the last year's extrapolated activity data for 2022 was updated based on the industry association's actual production figure.

8.1.2.2 Category-specific recalculations in 2B Chemical industry

 2B5: So far not reported NO_x and PAH emissions from source category 2B5 Silicon carbide production are now included in the inventory on the basis of PRTR data (2008-2023).

8.1.2.3 Category-specific recalculations in 2C Metal production

 2C1: A typing error in the activity data 2022 of source category 2C1 Iron foundries was corrected.

8.1.2.4 Category-specific recalculations in 2D Other solvent use

There were no recalculations implemented in submission 2025.

8.1.2.5 Category-specific recalculations in 2G Other product use

- 2G: For source category 2G Hairdressers, the activity data for the years 2012–2020 were supplemented and the emission factor for 2004 was adjusted, resulting in changed linear interpolated values for the years 2021 and 2022 as well as 1991–2003 and 2005–2010.
- 2G: For source category 2G Consumption of tobacco products, the emission factor for Cd was updated, using a country-specific estimation, for the years 1990-2022, causing a decrease by 82 %. A new emission factor for Pb was introduced for the years 1990-2022, using a country-specific estimation.
- 2G Consumption of tobacco products: The activity data value for the year 2020 was updated due to a typing mistake.

8.1.2.6 Category-specific recalculations in 2H Other industry production

- 2H2: For source category 2H2 Bread production, the emission factor for NMVOCs was updated using a country-specific estimation, for the years 1990-2022, causing a decrease by 36 %.
- 2H2: For source category 2H2 Meat smokehouses, the activity data was modified for the years 1999-2022 due to an update in the underlying statistics.
- 2H2: For source category 2H2 Flour production, the activity data was modified for the years 2012 and 2018-2022 due to an update in the underlying statistics.

8.1.2.7 Category-specific recalculations in 2I Wood processing, 2K Consumption of POPs and heavy metals and 2L Other production, consumption, storage, transportation or handling of bulk products

- 2I: The 2022 activity data of source category 2I Wood processing was updated based on the revised annual amount of sawnwood reported in the yearbook forest and wood.
- 2L: There were small corrections of the amount of NH₃ used in cooling systems. Therefore, the emissions of NH₃ from cooling systems have changed a little (less than 1t/a NH₃) for the years 1991-2022.

8.1.3 3 Agriculture

8.1.3.1 Category-specific recalculations in 3B Manure management

- 3B1: Updated data on the amount of manure digested anaerobically (SFOE 2024b, particularly in the years 1990-1999) led to minimal changes in the NO_x emission factors for manure management and application for all cattle categories (3B1, 3Da2a1, 3Da31).
- 3B3: The activity data and emission factors (NO_x, NMVOC, NH₃, PM2.5, PM10 and TSP) of 3B3 Manure management Swine were recalculated for the years 2021 and 2022 due to updated data for fattening pigs >25 kg from FSO 2024b.

- 3B4gii: The activity data of 3B4gii Manure management Broilers was recalculated for the years 2021 and 2022 due to updated data from FSO 2024b.
- 3B4h: Allocation of manure to the different management systems (MS) was revised for "other roughage eaters" (Bisons, Camelids, Deer, Rabbits) based on Kupper et al. 2022 yielding changes in the NO_x emission factors of source categories 3B4h Manure management - Other animals for the entire time series (1990-2022).

8.1.3.2 Category-specific recalculations in 3D Crop production and agricultural soils

- 3Da: Allocation of manure to the different management systems (MS) was revised for "other roughage eaters" (Bisons, Camelids, Deer, Rabbits) based on Kupper et al. 2022 yielding changes in the NO_x emission factors of source categories 3Da2a4h Animal manure applied to soils - Other animals and 3Da34h Urine and dung deposited by grazing animals - Other animals for the entire time series (1990-2022).
- 3Da: The activity data and emission factors (NO_x and NH₃) of 3Da2a3 Animal manure applied to soils - Swine and 3Da33 Urine and dung deposited by grazing animals - Swine were recalculated for the years 2021 and 2022 due to updated data for fattening pigs >25 kg from FSO 2024b.
- 3Da: The activity data of 3Da2a4 Animal manure applied to soils Broilers and 3Da34 Urine and dung deposited by grazing animals Broilers were recalculated for the years 2021 and 2022 due to updated data from FSO 2024b.
- 3Da1: The amount of synthetic fertilisers applied in Liechtenstein was updated for the years 1990-2022 yielding revised activity data of source categories 3Da1 Inorganic Nfertilisers (including urea) for the entire time series.
- 3Da2a1: Updated data on the amount of manure digested anaerobically (SFOE 2024b, particularly in the years 1990-1999) led to minimal changes in the NO_x emission factors for manure management and application for all cattle categories (3B1, 3Da2a1, 3Da31).
- 3Da2c: The amount of nitrogen inputs from compost and digestates was updated for the years 1996-2022 due to new activity data from SFOE 2024a. This resulted in revised activity data and NH₃ emission factors of source category 3Da2c Other organic fertilisers applied to soils.
- 3Da31: Updated data on the amount of manure digested anaerobically (SFOE 2024b, particularly in the years 1990-1999) led to minimal changes in the NO_x emission factors for manure management and application for all cattle categories (3B1, 3Da2a1, 3Da31).
- 3De: The activity data of source category 3De Summering pastures were updated based on revised data from FSO 2024b for the entire time series.

8.1.4 5 Waste

8.1.4.1 Category-specific recalculations in 5A Biological treatment of waste - Solid waste disposal on land

There were no recalculations implemented in submission 2025.

8.1.4.2 Category-specific recalculations in 5B Biological treatment of waste – Composting and anaerobic digestion at biogas facilities

 5B2: The activity data for 5B2 Anaerobic digestion at biogas facilities have been updated due to an update in the underlying statistics (Swiss statistics of renewable energies). This affects all years from 1994 until 2022.

8.1.4.3 Category-specific recalculations in 5C Waste incineration and open burning of waste

• 5C2: The activity data for 5C2 Open burning of waste was updated based on a newly used study (see method description). This leads to recalculations in the years 1990-2022.

8.1.4.4 Category-specific recalculations in 5D Wastewater handling

There were no recalculations implemented in submission 2025.

8.1.4.5 Category-specific recalculations in 5E Other waste, car shredding

There were no recalculations implemented in submission 2025.

8.1.5 6 Other

8.1.5.1 Recalculations in 6 Other emissions

- 6A3: The amount of synthetic fertilisers applied in Liechtenstein was updated for the years 1990-2022 yielding revised activity data and emission factors (NO_x, NH₃) of source category 6A3 Private application of inorganic N-fertilisers (including urea) for the entire time series.
- Remark to 6A: The former source categories 6Aa–d were renamed to 6A1–4, and accidental PCB emissions are now reported under 6A5.

8.1.5.2 Recalculations in 11B Forest fires

• 11B: The activity data for source category 11B Open burning of natural residues from forestry was updated based on a newly used study (see method description). This leads to a recalculation the years 1990-2022.

8.1.5.3 Recalculations in 11C Other natural emissions

There were no recalculations implemented in submission 2025.

8.1.6 Implications of recalculation for emission levels

Table 8-1 shows the effect of recalculations on the emission levels 2022 and 1990, based on the previous (2024) and latest (2025) submission.

In 2022, the recalculations cause a lower emission level by 10.4 % for Cd. For NO_x, NMVOC, SO_x, PM2.5, CO and Pb, recalculations lead to a decrease of emissions in 2022 between 1 % and 3 %. For all other pollutants, the difference does not exceed 1 %.

In 1990, the recalculations cause a lower emission level by 2.2 % for Cd. For all other pollutants, the difference in emissions due to recalculations for 1990 does not exceed 1 %.

Table 8-1 Recalculations: Implications for the emission levels 2022 and 1990. The values refer to the NFR submission 2024 (previous) and 2025 (latest). Differences are given in absolute and relative numbers for all pollutants.

Pollutant	Units		20	2022						
		previous	latest	difference (abs.)	difference (rel.)					
		subm. 2024	subm. 2025		previous = 100%					
NO _x	kt	50	49	-0.61	-1.2%					
NMVOC	kt	73	71	-1.1	-1.6%					
SO _x	kt	3.2	3.2	-0.043	-1.3%					
NH ₃	kt	53	53	-0.023	0.0%					
PM2.5	kt	6.6	6.5	-0.11	-1.6%					
PM10	kt	14	14	0.026	0.2%					
TSP	kt	28	28	0.11	0.4%					
BC	kt	0.88	0.88	-0.00089	-0.1%					
CO	kt	143	141	-2.3	-1.6%					
Pb	t	8.4	8.2	-0.24	-2.9%					
Cd	t	0.46	0.42	-0.048	-10.4%					
Hg	t	0.58	0.57	-0.0043	-0.8%					
PCDD/PCDF	g I-TEQ	13	12	-0.11	-0.9%					
PAH (total)	t	2.4	2.4	0.015	0.6%					
HCB	kg	0.34	0.34	-0.0017	-0.5%					
PCB	kg	341	341	-0.000022	0.0%					
Pollutant	Units		19	990						
		previous	latest	difference (abs.)	difference (rel.)					
		subm. 2024	subm. 2025		previous = 100%					
NO _x	kt	141	141	-0.09	-0.1%					
NMVOC	kt	296	295	-0.74	-0.3%					
SO _x	kt	39	39	0.01315	0.0%					
NH ₃	kt	68	68	-0.0038	0.0%					
PM2.5	kt	27	27	-0.10	-0.4%					
PM10	kt	37	36	-0.10	-0.3%					
TSP	kt	56	56	-0.079	-0.1%					
BC	kt	5.7	5.7	-0.0017	0.0%					
СО	kt	756	752	-4.6	-0.6%					
Pb	t	354	355	0.528	0.1%					
0.1					-2.2%					
Cd	t	3.3	3.2	-0.072	-2.2%					
Ca Hg	t t	3.3 6.3	3.2 6.3	-0.072 -0.0029	0.0%					
Hg	t	6.3	6.3	-0.00029	0.0%					
Hg PCDD/PCDF	t g I-TEQ	6.3 192	6.3 192	-0.00029 -0.054	0.0% 0.0%					

The source categories with the most important recalculations implemented for main pollutants and PM2.5 in submission 2025 in terms of absolute emissions are listed in Table 8-2 and Table 8-3 for the years 2022 and 1990, respectively. The most important recalculations for 1990 and the last year reported in both submissions and each main pollutant are the following:

The most important recalculations of NO_x emissions were made in sector 1A Fuel combustion. The main changes concern the road transportation model, emission factors of natural gas and gas oil boilers as well as activity data of wood waste. These and further recalculations are documented in Table 8-2 and Table 8-3 and described as follows:

- In the Handbook of Emission Factors for Road Transport (HBEFA, version 4.2), adjustments were made to driving performance, mileage and energy consumption. Additionally, new emission factors were adopted to the handbook. This leads to changes in activity data and emission factors in source category 1A3b Road transportation for all vehicle categories and all years.
- NO_x emission factors for natural gas and gas oil boilers were updated for 2022 based on an evaluation of a large number of air pollution control measurements of combustion installations in numerous Swiss cantons. This leads to changes in all source categories within stationary combustion. The largest changes in 2022 are visible in source category 1A4 Stationary combustion in other sectors (especially 1A4bi Residential and 1A4ai Commercial/institutional). As a consequence, the NO_x emission factors from previous years (1990-2010) were also reviewed and adjusted for some source categories. The largest change in the year 1990 resulted for source category 1A1a Public electricity and heat production.
- The activity data (wood waste) of source category 1A2gviii Plants for renewable waste from wood products was corrected for the year 2022.

NMVOC

The most important recalculation regarding NMVOC emissions occurred in source category 2H2 Food and beverages industry. In addition, the changes in the road transportation model led to recalculations of NMVOC emissions in sector 1A3b Road transportation. These and further recalculations are documented in Table 8-2 and Table 8-3 and described as follows:

- In source category 2H2 Food and beverages industry, the NMVOC emission factor for bread production was updated for the whole time series based on new measurements in two of the largest industrial bakeries.
- In the Handbook of Emission Factors for Road Transport (HBEFA, version 4.2), adjustments were made to driving performance, mileage and energy consumption. Additionally, new emission factors were adopted to the handbook. This leads to changes in activity data and emission factors in source category 1A3b Road transportation for all vehicle categories and all years.

SOx

The most important recalculation regarding SO_x emissions occurred in source category 1A2gviii Other due to a correction of activity data for wood waste. Apart from that, small changes to the sulphur content of several fuels were made because they are based on a 3-years running mean and change with newly available data. The corresponding main recalculations are described as follows:

- The activity data (wood waste) of source category 1A2gviii Plants for renewable waste from wood products was corrected for the year 2022., which is especially visible in source category 1A2gviii Other.
- Due to new data for the year 2023, the 3-years running mean for the sulphur content and therefore the SO_x emission factor for residual fuel oil, gas oil, diesel oil, biodiesel, gasoline and bioethanol has been updated. This change leads to minor changes within different stationary and mobile source categories in sector 1A Fuel combustion in the

year 2022 (especially visible in source category 1A4bi Residential and 1A3b Road transportation.

 Also for SO_x, the adjustments to driving performance, mileage and energy consumption and the new emission factors in the Handbook of Emission Factors for Road Transport (HBEFA, version 4.2) have implications for emission levels. These implications are minor for the whole time series, however still visible in the year 1990 for source category 1A3b Road transportation due to the lack of other relevant recalculations.

$\mathbf{NH}_{\mathbf{3}}$

The most important recalculation regarding NH_3 emissions occurred in source category 1A2gviii Other due to a correction of activity data for wood waste. In addition, small changes were made in sector 3 Agriculture regarding nitrogen inputs from compost and digestates as well as for manure management of broilers. These and further recalculations are documented in Table 8-2 and Table 8-3 and described as follows:

- The activity data (wood waste) of source category 1A2gviii Plants for renewable waste from wood products was corrected for the year 2022.
- The amount of nitrogen inputs from compost and digestates was updated due to new activity data. This leads to revised NH₃ emission factors for source category 3Da2c Other organic fertilisers applied to soils for the years 1996-2022.
- The activity data of 3B4gii Manure management Broilers was recalculated due to updated statistical data. This leads to revised NH₃ emissions for the years 2021 and 2022.
- Also for NH₃, but with a comparably lower effect, the adjustments to driving performance, mileage and energy consumption and the new emission factors in the Handbook of Emission Factors for Road Transport (HBEFA, version 4.2) have implications for emission levels.
- For the whole time series, but especially visible in the year 1990, a recalculation of NH₃ emissions occurred due to changed activity data for source category 5C2 Open burning of waste based on newly used study.

PM2.5

The most important recalculation regarding PM2.5 occurred in source category 2A5a Quarrying and mining of minerals other than coal, where the EMEP/EEA (2023) calculation model for quarrying and mining was applied. In addition, fuel mix and consumption for nonroad machineries and activity data for flour production were modified. These and further recalculations are documented in Table 8-2 and Table 8-3 and described as follows:

- The emission factors of PM2.5 of source category 2A5a Gravel plants were revised based on the 2A5a Quarrying and mining calculation model 2023 (EMEP/EEA 2023) for the entire time series. Also, last year's extrapolated activity data for 2022 was updated based on the industry association's actual production figure. Overall, this leads to the most relevant PM2.5 recalculation in the year 2022 and in the base year 1990.
- For nonroad machineries, fuel mix and consumption data were updated for the whole time series. This is especially visible for source category 1A3c Railways in the year 2022.
- In source category 2H2 Food and beverages industry, the activity data for flour production was modified, which is especially visible for the year 2022.
- For the whole time series, but especially visible in the year 1990, a recalculation of PM2.5 emissions occurred due to changed activity data for source category 5C2 Open burning of waste based on newly used study.

• Also for PM2.5, the adjustments to driving performance, mileage and energy consumption and the new emission factors in the Handbook of Emission Factors for Road Transport (HBEFA, version 4.2) have implications for emission levels.

Table 8-2 NFR categories with most important implications of recalculations on emission levels in 2022 in terms of absolute differences for the main pollutants and PM2.5. The values refer to the NFR submission 2024 and 2025. The list is ranked for each pollutant in terms of the absolute difference in emission levels due to recalculations ((fu) means fuel used approach).

NO _x (as NO ₂)		NMVOC	NMVOC SO _x (as SO ₂) NH ₃			PM _{2.5}			
	kt		kt		kt		kt		kt
1 A 3 b i (fu)_Road transport: Passenger cars (fuel used)	0.52	2 H 2_Food and beverages industry		1 A 2 g viii_Stationary combustion in manufacturing industries and construction: Other	-0.035	1 A 2 g viii_Stationary combustion in manufacturing industries and construction: Other	-0.013	2 A 5 a NFR_Quarrying and mining of minerals other than coal	-0.13
1 A 4 b i_Residential: Stationary		1 A 3 b i (fu)_Road transport: Passenger cars (fuel used)	-0.19	1 A 4 b i_Residential: Stationary	-0.0022	3 D a 2 c_Other organic fertilisers applied to soils (including compost)	-0.0075	1 A 3 c_Railways	0.019
1 A 2 g viii_Stationary combustion in manufacturing industries and construction: Other	-0.35	1 A 3 b v (fu)_Road transport: Gasoline evaporation (fuel used)	-0.18	1 A 3 b i (fu)_Road transport: Passenger cars (fuel used)	-0.0022	1 A 3 b i (fu)_Road transport: Passenger cars (fuel used)	-0.0027	2 H 2_Food and beverages industry	0.0085
1 A 4 a i_Commercial/Institution al: Stationary	-0.13	1 A 3 b iv (fu)_Road transport: Mopeds & motorcycles (fuel used)	-0.12	1 A 2 c_Stationary combustion in manufacturing industries and construction: Chemicals	-0.0015	3 B 4 g ii_Manure management - Broilers	0.0019	1 A 3 b iv (fu)_Road transport: Mopeds & motorcycles (fuel used)	-0.0073
1 A 3 b ii (fu)_Road transport: Light duty vehicles (fuel used)	-0.11	1 A 3 b ii (fu)_Road transport: Light duty vehicles (fuel used)	-0.031	1 A 4 a i_Commercial/Institution al: Stationary	-0.00089	1 A 3 b ii (fu)_Road transport: Light duty vehicles (fuel used)	-0.0014	1 A 2 g viii_Stationary combustion in manufacturing industries and construction: Other	-0.0031

Table 8-3 NFR categories with most important implications of recalculations on emission levels in 1990 in terms of absolute differences for the main pollutants and PM2.5. The values refer to the NFR submission 2024 and 2025. The list is ranked for each pollutant in terms of the absolute difference in emission levels due to recalculations ((fu) means fuel used approach).

NO _x (as NO ₂)		NMVOC		SO _x (as SO ₂)		NH ₃		PM _{2.5}	
	kt		kt		kt		kt		kt
1 A 1 a_Public electricity and heat production	-0.058	2 H 2_Food and beverages industry	-0.54	1 A 3 b i (fu)_Road transport: Passenger cars (fuel used)	0.0065	5 C 2_Open burning of waste	-0.0043	2 A 5 a NFR_Quarrying and mining of minerals other than coal	-0.081
1 A 3 b iii (fu)_Road transport: Heavy duty vehicles and buses (fuel used)		1 A 3 b i (fu)_Road transport: Passenger cars (fuel used)	-0.36	1 A 3 b iii (fu)_Road transport: Heavy duty vehicles and buses (fuel used)	0.0050	3 D a 1_Inorganic N- fertilizers (includes also urea application)	0.00049	5 C 2_Open burning of waste	-0.020
1 A 3 b i (fu)_Road transport: Passenger cars (fuel used)	-0.023	1 A 3 b v (fu)_Road transport: Gasoline evaporation (fuel used)	0.19	1 A 3 b ii (fu)_Road transport: Light duty vehicles (fuel used)	0.0018	6 A_Other (included in national total for entire territory)	0.000021	1 A 3 b iii (fu)_Road transport: Heavy duty vehicles and buses (fuel used)	-0.0036
1 A 4 c i_Agriculture/Forestry/Fis hing: Stationary	-0.0098	1 A 3 b ii (fu)_Road transport: Light duty vehicles (fuel used)	-0.051	5 C 2_Open burning of waste	-0.00016	1 A 3 b iv (fu)_Road transport: Mopeds & motorcycles (fuel used)	-0.0000011	1 A 3 b ii (fu)_Road transport: Light duty vehicles (fuel used)	0.0019
5 C 2_Open burning of waste	-0.0075	1 A 3 b iii (fu)_Road transport: Heavy duty vehicles and buses (fuel used)	0.019	1 A 3 b iv (fu)_Road transport: Mopeds & motorcycles (fuel used)	-0.0000027	1 A 3 b i (fu)_Road transport: Passenger cars (fuel used)	0.00000015	1 A 3 c_Railways	-0.0016

8.1.7 Implications of recalculation for emission trends of main pollutants and PM2.5

The emission trends 1990–2022 of the main pollutants and PM2.5 are only slightly affected through the recalculations in the latest submission (difference of less than 0.5 percentage point).

Table 8-4 Recalculations: Implications for the emission trends between 1990 and 2022 for the main pollutants. The values refer to the previous submission 2024 and latest submission 2025.

Pollutant	Trend 1990-202	2 (1990 = 100%)
	previous subm. 2024	latest subm. 2025
	%	%
NO _x	35	35
NMVOC	25	24
SO _x	8	8
NH ₃	78	78
PM2.5	24	24

8.2 Planned improvements

The following improvements are planned for the submission 2026. Improvements for source categories which are key categories are, as much as possible, given priority.

General (not sector specific)

As the new EMEP Guidebook (EMEP/EEA 2023) is available since the end of 2023, all emission factors used from EMEP/EEA 2019 have been verified with the corresponding ones in the newest Guidebook (EMEP/EEA 2023). If equal, the reference has been changed to EMEP/EEA 2023. If not equal a change of emission factors in the database according to EMEP/EEA 2023 has to be verified and adapted, if necessary, in future submissions. This process is on-going.

It is planned to analyse the recommendations from the upcoming review of the forecasts and to implement them in future submissions.

Energy (stationary) no planned improvements

Energy (mobile)

 1A3bvi-vii: With reference to the recommendation in paragraph 88 of the last report from the stage 3 in-depth review of Switzerland's emission inventory in 2020, it is planned to report the non-exhaust emissions from automobile road abrasion separately in source category 1A3bvII instead to include them in 1A3bvi automobile tyre and brake wear in a later submission. Modelling work for the determination of traffic situation-dependent emission factors for brake and tyre abrasion is in progress and could subsequently be integrated into the HBEFA database and thus also into the Swiss road traffic model. Source category 1A3bvi is a key category for PM2.5 and PM10.

Energy (fugitive emissions) no planned improvements

IPPU

• 2D3 and 2G: A comprehensive update of all NMVOC emissions from solvent and product use is on-going. These two source categories are both key categories for NMVOC.

Agriculture

- 3B1: Since cattle also spend a part of their time on pasture and this has not yet been taken into account in the calculation of NMVOC emissions, emission measurements in the experimental dairy housing during grazing are being planned (later than submission 2025). Source categories 3B1a and 3B1b are both key categories for NMVOC.
- 3B and 3D: Several adjustments are being developed and integrated in the AGRAMMON model 2025, which will have an impact on the overall emission values of NH₃ and NO_x. It is planned to report these values in 2026 submission. 3B and 3D are key categories for NH₃.
- 3Da1: Emission factors for inorganic N fertilisers are planned to be adjusted in accordance with the EMEP/EEA 2023 Guidebook for 2026 submission.
- 3Da4: Crop residues applied to soils according to Guidebook (EMEP/EEA 2023) are planned to be reported in 2026 submission.

Waste no planned improvements

Other and Natural no planned improvements

9 Emission projections 2025–2035

9.1 Comments on projections

The activity data for the sectors energy, IPPU and waste are in accordance with the base scenario of the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020). The base scenario called in German "Weiter wie bisher" (WWB), which means as much as to continue with the existing policy measure at that time, bases on the reference year 2017 and is reported as "With Measures" (WM) scenario in the reporting tables of the latest submission. Other scenarios elaborated in the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020) have the focus on how to get to net zero greenhouse gas emissions in the year 2050 and beyond, which future developments in the emission sources will contribute and which further measures are necessary to achieve this goal. As these net zero greenhouse gas emissions scenarios do not include any "additional (technological and legal) measures" aimed at reducing air pollution, none of these scenarios were implemented in the database of air pollutant emissions so far. Therefore, the air pollutant emissions in chps. 9.3 to 9.6 are shown for the "With Measures" (WM) scenario only.

Note further that:

- due to lack of detailed data for all sectors with non-road vehicles and machineries (mobile sources under 1A2gvii, 1A3c/d, 1A4aii/bii/cii), the projections for these source categories are based on the previous energy scenarios (Prognos 2012a) instead of the new Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020). However, total fuel consumption corresponds to the new Swiss Energy Perspectives 2050+.
- for activity data based on population size the latest perspectives for Switzerland's inhabitants are used (SFSO 2020p).
- for the agricultural sector, independent scenarios were developed according to the agricultural policy 2018-2021 (Swiss Confederation 2017) and an adopted parliamentary initiative (Mack and Möhring 2021).

Note also that emission data published in the submission table for the projections ("Annex IV WM") refer to the "national total" assessment based on the fuel sold principle for road transportation. All tables and figures in this chapter refer to the "national total for compliance" assessment based on fuel used principle (for details see chapter 1.4.2 and 3.1.6.1).

9.2 Assumptions for projections for the WM scenario

9.2.1 Emission factors

Emission factors for the sector 1 Energy are mainly based on available emission measurements, models, EMEP/EEA guidebook (EMEP/EEA 2019 and EMEP/EEA 2023) and expert estimates as described in chapter 3 and assumptions about their future development. Where no such assumptions can be made, the emission factors are kept constant.

Sector	Sources and references for emission factors
1 Energy	In general, the emission factors used in fuel combustion and heating systems are described in Chapter 3 and have been kept constant for the future. The emission factors for specific models are described with the models and the references are as follows:
	 Wood energy combustion: Zotter and Nussbaumer (2022) Road transportation: EMEP/EEA guidebook (EMEP/EEA 2019), INFRAS (2022)
	 Domestic aviation: EMEP/EEA guidebook (EMEP/EEA 2023), FOCA (2006, 2006a, 2007a, 2008-2024) Stationary engines and gas turbines: INFRAS (2022a), EMEP/EEA
	guidebook (EMEP/EEA 2019, EMEP/EEA 2023) - Non-road vehicles: EMEP/EEA guidebook (EMEP/EEA 2023), FOEN (2015j), INFRAS (2015a)
2 IPPU	Emission measurements, industry data and factors from the EMEP/EEA guidebook (EMEP/EEA 2023) as described in chapter 4 and assumptions about their future development. Where no assumption can be made, emission factors are kept constant.
3 Agriculture	AGRAMMON model (Kupper et al. 2022), EMEP/EEA guidebook (EMEP/EEA 2019 and EMEP/EEA 2023) and country-specific studies (Bühler and Kupper 2018, Schrade et al. 2025). The underlying emission factors are kept constant as in 2019 due to uncertain assumptions about the evolution of production parameters (according to Kupper et al. 2022). See chapter 5 for further information.
5 Waste	Various literature sources and EMEP/EEA guidebook 2023 (EMEP/EEA 2023), see chapter 6.
6 Other	Various literature sources and EMEP/EEA guidebook (EMEP/EEA 2019 and EMEP/EEA 2023), see chapter 7.

9.2.2 Activity data

As described in chapter 9.1 and Table 9-2, activity data base mainly on the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020) and the agricultural policy 2018-2021 (Swiss Confederation 2017). Due to the lack of detailed, disaggregated data elaborated in the Swiss Energy Perspectives 2050+ for the non-road model, projected developments from earlier projections (Prognos 2012a) are used. The total amount of fuel used in non-road sectors is then subtracted from the projected overall fuel consumption in the Swiss Energy Perspectives 2050+, which has some influence on the allocation of fuel consumption to the different source categories, whereas the overall fuel consumption remains the same as projected in the Swiss Energy Perspectives 2050+.

The Swiss Energy Perspectives 2050+ base on the reference year 2017 for the energy consumption in the different source categories and other statistics. Energy consumption data from the year 2017 was used to develop the future scenarios. The base scenario is the scenario "WWB" called in German "Weiter wie bisher", which means as much as a continuation with the so far implemented energy and climate policy measures. To avoid unplausible leaps from the latest submission year to the first projected year, projections of the Swiss Energy Perspectives 2050+ are used for the years 2025 and later and data in between are linearly interpolated. Except for 1A3b Road transportation, model data was already calculated for the Swiss Energy Perspectives 2050+ with an annual resolution and for the detailed activity data.

Table 9-2 provides an overview of the respective sectoral references. A detailed description of the WM scenario can be found in Switzerland's First Biennial Transparency Report under the Paris Agreement– therein named as "With Existing Measures (WEM)" (FOEN 2024d).

Sector	Scenario	Sectoral scenario	Reference			
1 Energy	WM	Swiss Energy Perspectives 2050+ scenario "WWB" (continutation with measures implemented up to base year 2017) updated with new national reference scenario for population ("A-00-2020"). Activity data for road transportation and stationary engines and gas turbines are modelled based on assumptions in the Swiss energy perspectives 2050+. Activity data in the nonroad sectors still base on assumptions of Prognos (2012a).	Prognos/INFRAS/TEP/Ecoplan 2020 INFRAS 2022 and 2022a SFSO 2020p Prognos 2012a			
2 IPPU	WM	Scenario based on key parameters of the Swiss Energy Perspectives 2050+ but updated with new national reference scenario for popoulation ("A-00- 2020")	Prognos/INFRAS/TEP/Ecoplan 2020 SFSO 2020p			
3 Agriculture	WM	Continuation of Agricultural policy 2018-2021	Swiss Confederation 2017 Mack and Möhring 2021			
5 Waste	WM	Scenario based on key parameters of the Swiss Energy Perspectives 2050+ but updated with new national reference scenario for popoulation ("A-00- 2020")	Prognos/INFRAS/TEP/Ecoplan 2020 SFSO 2020p			

Table 9-3 lists the key factors underlying the WM scenario of the latest submission and their assumed development until 2035.

Table 9-3 Trend of underlying key factors of the WM scenario between 2010 and 2035 (FSO 2022c and SFSO 2020p for population, INFRAS 2017 for vehicle km, and Prognos/INFRAS/TEP/Ecoplan 2020 for the rest).

Indicator	2010	2015	2020	2025	2030	2035	2010-2035
Population (million)	7.83	8.28	8.64	9.02	9.39	9.73	24%
GDP (prices 2017, billion CHF)	603	648	713	760	805	851	41%
Oil price (prices 2017, USD/barrel)	88	-	75	88	96	105	19%
Gas price (prices 2017, CHF/MWh)	28	-	24	27	28	29	4%
Heating degree days	3'586	3'075	3'182	3'135	3'089	3'042	-15%
Cooling degree days	153	263	177	188	199	213	39%
Energy reference area (million m ²)	706	744	782	816	847	874	24%
Passenger cars (million vehicle km)	56'026	57'713	55'569	61'749	63'691	65'335	17%

Please note that the population data in the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020) do not match the official statistics used within the air pollutant (and greenhouse gas) inventory (SFSO 2020p).

For each sector, further specific methods and respective assumptions apply that are described below in more detail:

Sector 1 Energy

As mentioned above, energy consumption is based on the scenario "WWB" of the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020). Main measures and underlying assumptions in the energy scenario "WWB" and the different source categories are described in detail in Prognos/INFRAS/TEP/Ecoplan (2020). The projections are based on an aggregation of various bottom-up models. Energy demand is determined using separate models for private households, industry, transportation, services/agriculture and electricity supply. The energy model used for the emission projections is shown in Figure 9-1.

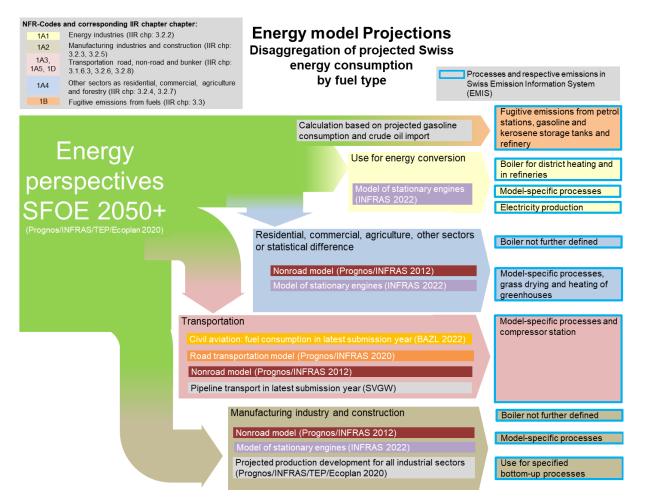


Figure 9-1 Overview of Switzerland's energy model as used for the emission projections.

Figure 9-2 depicts the total fuel consumption in recent years and as projected up to 2035 for each source category in the energy sector. Figure 9-3 shows the fuel consumption of source category 1A Fuel combustion same information broken down by fuel types.

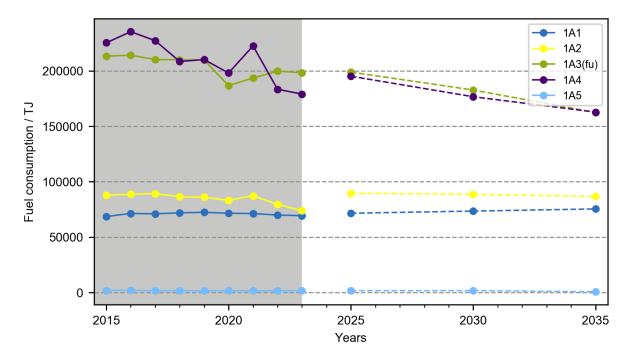


Figure 9-2 Fuel consumption in Switzerland as projected in the WM scenario in source categories 1A1 – 1A5 of the source category 1A Fuel combustion ((fu) means fuel used approach).

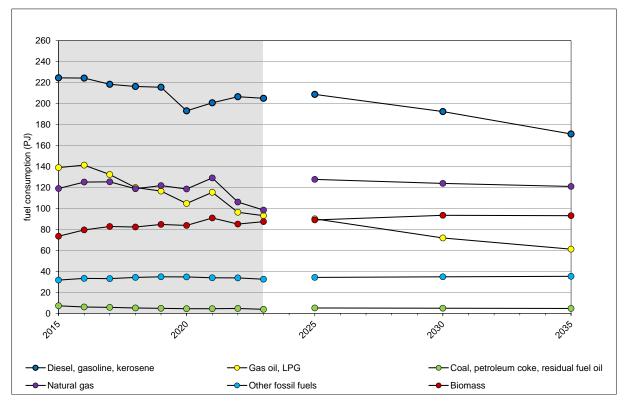


Figure 9-3 Fuel consumption in Switzerland as projected in the WM scenario for the source category 1A Fuel combustion ((fu) means fuel used approach).

It turns out that current fuel consumption in 1A4 Other sectors and 1A2 Combustion in manufacturing industry and construction has fallen much more than was probably assumed when the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020) were elaborated. If we look at the development at the fuel level, this decline is mainly due to the large drop in natural gas consumption caused by the war in Ukraine. It is unclear how large

the recovery in natural gas will be in the future. However, it can be assumed that the perspectives overestimate gas consumption, since heat demand in 1A4 was not completely saved, but probably mostly replaced by heat pumps, electricity, biomass, and local and district heating. In industry, there have also been closures of production plants, not all of which will likely be restarted in the future when natural gas prices are lower. Current consumption of heavy fossil fuels (coal, residual fuel oil, petroleum coke), which are still used primarily in fuel-intensive production processes, is also considerably below the projected values. It is unlikely that the use of heavy fossil fuels will increase again either, but rather that their replacement or the closure of production plants has been accelerated in recent years, also due to the requirements of the emissions trading scheme. Accordingly, the consumption figures for the last container glass production (natural gas), which was closed in the summer of 2024, and for the cupola furnace in rock wool production, which was replaced by an electric furnace at the beginning of 2024, were subtracted from the respective projected fuel consumption.

The growing fuel consumption in 1A1 Energy industries is mainly driven by source category 1A1a Public electricity and heat production that includes waste incineration depending on the population growth. The electricity production of the existing Swiss power plant park is projected with a bottom-up approach, taking into account the lifetime of the power plants. While the amount of waste per capita is assumed to remain at the current level, the amount of waste is increasing due to population growth and therefore leading to growing fuel consumption. An increasing use of biogas in gas turbines as SCGT or CCGT and of natural gas in boilers for district heating is considered, too. The amount of wood consumption is considered to increase only slightly compared to natural gas, biogas and waste in this source category. The amounts of fuels used in 1A1b Petroleum refining is hold constant for projected years based on the amount reported in the latest submission year, assuming that the only refinery in Switzerland will maintain operations in the future at the same level as they do today. Source category 1A1c Manufacture of Solid Fuel and Other only contains a little amount of charcoal production which is considered to stay constant at the level of the latest submission year.

Fuel consumption in 1A2 Manufacturing industries and construction is modelled for the main fuel types based on a large number of industrial production processes, taking into account their production development, broken down by the most important industrial sectors, including a residual sector for all other industrial sectors. Fuel consumption is then projected based on activity data for the sectors and specific energy use per process – including the assumption of a 5% improvement in the energy efficiency of the furnaces between the current level and 2050.

For the source category 1A3 Transport, parameters such as tonne-kilometres, passengerkilometres, vehicle-kilometres, specific energy use and substitution effects were determined on the basis of model estimations. For more detailed information see section below.

In source category 1A4ai Commercial/Institutional: Stationary, the energy demand from commercial and institutional buildings is based on energy use for heating, hot water, air conditioning, lighting, office appliances, engines and other uses, split for different energy sources, trades and services. Projections are then driven by gross value-creating activity, number of employees, energy reference area and technical standards. Also considered are the use of biogas and sewage gas in boilers, engines and gas turbines.

In source category 1A4bi Residential: Stationary, the energy demand in households is modelled based on energy use for heating, hot water, household appliances, lighting and other electrical equipment. The model consists of a dynamic building stock in various classes. The projection is then based on population growth, average floor space per person, average household size as well as technological developments of old and new buildings. Also considered is the use of biogas in engines.

The use of these bottom-up models allows to reproduce past developments and to derive the key drivers for particular segments of energy demand. Future energy demand is projected

based on assumptions on the evolution of the key drivers. The energy demand is then assigned to the relevant categories.

Source category 1A3 Transport

Activity data from transport activities are based on the same model as the one used to derive energy demand for the energy scenarios (see above). The main measures and underlying assumptions are:

- Implementation of measures such as efficiency targets set for light duty vehicles, energy efficiency labelling, as well as economic incentives for low-emission vehicles.
- Road transportation: Projections of the mileage by vehicle categories and of fuel consumption factors are given by the Swiss Federal Office of Statistics and are represented in Prognos/INFRAS/TEP/Ecoplan (2020) and Swiss Confederation (2021).
- Non-road source categories: Projections of vehicle fleets, operating hours and expected fuel consumption (see Annex A2.1.2) serve as input for projecting the fuel consumption of non-road vehicles (FOEN 2015j, INFRAS 2015a, Prognos 2012a). In addition, (compressed) natural gas in non-road has been replaced with liquefied petroleum gas, which is a more accurate reflection of the situation in Switzerland.

Sector 2 Industrial processes and product use

Activity data of sector 2 Industrial processes and product use are inferred from the sectoral production data that were used in the Swiss Energy Perspectives 2050+ (Prognos/INFRAS/TEP/Ecoplan 2020). In particular, sectoral indices of production volumes for clinker, cement, iron and steel, non-iron metals, glass, food, construction, and so-called other industry have been used. For other processes, such as production of basic chemicals of source category 2B Chemical industry, the provided production index scenario is not consistent with the more or less stable production volumes of the past twenty years. Therefore, constant activity data at the level of the recent years have been assumed for these source categories. Furthermore, a few activity data are only scaled with population growth (SFSO 2020p). However, the Energy Perspectives 2050+ provide no appropriate key parameters or measures for several source categories mainly within solvent and product use. For these source categories, projections are thus estimates based on information from industry, industry associations or expert judgement.

Sector 3 Agriculture

The basis of the WM scenario is the continuation of the agricultural policy 2018–2021 (Swiss Confederation 2017). The planned new agricultural policy (AP22+) should have become effective in 2022, but it was rejected by the parliament. Thus, central elements of the policy will be implemented through a parliamentary initiative (19.475, Swiss Confederation 2019), which was adopted in 2021. Their effects were modelled by Mack and Möhring (2021) and they elaborated respective projections of animal populations, milk yields, cropping areas and fertiliser use based on the explanatory report (FOAG 2021). Thus, the so-called parliamentary initiative scenario of Mack and Möhring (2021) was used as basis for the calculations of the WM scenario. Projections are thus based on data and information available by 2021 on (i) the development of the macro-economic variables (gross domestic product, population, crop yields), (ii) the expected development of the domestic producer prices and (iii) the actual agricultural policy with the respective subsidy system. The main measures and underlying assumptions are:

• Livestock populations: Direct payments have been decoupled to a certain degree from cropping area and particularly from the number of animals living on the farms reducing

incentives for intensification that would lead to negative environmental impacts (Swiss Confederation 2009). Consequently, the animal population numbers are more directly dependent on price levels. The cattle population is projected to decline slightly, whereas the number of swine and poultry remains more or less constant. Dairy cows are projected to exhibit a further increase in milk yield. Beyond 2027, constant population numbers were assumed for all animal categories due to the lack of further projections.

- Manure management: the shares of manure excreted during grazing as well as the shares of the individual manure management systems cannot be predicted satisfactorily and are thus left constant since 2019 together with all other parameters affecting manure management.
- Crops: Important aspects of the further development of direct payments that influence the development of the crop cultures are an improved targeting of direct payments, particularly for the promotion of common goods and the securing of a socially acceptable development (Swiss Confederation 2009, FOAG 2011). In general, arable crop production is projected to slightly decline whereas feed production from grasslands will remain more or less constant. Beyond 2027, constant yields and areas were assumed due to the lack of further projections.
- Fertilisers and fertiliser management: Use of commercial fertilisers is projected to decrease slightly until 2027 (Mack and Möhring 2021). Beyond 2027, constant fertiliser use was assumed due to the lack of further projections.

Sector 5 Waste

Per capita waste generation is assumed to remain at the level of 2018 in the projections up to 2035. However, in agreement with the energy scenarios, digestion of organic waste is increasing according to the use of biogas and sewage gas in the energy scenarios. Landfilling of combustible waste is prohibited in Switzerland, and it is assumed that this will also be the case in the future.

9.3 Main pollutants and CO for the WM scenario

According to the projections, total NO_x and CO emissions will continue to decrease significantly between 2025 and 2035, while total emissions of NMVOC, SO_x and NH₃ will remain at more or less constant levels. The gaps in Figure 9-4 between the latest reporting year and 2025 symbolises the fact that most of the scenarios used to calculate emissions projections for the individual sectors and source categories cover the period from 2025 onwards. Accordingly, the emissions in between are interpolated linearly.

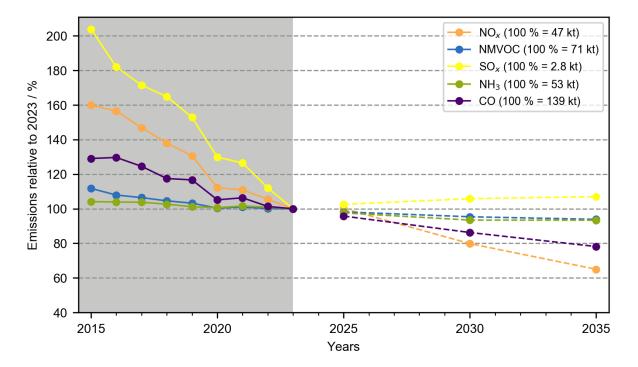


Figure 9-4 Relative trends for the total emissions of main air pollutants and CO in Switzerland as projected in the WM scenario. 100 % corresponds to levels of the latest reporting year.

Year	NO _x	NMVOC	SOx	NH ₃	CO
	kt	kt	kt	kt	kt
2005	94	112	14	60	305
2010	83	97	10	58	241
2015	75	80	5.8	55	179
2020	52	72	3.7	53	146
2023	47	71	2.8	53	139
2025	47	70	2.9	52	133
2030	37	68	3.0	49	120
2035	30	67	3.0	49	108
2035 vs. 2023 (%)	-35%	-6%	7%	-7%	-22%
2035 vs.		400/	700/	4704	0.407
2005 (%)		-40%	-79%	-17%	-64%
Gothenburg pr	otocol, emissi	on reduction	(2020 vs 200	5)	
	-41%	-30%	-21%	-8%	-

Table 9-4 Main air pollutants and CO: Total emissions of the WM projections until 2035 in kt.

9.3.1 Projections for NO_x

 NO_x emissions are projected to continue to decrease until 2035 (see Figure 9-4 and Table 9-5). The most significant reductions are projected for source category 1A3 Transport, which will also remain the main source of NO_x emissions in 2035, as in the latest reporting year. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

 1A3 Transport: Emissions are projected to be reduced especially in 1A3b Road Transportation due to improvements in emission abatement technology, improved in-use compliance under real driving conditions for road vehicles (triggered by the Euro 6/VI standards) and a reduction of fuel consumption due to the increase of electromobility (see Figure 9-2).

- 1A4 Other sectors: A reduction of emissions is projected due to measures related to domestic and commercial heating such as better insulation of buildings and increasing use of heat pumps.
- 1A2 Manufacturing industry and construction: Emission reductions are expected due to the so-called NO_x industry agreement with the cement industry (1A2f), which includes a reduction path for the NO_x emission limit value by 2032.
- 3 Agriculture: NO_x emissions from agriculture are projected to remain about constant between 2025-2035. Similar as in the latest reporting year, source category 3D Agricultural soils (in particular 3Da2 Use of organic nitrogen fertilisers) is expected to contribute the largest share of NO_x emissions in 2035.

NO _x emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	43	43	34	27	92%	88%	-16
1A Fuel combustion	43	43	34	27	92%	88%	-16
1A1 Energy industries	2.6	2.7	2.7	2.8	5.6%	9.1%	0.17
1A2 Manufacturing industries and constr.	6.5	6.9	6.1	5.6	14%	18%	-1.0
1A3 Transport	25	25	17	12	53%	39%	-13
1A4 Other sectors	8.3	8.1	7.2	6.4	18%	21%	-2.0
1A5 Other (Military)	0.40	0.39	0.38	0.15	0.85%	0.5%	-0.25
1B Fugitive emissions from fuels	0.0006	0.0006	0.0006	0.0006	0.001%	0.002%	0.00002
2 IPPU	0.20	0.22	0.22	0.22	0.43%	0.72%	0.021
3 Agriculture	3.5	3.4	3.4	3.4	7.5%	11%	-0.13
5 Waste	0.12	0.12	0.12	0.11	0.27%	0.38%	-0.011
6 Other	0.085	0.084	0.081	0.081	0.18%	0.27%	-0.0044
National total	47	47	37	30	100%	100%	-16

Table 9-5 WM projections: Trends of NO_x emissions per sector.

9.3.2 Projections for NMVOC

NMVOC emissions are projected to remain almost constant between 2025 and 2035 (see Figure 9-4 and Table 9-6). On the one hand, a decrease of NMVOC emissions is expected in source categories 1A3 Transport and 1A4 Other sectors. On the other hand, an increase in the sector 2 IPPU is projected. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 2 IPPU: Population growth and, to some extent, the stagnation of the effects of the VOC incentive tax (Swiss Confederation 1997) are projected to lead to a slight increase of NMVOC emissions.
- 3 Agriculture: Slight reductions of emissions are projected due to the expected development of cattle population.
- 1A3 Transport: Emissions are projected to be reduced especially in 1A3b Road Transportation due to improvements in emission abatement technology, improved in-use compliance under real driving conditions for road vehicles (triggered by the Euro 6/VI standards) and a reduction of fuel consumption due to the increase of electromobility (see Figure 9-2).
- 1A4 Other sectors: A decline of overall fuel consumption, but in particular of log wood in manually operated furnaces, is expected to lead to a reduction of NMVOC emissions (see Figure 9-2).

NMVOC emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	15	14	12	11	21%	16%	-4.6
1A Fuel combustion	13	12	10	9.1	18%	14%	-3.8
1A1 Energy industries	0.20	0.20	0.20	0.21	0.28%	0.31%	0.014
1A2 Manufacturing industries and constr.	0.85	0.89	0.86	0.84	1.2%	1.3%	-0.011
1A3 Transport	7.0	6.2	5.1	4.6	9.9%	6.8%	-2.5
1A4 Other sectors	4.7	4.5	3.9	3.4	6.6%	5.1%	-1.3
1A5 Other (Military)	0.064	0.063	0.062	0.030	0.09%	0.04%	-0.034
1B Fugitive emissions from fuels	2.4	2.2	1.8	1.6	3.4%	2.4%	-0.84
2 IPPU	36	37	37	37	51%	55%	0.7
3 Agriculture	18	17	17	17	25%	26%	-0.39
5 Waste	1.8	1.6	1.7	1.7	2.5%	2.6%	-0.067
6 Other	0.17	0.17	0.16	0.16	0.23%	0.24%	-0.006
National total	71	70	68	67	100%	100%	-4.4

Table 9-6 WM projections: Trends of NMVOC emissions per sector.

9.3.3 Projections for SO_x

 SO_x emissions are projected to remain almost constant between 2025 and 2035 (see Figure 9-4 and Table 9-7). In Figure 9-4 (relative trends), a slight increase of SO_x emissions is visible – however, this increase is very small in absolute numbers. On the one hand, an increase is expected in sector 2 IPPU and source category 1A1 Energy industries. An emission reduction is mainly expected in source categories 1A2 Manufacturing industries and construction and 1A4 Other sectors. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A2 Manufacturing industries and construction: A reduction of emissions between 2025 and 2035 is mainly expected due to a projected decline in production volumes and an improve of energy efficiencies in the non-metallic minerals processing industry (rock wool, cement, brick and tile 1A2f).
- 2 IPPU: An increase of the production volume of silicon carbide and graphite (2B5) and thus of the use of sulphur-containing feedstocks is expected.
- 1A1 Energy industries: A slight increase of emissions is expected due to an increase in the use of residual fuel oil in 1A1b Petroleum refining.
- 1A4 Other sectors: The projected decrease is mainly due to an expected reduced use of gas oil because of better insulation of buildings, a higher share of heat pumps as well as a fuel switch to natural gas (revised CO₂ law, Swiss Confederation 2011).
- 1A3 Transport: The slight increase of SO_x emissions between 2025 and 2035 is mainly due to an expected increase of international flights up to 2030 (i.e. landing and take-off cycles). In contrast, SO_x emissions from source category 1A3b Road transportation are expected to slightly decrease between 2025 and 2035 as fuel consumption (especially diesel oil) decreases due to the increase of electromobility.

SO _x emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	2.5	2.5	2.5	2.4	90%	80%	-0.121
1A Fuel combustion	2.5	2.5	2.5	2.4	89%	79%	-0.12
1A1 Energy industries	0.31	0.43	0.43	0.44	11%	14%	0.12
1A2 Manufacturing industries and constr.	1.6	1.5	1.5	1.4	58%	47%	-0.21
1A3 Transport	0.19	0.24	0.25	0.26	6.8%	8.5%	0.066
1A4 Other sectors	0.34	0.33	0.30	0.27	12%	8.9%	-0.07
1A5 Other (Military)	0.033	0.033	0.033	0.011	1.2%	0.37%	-0.022
1B Fugitive emissions from fuels	0.015	0.016	0.016	0.016	0.54%	0.52%	0.0006
2 IPPU	0.26	0.34	0.46	0.58	9%	19%	0.32
3 Agriculture	NA	NA	NA	NA	-	-	-
5 Waste	0.030	0.029	0.028	0.027	1.1%	0.88%	-0.0035
6 Other	0.0072	0.0072	0.0072	0.0072	0.25%	0.24%	0.00003
National total	2.8	2.9	3.0	3.0	100%	100%	0.20

Table 9-7 WM projections: Trends of SO_x emissions per sector.

9.3.4 Projections for NH₃

 NH_3 emissions are projected to remain almost constant between 2025 and 2035 (see Figure 9-4 and Table 9-4). Emission projections for NH_3 are highly dependent on sector 3 Agriculture. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 3 Agriculture: Emissions are highly dependent on livestock numbers, particularly cattle. A slight reduction of livestock numbers for cattle until 2027 is expected. Furthermore, the application of existing programs with incentives to introduce low-emission techniques or animal welfare programs is expected to reduce NH₃ emissions. Note: The emission projections for the sector 3 Agriculture up to 2035 are based on Swiss modelling studies covering the expected development of livestock numbers under specified economic and regulatory conditions (Mack and Möhring 2021). Projections are calculated with unchanged emission factors (except for dairy cattle, see chapter 9.2), which resulted for different livestock categories on the basis of the detailed farm survey carried out in 2019 (see chapter 5.2.2). This is a conservative approach that does not include any further changes in housing systems and manure management techniques. Emission factors on the aggregated reporting level may change slightly due to changes in the projected animal numbers on lower disaggregated levels, as for example in the source category 3B3 Manure Management - Swine consisting of animal categories piglets, fattening pig, dry sows, nursing sows and boars with constant emission factors for each.
- 6 Other: A slight increase in source category 6A1 Human emissions is expected due to population growth.
- 5 Waste: An increase of the use of biogas is expected, which leads to an increase of NH₃ emissions of 5B2 Anaerobic digestion at biogas facilities.

NH ₃ emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	1.3	1.2	1.2	1.2	2.4%	2.3%	-0.10
1A Fuel combustion	1.3	1.2	1.2	1.2	2.4%	2.3%	-0.10
1A1 Energy industries	0.042	0.044	0.048	0.049	0.08%	0.10%	0.007
1A2 Manufacturing industries and constr.	0.21	0.23	0.23	0.22	0.40%	0.45%	0.014
1A3 Transport	0.90	0.85	0.82	0.78	1.7%	1.6%	-0.12
1A4 Other sectors	0.10	0.10	0.10	0.096	0.19%	0.20%	-0.0066
1A5 Other (Military)	0.00004	0.00004	0.00004	0.00004	0.00008%	0.00008%	-0.000006
1B Fugitive emissions from fuels	NA	NA	NA	NA	-	-	-
2 IPPU	0.13	0.14	0.12	0.11	0.25%	0.22%	-0.022
3 Agriculture	50	48	46	46	94%	94%	-3.3
5 Waste	0.86	0.82	0.84	0.86	1.6%	1.7%	-0.0065
6 Other	0.97	0.96	0.95	0.95	1.8%	1.9%	-0.017
National total	53	52	49	49	100%	100%	-3.5

Table 9-8 WM projections: Trends of NH₃ emissions per sector.

9.3.5 Projections for CO

CO emissions are projected to continue to decrease until 2035 (see Figure 9-4 and Table 9-9). Similar to NO_x , the most significant reductions are expected to happen in source category 1A3 Transport and 1A4 Other sectors, which will also remain the main sources of CO emissions in 2035. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A4 Other sectors: Emission reductions are expected due to measures related to domestic heating such as better insulation of buildings, higher share of heat pumps, both continuous technological improvements of wood combustion installations and decrease in wood energy consumption in manually operated furnaces as well as further reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves).
- 1A3 Transport: Further improvements in emission abatement technology (triggered by the Euro 6/VI standards) and a reduction of fuel consumption due to the increase of electromobility (see Figure 9-2) are expected to lead to emission reductions.
- 1A2 Manufacturing industries and construction: A minor reduction between 2025 and 2035 is expected due to an expected higher proportion of modern wood combustion plants with lower proportions of non-optimal operating phases and a projected decline of the production volumes and improve of energy efficiencies in the non-metallic minerals processing industry (1A2f).
- 2 IPPU: Emissions are projected to slightly increase between 2025 and 2035, especially due to an expected increase of the production volume of silicon carbide and graphite (2B5).

CO emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	133	126	112	101	96%	93%	-32
1A Fuel combustion	133	126	112	101	96%	93%	-32
1A1 Energy industries	0.66	0.68	0.70	0.68	0.47%	0.63%	0.026
1A2 Manufacturing industries and constr.	14	15	15	15	10%	14%	0.46
1A3 Transport	63	57	48	42	45%	39%	-21
1A4 Other sectors	54	52	48	43	39%	39%	-11
1A5 Other (Military)	0.76	0.76	0.76	0.53	0.55%	0.49%	-0.24
1B Fugitive emissions from fuels	0.0001	0.0001	0.0001	0.0001	0.0001%	0.0001%	0.000005
2 IPPU	4.4	5.2	5.7	6.2	3.2%	5.7%	1.8
3 Agriculture	NA	NA	NA	NA	-	-	-
5 Waste	1.4	1.3	1.2	1.1	0.99%	0.99%	-0.29
6 Other	0.46	0.45	0.42	0.41	0.33%	0.38%	-0.045
National total	139	133	120	108	100%	100%	-30

9.4 Suspended particulate matter

According to the projections, exhaust and non-exhaust suspended particulate matter emissions are expected to develop differently between 2025 and 2035. While non-exhaust emissions of all fractions increase, exhaust emissions decrease (see Figure 9-5, Table 9-10 and Table 9-11). Overall, this leads to a decrease of the smaller fractions of suspended particulate matter (PM2.5) and BC between 2025 and 2035 (see Figure 9-6 and Table 9-12). In contrast, the larger PM fractions (PM10, TSP) are expected to remain at more or less constant levels. The gaps in Figure 9-5 and Figure 9-6 between the latest reporting year and 2025 symbolise the fact that most of the scenarios used to calculate emissions projections for the individual sectors and source categories cover the period from 2025 onwards. Accordingly, the emissions in between are interpolated linearly.

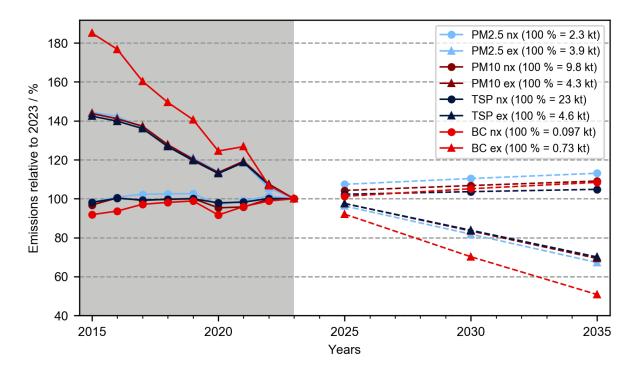


Figure 9-5 Projection of exhaust and non-exhaust emissions of suspended particulate matter PM2.5, PM10, TSP and BC in Switzerland of the WM scenario. 100 % corresponds to levels of the latest reporting year.

Year	PM2.5 ex	PM10 ex	TSP ex	BC ex
	kt	kt	kt	kt
2005	12	13	13	3.4
2010	8.9	9.7	10	2.5
2015	5.6	6.2	6.6	1.3
2020	4.4	4.9	5.2	0.91
2023	3.9	4.3	4.6	0.73
2025	3.8	4.2	4.5	0.68
2030	3.3	3.7	4.0	0.52
2035	2.6	3.0	3.2	0.37
2035 vs.				
2023 (%)	-33%	-31%	-30%	-49%

Table 9-10 Suspended particulate matter: Total exhaust emissions of the WM projections until 2035 in kt.

Year	PM2.5 nx	PM10 nx	TSP nx	BC nx
	kt	kt	kt	kt
2005	2.2	9.0	22	0.082
2010	2.3	9.5	23	0.088
2015	2.3	9.5	23	0.090
2020	2.3	9.4	23	0.092
2023	2.3	9.7	23	0.096
2025	2.4	10	23	0.098
2030	2.5	10	24	0.10
2035	2.5	10	24	0.11
2035 vs.				
2023 (%)	10%	3%	1%	10%

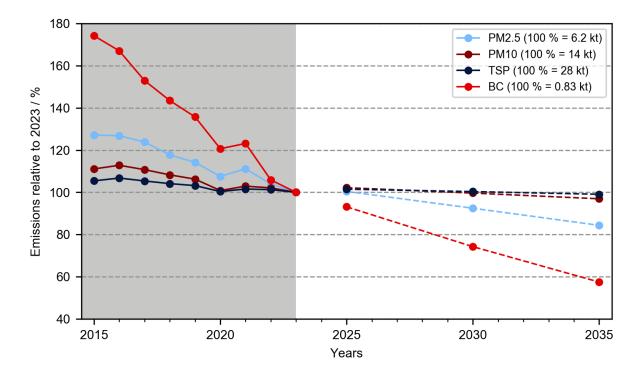


Figure 9-6 Projection of total emissions of suspended particulate matter PM2.5, PM10, TSP and BC in Switzerland of the WM (WEM) scenario. 100 % corresponds to levels of the latest reporting year. The figure shows the sum of exhaust and non-exhaust particles.

Year	PM2.5	PM10	TSP	BC
	kt	kt	kt	kt
2005	14	21	36	3.5
2010	11	19	33	2.6
2015	7.9	16	30	1.4
2020	6.7	14	28	1.0
2023	6.2	14	28	0.83
2025	6.3	14	28	0.77
2030	5.8	14	28	0.62
2035	5.3	14	28	0.48
2035 vs. 2023 (%)	-16%	-3%	-1%	-42%
2035 vs.		0,0	.,,,	,.
2005 (%)	-62%	-36%	-22%	-87%
Gothenburg pr	otocol, emissi	ion reduction	(2020 vs 200	5)
	-26%	-	-	-

Table 9-12 Suspended particulate matter: Total emissions of the WM projections until 2035 in kt.

9.4.1 Projections for PM2.5

PM2.5 emissions are projected to continue to decrease until 2035 (see Figure 9-6 and Table 9-13). The most significant reductions are expected in source category 1A4 Other sectors. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A4 Other sectors: Continuous technological improvements of small wood combustion installations (due to compliance with stricter air pollution control requirements from 2007 onwards) and a further reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves) lead to projected emission reductions. Furthermore, a decrease in wood energy consumption in manually operated furnaces is expected.
- 1A3 Transport: Emissions are expected to remain about constant between 2025 and 2035. In source category 1A3b Road transportation, the ongoing replacement of older vehicles with vehicles with stricter emission standards or with electric engines will lead to reduced PM2.5 exhaust emissions. However, at the same time non-exhaust emissions are expected to increase with increasing activity (vehicle kilometres), which partially compensates the decrease of exhaust emissions. This effect is more relevant for the larger particles (TSP, PM10) and less for smaller fractions.
- 2 IPPU: The main contributors to PM2.5 emissions are source categories 2A Mineral industry (especially 2A1 Cement production), 2G Other product manufacture and use and 2H Other (especially 2H1 Pulp and paper and 2H2 Food and beverages industry). The emissions of all these source categories are expected to remain about constant between 2025 and 2035.
- 1A2 Manufacturing industries and construction: An emission reduction is projected due to the expected higher proportion of modern wood combustion plants with lower proportions of non-optimal operating phases (1A2gviii Other boilers and engines industry).

PM2.5 emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	4.8	4.7	4.2	3.7	77%	71%	-1.1
1A Fuel combustion	4.8	4.7	4.2	3.7	77%	71%	-1.1
1A1 Energy industries	0.061	0.071	0.073	0.074	0.98%	1.4%	0.013
1A2 Manufacturing industries and constr.	0.62	0.60	0.57	0.53	10%	10%	-0.086
1A3 Transport	1.5	1.5	1.5	1.5	24%	29%	0.045
1A4 Other sectors	2.6	2.4	2.0	1.5	42%	29%	-1.1
1A5 Other (Military)	0.045	0.045	0.045	0.041	0.72%	0.78%	-0.0039
1B Fugitive emissions from fuels	0.00004	0.00004	0.00004	0.00004	0.0006%	0.0007%	-0.000001
2 IPPU	0.99	1.2	1.2	1.2	16%	23%	0.22
3 Agriculture	0.15	0.15	0.14	0.14	2.3%	2.8%	-0.0009
5 Waste	0.27	0.26	0.22	0.19	4.3%	3.6%	-0.082
6 Other	0.0047	0.0047	0.0047	0.0046	0.08%	0.09%	-0.00004
National total	6.2	6.3	5.8	5.3	100%	100%	-0.97

Table 9-13 WM projections: Trends of PM2.5 emissions per sector.

9.4.2 Projections for PM10

PM10 emissions are projected to remain about constant between 2025-2035 (see Figure 9-6 and Table 9-14). A decrease is expected in source category 1A4 Other sectors. On the opposite, an increase is expected in source category 1A3 Transport. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A3 Transport: Despite of a reduction of exhaust emissions due to the ongoing replacement of older vehicles with vehicles with tightened emission standards or with electric engines, the projected increase of vehicle kilometres and thereby increase of non-exhaust emissions leads to an overall increase in PM10 emissions.
- 1A2 Manufacturing industries and construction: As for PM2.5, there is an emission reduction projected for wood energy combustion (higher proportion of modern combustion plants with lower proportions of non-optimal operating phases, 1A2gviii). However, this will be offset by an increase in non-exhaust PM10 emissions from the resuspension of construction machinery (1A2gvii), the dominant PM emission source within 1A2, due to a predicted increase in activity.
- 2 IPPU: Similar to PM2.5, the main contributors to PM10 emissions are source categories 2A Mineral industry (especially 2A1 Cement production and 2A5a Quarrying and mining of minerals other than coal), 2G Other product manufacture and use and 2H Other (especially 2H1 Pulp and paper and 2H2 Food and beverages industry). In addition, also source category 2I Wood processing is relevant for PM10 emissions. The emissions of all these source categories are expected to remain about constant between 2025 and 2035.
- 3 Agriculture: PM10 emissions originate from source categories 3De Cultivated crops and 3B Manure management (especially 3B4g Poultry, due to high livestock numbers) and are assumed to remain about constant until 2035.
- 1A4 Other sectors: As for PM2.5, continuous technological improvements of small wood combustion installations (due to compliance with stricter air pollution control requirements from 2007 onwards) and a further reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves) lead to the projected emission reductions. Furthermore, a decrease in wood energy consumption in manually operated furnaces is expected.

PM10 emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	10	10	9.9	9.5	72%	70%	-0.6
1A Fuel combustion	10	10	9.9	9.5	72%	70%	-0.6
1A1 Energy industries	0.062	0.072	0.074	0.075	0.44%	0.55%	0.013
1A2 Manufacturing industries and constr.	2.6	2.6	2.7	2.7	19%	19%	0.010
1A3 Transport	4.4	4.6	4.8	4.9	31%	36%	0.49
1A4 Other sectors	2.8	2.6	2.1	1.7	20%	12%	-1.1
1A5 Other (Military)	0.26	0.26	0.26	0.26	1.9%	1.9%	-0.0049
1B Fugitive emissions from fuels	0.0004	0.0004	0.0004	0.0004	0.003%	0.003%	0.00
2 IPPU	1.7	2.0	2.0	2.0	12%	15%	0.31
3 Agriculture	1.8	1.8	1.8	1.8	13%	13%	-0.002
5 Waste	0.30	0.29	0.25	0.21	2.1%	1.5%	-0.09
6 Other	0.11	0.11	0.10	0.10	0.8%	0.7%	-0.012
National total	14	14	14	14	100%	100%	-0.43

Table 9-14 WM projections: Trends of PM10 emissions per sector.

9.4.3 Projections for TSP

The opposing trend of exhaust and non-exhaust emissions is best visible for the largest fractions of particulate matter: exhaust emissions are expected to decrease, whereas non-exhaust emissions increase. Overall, TSP emissions are projected to remain about constant between 2025-2035 (see Figure 9-6 and Table 9-15, Table 9-16, Table 9-17). An important source of TSP, where emissions are expected to remain constant, is sector 5 Agriculture. An increase of TSP emissions is expected in source category 1A3 Transport and a decrease in source category 1A4 Other sectors and sector 5 Waste. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

 3 Agriculture: The sector contributes considerably to total TSP emissions. They are dominated by non-exhaust TSP emissions from source category 3De Cultivated crops (field and arable tillage) that are assumed to remain about constant until 2035. Thus, the relative share of agriculture sector on total TSP emissions is increasing over time (since exhaust TSP emissions from the energy sector are generally decreasing). Considering both non-exhaust and total TSP emissions, agriculture even is and remains the predominating emission source.

It should be noted that these emissions (3De) have a very high degree of uncertainty, since the EMEP/EEA guidebook (EMEP/EEA 2023) provides emission factors for PM10 and PM2.5 only. A couple of European countries assume for TSP the same values as for PM10. But this assumption does not seem appropriate, since particulate matter emissions from soil cultivation and harvesting have a large mass fraction in the coarse fraction. Therefore, the TSP emission factors have been estimated according to the Danish emission inventory (Danish Informative Inventory Report 2018) with a fraction of PM10/TSP of 10 %.

- 1A3 Transport: Despite a reduction of exhaust emissions due to the ongoing replacement of older vehicles with vehicles with tightened emission standards or with electric engines, the projected increase of vehicle kilometres and thereby increase of non-exhaust emissions leads to an overall increase in TSP emissions.
- 1A2 Manufacturing industries and construction: As for PM10, an emission reduction is projected for wood energy combustion (higher proportion of modern combustion plants with lower proportions of non-optimal operating phases, 1A2gviii), which will be offset by an increase in non-exhaust PM emissions from the re-suspension of construction machinery (1A2gvii), the dominant PM emission source within 1A2, due to a predicted increase in activity.

- 2 IPPU: Similar to PM10, the main contributors to TSP emissions are source categories 2A Mineral industry (especially 2A1 Cement production and 2A5 Quarrying and mining of minerals other than coal), 2G Other product manufacture and use, 2H Other (especially 2H1 Pulp and paper and 2H2 Food and beverages industry).and 2I Wood processing. The emissions of all these source categories are expected to remain about constant between 2025 and 2035.
- 1A4 Other sectors: Continuous technological improvements of small wood combustion installations (due to compliance with stricter air pollution control requirements from 2007 onwards) and a further reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves) lead to projected emission reductions. Furthermore, a decrease in wood energy consumption in manually operated furnaces is expected.
- 5 Waste: The projected reduction of TSP emissions is mainly due to an assumed reduction of illegal waste incineration (in source category 5C1a).

TSP emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	12	12	12	12	43%	42%	-0.50
1A Fuel combustion	12	12	12	12	43%	42%	-0.50
1A1 Energy industries	0.065	0.077	0.079	0.080	0.23%	0.29%	0.014
1A2 Manufacturing industries and constr.	3.8	3.8	3.9	3.9	14%	14%	0.064
1A3 Transport	4.9	5.2	5.4	5.5	17%	20%	0.62
1A4 Other sectors	2.9	2.7	2.3	1.8	10%	6.3%	-1.2
1A5 Other (Military)	0.39	0.39	0.39	0.38	1.4%	1.4%	-0.0055
1B Fugitive emissions from fuels	0.0009	0.0010	0.0010	0.0009	0.0034%	0.0033%	-0.00002
2 IPPU	2.8	3.1	3.1	3.1	10%	11%	0.35
3 Agriculture	13	13	13	13	45%	45%	0.018
5 Waste	0.37	0.35	0.30	0.25	1.3%	0.91%	-0.11
6 Other	0.20	0.20	0.20	0.19	0.72%	0.70%	-0.009
National total	28	28	28	28	100%	100%	-0.26

Table 9-15 WM projections: Trends of total TSP emissions per sector.

TSP exhaust emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	3.5	3.3	2.7	2.1	76%	66%	-1.4
1A Fuel combustion	3.5	3.3	2.7	2.1	76%	66%	-1.4
1A1 Energy industries	0.065	0.077	0.079	0.080	1.4%	2.5%	0.014
1A2 Manufacturing industries and constr.	0.33	0.30	0.26	0.21	7.0%	6.5%	-0.12
1A3 Transport	0.28	0.29	0.22	0.19	6.0%	5.8%	-0.09
1A4 Other sectors	2.8	2.6	2.2	1.7	61%	51%	-1.19
1A5 Other (Military)	0.0066	0.0065	0.0064	0.0029	0.14%	0.09%	-0.0038
1B Fugitive emissions from fuels	0.000001	0.000001	0.000001	0.000001	0.00003%	0.00004%	0.00000004
2 IPPU	0.57	0.69	0.69	0.69	12%	21%	0.122
3 Agriculture	NA	NA	NA	NA	_	-	-
5 Waste	0.36	0.34	0.30	0.25	7.8%	7.6%	-0.11
6 Other	0.18	0.18	0.17	0.17	3.9%	5.3%	-0.009
National total	4.6	4.5	3.9	3.2	100%	100%	-1.4

TSP non-exhaust emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	8.6	8.9	9.2	9.5	37%	39%	0.88
1A Fuel combustion	8.6	8.9	9.2	9.5	37%	39%	0.88
1A1 Energy industries	NA	NA	NA	NA	-	-	-
1A2 Manufacturing industries and constr.	3.5	3.5	3.6	3.7	15%	15%	0.18
1A3 Transport	4.6	4.9	5.1	5.3	20%	22%	0.71
1A4 Other sectors	0.10	0.10	0.098	0.096	0.44%	0.39%	-0.0061
1A5 Other (Military)	0.38	0.38	0.38	0.38	1.6%	1.5%	-0.0017
1B Fugitive emissions from fuels	0.0009	0.0010	0.0010	0.0009	0.004%	0.004%	-0.00002
2 IPPU	2.2	2.4	2.4	2.4	9.5%	10%	0.23
3 Agriculture	13	13	13	13	54%	51%	0.018
5 Waste	0.0036	0.0036	0.0036	0.0036	0.02%	0.01%	-
6 Other	0.022	0.022	0.022	0.022	0.09%	0.09%	-0.0001
National total	23	24	24	25	100%	100%	1.1

Table 9-17 WM projections: Trends of TSP non-exhaust emissions per sector.

9.4.4 Projections for BC

The decreasing trend of emissions from PM2.5 is also reflected in the trends of BC emissions and is even more pronounced since the reduction measures mainly focus on combustion particles which largely consists of BC (see Figure 9-6 and Table 9-18). The decrease is mainly expected in source categories 1A4 Other sectors and 1A3 Transport. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A4 Other sectors: Continuous technological improvements of small wood combustion installations (due to compliance with stricter air pollution control requirements from 2007 onwards) and a further reduction in the number of emission intensive types of wood furnaces (e.g. cooking stoves) lead to projected emission reductions. Furthermore, a decrease in wood energy consumption in manually operated furnaces is expected.
- 1A3 Transport: Emissions are expected slightly decline between 2025 and 2035. In source category 1A3b Road transport, the ongoing replacement of older vehicles with vehicles with tightened emission standards or with electric engines will lead to reduced BC emissions.

BC emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kt	kt	kt	kt			kt
1 Energy	0.81	0.76	0.60	0.46	98%	97%	-0.35
1A Fuel combustion	0.81	0.76	0.60	0.46	97%	97%	-0.35
1A1 Energy industries	0.0072	0.0083	0.0084	0.0084	0.87%	1.7%	0.0011
1A2 Manufacturing industries and constr.	0.030	0.022	0.013	0.010	3.6%	2.1%	-0.020
1A3 Transport	0.19	0.19	0.16	0.15	23%	31%	-0.041
1A4 Other sectors	0.58	0.53	0.41	0.29	70%	62%	-0.29
1A5 Other (Military)	0.0032	0.0032	0.0030	0.0014	0.39%	0.28%	-0.0019
1B Fugitive emissions from fuels	0.00002	0.00003	0.00002	0.00002	0.003%	0.005%	-0.0000004
2 IPPU	0.0012	0.0012	0.0013	0.0013	0.15%	0.27%	0.00007
3 Agriculture	NA	NA	NA	NA	-	-	-
5 Waste	0.019	0.019	0.016	0.014	2.3%	2.9%	-0.0057
6 Other	0.00008	0.00008	0.00007	0.00007	0.009%	0.01%	-0.00001
National total	0.83	0.77	0.62	0.48	100%	100%	-0.35

Table 9-18 WM projections: Trends of BC emissions per sector.

9.5 Priority heavy metals

According to the projections, total Pb emissions will decrease between 2025 and 2035 whereas total Cd and Hg emissions are remaining about constant. The gaps in Figure 9-7 between the latest reporting year and 2025 symbolises the fact that most of the scenarios used to calculate emissions projections for the individual sectors and source categories cover the period from 2025 onwards. Accordingly, the emissions in between are interpolated linearly.

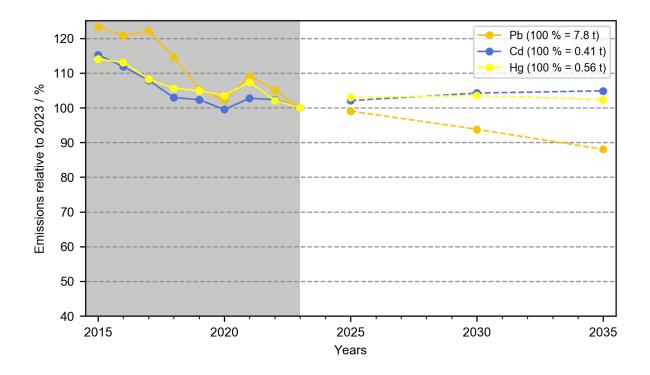


Figure 9-7 Relative trends for the total emissions of priority heavy metals in Switzerland as projected in the WM scenario. 100 % corresponds to levels of the latest reporting year.

Table 9-19 Priority heavy metals: Total emissions of the WM projections until 2035 in t.

Year	Pb	Cd	Hg
	t	t	t
2005	18	0.48	0.73
2010	12	0.50	0.74
2015	9.6	0.47	0.64
2020	8.0	0.41	0.58
2023	7.8	0.41	0.56
2025	7.7	0.42	0.58
2030	7.3	0.42	0.58
2035	6.9	0.43	0.58
2035 vs.			
2023 (%)	-12%	5%	2%

9.5.1 Projections for lead (Pb)

Pb emissions are projected to continue to decrease until 2035 (see Table 9-20 and Figure 9-7). The most significant reductions are expected in sectors 5 Waste, 6 Other and 1A4

Other sectors. In return, an increase is projected in source category 1A1 Energy industries. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A1 Energy industries: Pb emissions are expected to increase due to growing amounts of waste and wood waste incinerated.
- 6 Other: It is assumed that the number of buildings fires (under the source category 6A4 Fire damage buildings and motor vehicles) will continue to decrease between 2025 and 2035 due to improvement in safety. In parallel, we expect newly constructed and renovated buildings to contain much less lead due to a continuous increase in the ban of lead in many products, as enforced by the Chemical Risk Reduction Ordinance ORRChem (Swiss Confederation 2005).
- 5 Waste: The projected reduction of Pb emissions is mainly due to an assumed reduction of illegal waste incineration (in source category 5C1a).
- 1A2 Manufacturing industries and construction: The main contributors to Pb emissions are source categories 1A2gviii Other (especially wood waste and wood) and 1A2f Non-metallic minerals. Emissions from these source categories are projected to remain about constant between 2025 and 2035.
- 1A3 Transport: Emissions are dominated by source category 1A3a Civil aviation and are projected to slightly decrease.
- 2 IPPU: The main contributors to Pb emissions are source categories 2C1 Iron and steel production and 2G Other product use. The emissions from these source categories are projected to remain about constant between 2025 and 2035.
- 1A4 Other sectors: A reduction of emissions is expected through continuous technological improvements in small wood combustion installations, a further reduction in the number of emission intensive types of wood furnaces and in the combustion of wood in manually operated furnaces and wood waste in commercial installations (source category 1A4ai).

Pb emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	t	t	t	t			t
1 Energy	4.0	4.0	4.1	4.0	52%	58%	-0.06
1A Fuel combustion	4.0	4.0	4.1	4.0	52%	58%	-0.06
1A1 Energy industries	1.7	1.7	1.8	1.8	22%	27%	0.12
1A2 Manufacturing industries and constr.	0.89	0.90	0.96	0.93	11%	14%	0.04
1A3 Transport	0.84	0.85	0.83	0.82	11%	12%	-0.024
1A4 Other sectors	0.57	0.53	0.45	0.37	7.3%	5.3%	-0.20
1A5 Other (Military)	0.0002	0.0002	0.0002	0.0002	0.003%	0.003%	-0.000004
1B Fugitive emissions from fuels	0.000002	0.000002	0.000002	0.000002	0.00003%	0.00003%	0.0000001
2 IPPU	0.51	0.59	0.59	0.59	6.5%	8.6%	0.080
3 Agriculture	NA	NA	NA	NA	_	_	_
5 Waste	1.6	1.5	1.2	1.0	20%	15%	-0.57
6 Other	1.7	1.6	1.4	1.3	22%	19%	-0.38
National total	7.8	7.7	7.3	6.9	100%	100%	-0.93

Table 9-20 WM projections: Trends of Pb emissions per sector.

9.5.2 **Projections for cadmium (Cd)**

Cadmium emissions are expected to remain about constant until 2035 (see Table 9-21 and Figure 9-7). Only marginal changes of cadmium emission levels are projected for any sector. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A1 Energy industries: A slight increase is projected due to population growth and thereby increased amount of waste incinerated as well as an increase in consumption of wood and wood waste.
- 1A3 Transport: An increase of traffic volumes is projected to also lead to a slight increase of Cd emissions from tyre abrasion.
- 1A2 Manufacturing industries and construction: Emissions are expected to remain about constant. Minor changes are expected due to changes in activity, especially increased activity in source category 1A2gvii Mobile combustion in manufacturing industries and construction (non-road vehicles and machinery) or reduced production volumes in source category 1A2f Non-metallic minerals.
- 1A4 Other sectors: Emissions are expected to remain about constant. Minor changes are expected through continuous technological improvements in small wood combustion installations and a reduction in the number of emission intensive types of wood furnaces and in the combustion of wood in manually operated.
- 2 IPPU: The main contributor to Cd emissions is source category 2G Other product use (tobacco consumption and fireworks use), where emissions are projected to remain about constant.

Cd emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	t	t	t	t			t
1 Energy	0.37	0.37	0.38	0.38	90%	90%	0.019
1A Fuel combustion	0.37	0.37	0.38	0.38	90%	90%	0.019
1A1 Energy industries	0.15	0.15	0.16	0.16	37%	38%	0.011
1A2 Manufacturing industries and constr.	0.066	0.070	0.071	0.070	16%	16%	0.0045
1A3 Transport	0.096	0.097	0.10	0.10	24%	24%	0.0072
1A4 Other sectors	0.051	0.050	0.049	0.047	12%	11%	-0.0038
1A5 Other (Military)	0.0005	0.0005	0.0005	0.0005	0.13%	0.12%	-0.000008
1B Fugitive emissions from fuels	0.000003	0.000003	0.000003	0.000003	0.0007%	0.0007%	0.0000001
2 IPPU	0.031	0.033	0.033	0.033	7.6%	7.8%	0.0024
3 Agriculture	NA	NA	NA	NA	-	-	-
5 Waste	0.0088	0.0086	0.0082	0.0078	2.2%	1.8%	-0.0010
6 Other	0.0016	0.0016	0.0016	0.0016	0.40%	0.37%	-0.00002
National total	0.41	0.42	0.42	0.43	100%	100%	0.020

Table 9-21 WM projections: Trends of Cd emissions per sector.

9.5.3 **Projections for mercury (Hg)**

Mercury emissions are expected to remain about constant until 2035 (see Table 9-22 and Figure 9-7). Only marginal changes of mercury emission levels are projected for any sector. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A1 Energy industries: An increase is projected as a result of an increase in the amounts of waste, wood and wood waste incinerated.
- 1A2 Manufacturing industries and construction: Emissions are expected to remain about constant. Minor changes are expected due to changes in activity data such as reduced production volumes in source category 1A2f Non-metallic minerals.
- 1A4 Other sectors: A reduction of emissions is expected in stationary combustion. This
 reduction is due to the projected general decrease in the combustion of wood, gas oil and
 wood waste.
- 2 IPPU: The main contributor to Hg emissions is source category 2C1 Iron and steel production, where emissions are expected to remain about constant due to projected roughly constant production volumes in secondary steel production.

Hg emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	t	t	t	t			t
1 Energy	0.49	0.51	0.51	0.51	88%	88%	0.016
1A Fuel combustion	0.49	0.51	0.51	0.51	88%	88%	0.016
1A1 Energy industries	0.29	0.30	0.31	0.32	52%	55%	0.022
1A2 Manufacturing industries and constr.	0.088	0.10	0.10	0.097	16%	17%	0.0085
1A3 Transport	0.032	0.032	0.029	0.025	5.7%	4.4%	-0.0068
1A4 Other sectors	0.078	0.079	0.076	0.069	14%	12%	-0.0084
1A5 Other (Military)	0.00003	0.00003	0.00003	0.00003	0.005%	0.005%	-0.0000004
1B Fugitive emissions from fuels	0.0000005	0.0000005	0.0000005	0.0000005	0.00009%	0.00009%	0.0000002
2 IPPU	0.040	0.040	0.040	0.040	7.1%	7.0%	0.0005
3 Agriculture	NA	NA	NA	NA	-	-	-
5 Waste	0.029	0.028	0.027	0.026	5.2%	4.5%	-0.0029
6 Other	0.0007	0.0007	0.0007	0.0007	0.13%	0.12%	-0.00002
National total	0.56	0.58	0.58	0.58	100%	100%	0.013

Table 9-22 WM projections: Trends of Hg emissions per sector.

9.6 Persistent organic pollutants (POPs)

According to the projections, total emissions of all persistent organic pollutants (POPs) will decrease between 2025 and 2035. The decrease is most significant for PCB and less for the other POPs (PCDD/PCDF, PAH, HCB). The gaps in Figure 9-8 between the latest reporting year and 2025 symbolises the fact that most of the scenarios used to calculate emissions projections for the individual sectors and source categories cover the period from 2025 onwards. Accordingly, the emissions in between are interpolated linearly.

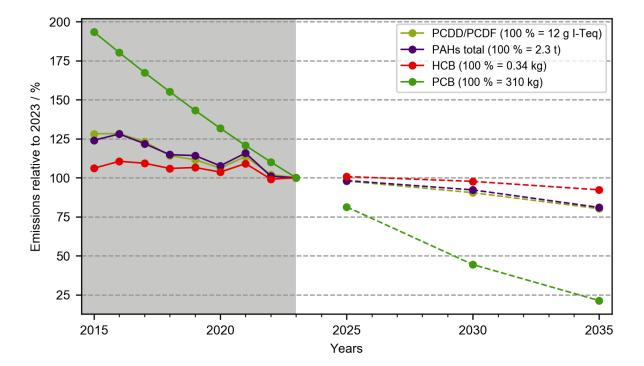


Figure 9-8 Relative trends for the total emissions of POPs: PCDD/PCDF, PAH (as the sum of benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene), and HCB in Switzerland in the WM scenario. 100 % corresponds to levels of the latest reporting year.

Year	PCDD/	BaP	BbF	BkF	IcdP	PAH tot	HCB	PCB
	PCDF							
	g I-Teq	t	t	t	t	t	kg	kg
2005	31	1.4	1.6	1.0	0.82	4.9	0.44	1'270
2010	25	1.3	1.3	0.77	0.71	4.0	0.45	827
2015	16	0.89	0.94	0.57	0.51	2.9	0.36	600
2020	13	0.76	0.81	0.51	0.45	2.5	0.35	408
2023	12	0.70	0.75	0.47	0.42	2.3	0.34	310
2025	12	0.69	0.74	0.47	0.41	2.3	0.34	252
2030	11	0.65	0.70	0.44	0.38	2.2	0.33	138
2035	9.7	0.57	0.62	0.39	0.33	1.9	0.31	66
2035 vs.								
2023 (%)	-20%	-19%	-18%	-19%	-22%	-19%	-8%	-79%

Table 9-23 Persistent organic pollutants (POPs): Total emissions of the WM projections until 2035 (please take note of the different units).

9.6.1 Projections for PCDD/PCDF

PCDD/PCDF emissions are projected to continue to decrease until 2035 (see Table 9-24 and Figure 9-8). The most significant (approximately equal) reductions are expected in source category 1A4 Other sectors, which is also the main source of PCDD/PCDF emissions in 2035, and in sector 5 Waste. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A4 Other sectors: The emission reduction is projected to result from a continuous improvement in wood combustion installations, a continued decrease in wood energy consumption in manually operated furnaces as well as further reductions in the number of emission intensive types of wood furnaces (e.g. cooking stoves).
- 5 Waste: Emission reductions are projected due to a reduction of illegally incinerated waste under source category 5C1a.
- 1A1 Energy industries: Emissions are expected to increase due to the projected increase in volumes in waste incineration plants.
- 6 Other: It is assumed that the number of building fires (under source category 6A4d Fire damage buildings and motor vehicles) will continue to decrease between 2025 and 2035 due to improvement in safety.
- 1A2 Manufacturing industries and construction: A reduction is mainly due to an expected higher proportion of modern wood combustion plants with lower proportions of nonoptimal operating phases (1A2gviii Other boilers and engines industry) and a projected decline of the production volumes and improve of energy efficiencies in the non-metallic minerals processing industry (1A2f).
- 2 IPPU: The main contributors to PCDD/PCDF emissions are source categories 2C Metal industry (especially 2C1 Secondary steel production and 2C7a Non-ferrous metal foundries) and 2H Other (2H1 chipboard production and 2H2 Meat smokehouses). The emissions of all these source categories are expected to remain about constant between 2025 and 2035 due to projected roughly constant production volumes.

PCDD/PCDF emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	g I-Teq	g I-Teq	g I-Teq	g I-Teq			g I-Teq
1 Energy	7.7	7.6	7.1	6.3	64%	64%	-1.5
1A Fuel combustion	7.7	7.6	7.1	6.3	64%	64%	-1.5
1A1 Energy industries	0.99	1.0	1.0	1.0	8.1%	11%	0.047
1A2 Manufacturing industries and constr.	0.90	0.94	0.94	0.85	7.4%	8.8%	-0.04
1A3 Transport	0.43	0.40	0.30	0.26	3.6%	2.7%	-0.17
1A4 Other sectors	5.4	5.3	4.8	4.1	45%	42%	-1.3
1A5 Other (Military)	0.0004	0.0004	0.0004	0.0004	0.003%	0.004%	-0.000006
1B Fugitive emissions from fuels	NA	NA	NA	NA	-	-	-
2 IPPU	0.69	0.72	0.73	0.74	5.7%	7.6%	0.047
3 Agriculture	NA	NA	NA	NA	-	-	-
5 Waste	2.7	2.6	2.2	1.8	22%	18%	-0.93
6 Other	0.99	0.98	0.94	0.94	8.1%	9.6%	-0.047
National total	12	12	11	9.7	100%	100%	-2.4

Table 9-24 WM projections: Trends of PCDD/PCDF emissions per sector.

9.6.2 **Projections for polycyclic aromatic hydrocarbons (PAH)**

PAH emissions are projected to continue to decrease until 2035 (see Table 9-25 and Figure 9-8). The most significant reduction is expected in source category 1A4 Other sectors, which is also the main source of PAH emissions in 2035. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A4 Other sectors: The emission reduction is projected to result from a continuous improvement in wood combustion installations, a continued decrease in wood energy consumption in manually operated furnaces as well as further reductions in the number of emission intensive types of wood furnaces (e.g. cooking stoves).
- 1A3 Transport: Emissions from 1A3 Transport are expected to remain about constant between 2025-2035. The main contributor to PAH emissions is diesel consumption from passenger cars (1A3bi). The mileage of passenger cars fuelled with diesel is expected to remain about constant between 2025 and 2035. As the PAH emission factors from the EMEP/EEA Guidebook (EMEP/EEA 2019) are used (constant over time, in g/km). Accordingly, the emission projection is correlated with mileage of diesel vehicles and is also expected to remain about constant.
- 5 Waste: PAH emissions are dominated by field burning of agricultural waste (5C2 Open burning of waste), which is expected to remain about constant.
- 6 Other: PAH emissions are dominated by vehicles fires and are expected to slightly increase between 2025 and 2035 due to an increase in the number of fires (source category 6A4b).
- 1A2 Manufacturing industries and construction: PAH emissions are expected to decrease between 2025 and 2035 mainly due to an expected higher proportion of modern wood combustion plants with lower proportions of non-optimal operating phases.

PAHs emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	t	t	t	t			t
1 Energy	2.0	2.0	1.8	1.6	86%	82%	-0.46
1A Fuel combustion	2.0	2.0	1.8	1.6	86%	82%	-0.46
1A1 Energy industries	0.0098	0.010	0.010	0.0088	0.42%	0.47%	-0.0010
1A2 Manufacturing industries and constr.	0.095	0.094	0.089	0.080	4.1%	4.2%	-0.015
1A3 Transport	0.29	0.31	0.31	0.30	12%	16%	0.011
1A4 Other sectors	1.6	1.6	1.4	1.2	70%	62%	-0.45
1A5 Other (Military)	0.0007	0.0007	0.0007	0.0007	0.03%	0.03%	-0.00002
1B Fugitive emissions from fuels	NA	NA	NA	NA	-	_	-
2 IPPU	0.019	0.021	0.021	0.022	0.80%	1.1%	0.0027
3 Agriculture	NA	NA	NA	NA	-	_	-
5 Waste	0.19	0.19	0.19	0.19	8.1%	10%	0.0008
6 Other	0.11	0.11	0.12	0.12	4.7%	6.4%	0.011
National total	2.3	2.3	2.2	1.9	100%	100%	-0.45

Table 9-25 WM projections: Trends of PAHs emissions per sector.

9.6.3 **Projections for hexachlorobenzene (HCB)**

HCB emissions are projected to continue to decrease until 2035 (see Table 9-26 and Figure 9-8). The most significant reductions are expected in source category 1A4 Other sectors. On the opposite, an increase is projected for source category 1A1 Energy industries, which is the main source of HCB emissions in 2035. It should be noted that emissions from mobile sources (1A3, 1A2gvii, and 1A4aii/bii/cii) are not estimated in the inventory. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 1A1 Energy industries: Emissions are expected to increase due to the projected increase in volumes in waste incineration plants.
- 1A4 Other sectors: The emission reduction is projected to result from a continuous improvement in wood combustion installations a continued decrease in wood energy consumption in manually operated furnaces as well as further reductions in the number of emission intensive types of wood furnaces (e.g. cooking stoves).
- 1A2 Manufacturing and constructing industries: The emission reduction is mainly due to an expected higher proportion of modern wood combustion plants with lower proportions of non-optimal operating phases in source category 1A2gviii Stationary combustion in manufacturing industries and construction: Other but also partly due to a projected improve of energy efficiency in cement production (1A2f).

HCB emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kg	kg	kg	kg			kg
1 Energy	0.34	0.34	0.33	0.31	100%	100%	-0.026
1A Fuel combustion	0.34	0.34	0.33	0.31	100%	100%	-0.026
1A1 Energy industries	0.18	0.19	0.19	0.20	54%	62%	0.012
1A2 Manufacturing industries and constr.	0.033	0.039	0.038	0.034	9.8%	11%	0.0007
1A3 Transport	NE	NE	NE	NE	-	-	-
1A4 Other sectors	0.12	0.12	0.10	0.084	36%	27%	-0.039
1A5 Other (Military)	NE	NE	NE	NE	-	-	_
1B Fugitive emissions from fuels	NA	NA	NA	NA	-	-	-
2 IPPU	NA	NA	NA	NA	-	-	-
3 Agriculture	NA	NA	NA	NA	-	-	-
5 Waste	NA	NA	NA	NA	-	-	_
6 Other	NA	NA	NA	NA	-	-	-
National total	0.34	0.34	0.33	0.31	100%	100%	-0.026

Table 9-26 WM projections: Trends of HCB emissions per sector.

9.6.4 **Projections for polychlorinated biphenyl (PCBs)**

PCB emissions are projected to decrease considerably until 2035 (see Table 9-27 and Figure 9-8). The main reduction is expected in sector 2 IPPU, which remains the main emission source in 2035. The most important source categories in the future and the reasons for their emission trends are briefly described below, in order of the emissions shares in 2035:

- 2 IPPU: Also in future, the main relevant PCB emission sources remain anti-corrosive paints and joint sealants (2K) which were applied on steel and in window frames, respectively, prior to the ban of PCBs in so-called open application in 1972.
- 6 Other: To a lesser extent than the emissions of 2K, also accidental releases of PCB by fire and from soil due to former PCB spillages (6A5) contribute to future PCB emissions. These are also expected to decline between 2025 and 2035.

PCB emissions	2023	2025	2030	2035	share in 2023	share in 2035	2023-2035
	kg	kg	kg	kg			kg
1 Energy	0.36	0.39	0.37	0.35	0.11%	0.53%	-0.006
1A Fuel combustion	0.36	0.39	0.37	0.35	0.11%	0.53%	-0.006
1A1 Energy industries	0.061	0.053	0.033	0.017	0.02%	0.03%	-0.043
1A2 Manufacturing industries and constr.	0.29	0.34	0.33	0.33	0.09%	0.50%	0.038
1A3 Transport	0.00009	0.00008	0.00006	0.00005	0.00003%	0.00008%	-0.00004
1A4 Other sectors	0.0007	0.0007	0.0006	0.0005	0.0002%	0.0008%	-0.0001
1A5 Other (Military)	NE	NE	NE	NE	_	_	_
1B Fugitive emissions from fuels	NA	NA	NA	NA	-	-	_
2 IPPU	279	225	118	51	90%	77%	-228
3 Agriculture	NA	NA	NA	NA	-	-	_
5 Waste	5.1	3.8	2.2	1.5	1.6%	2.3%	-3.6
6 Other	25	23	17	13	8.2%	20%	-12
National total	310	252	138	66	100%	100%	-244

Table 9-27 WM projections: Trends of PCB emissions per sector.

10 Reporting of gridded emissions and LPS

Paragraph 28 of the "Guidelines for Reporting Emissions and Projections Data under the CLRTAP" requires that "Emission data calculated by Parties within the geographic scope of EMEP shall be spatially allocated in the EMEP grid as defined in paragraph 14 of these Guidelines" (ECE 2023). This chapter describes how Switzerland implemented these requirements.

10.1 EMEP grid

Definition of the EMEP grid

The EMEP grid is based on a latitude-longitude coordinate system: $0.1^{\circ} \times 0.1^{\circ}$ latitudelongitude projection in the geographic coordinate World Geodetic System latest revision, WGS 84. The domain is therefore described in degrees and not in km². It extends in southnorth direction from 30°N-82°N latitude and in west-east direction from 30°W-90°E longitude.

The grid fulfils the following requirements:

- It allows assessing globally dispersed pollutants on a hemispheric/global scale (Assessment Report, HTAP 2010).
- It allows to consider wider spatial scales to deal with tasks related to climate change and its effect on air pollution.
- Pollution levels can be assessed at a finer spatial resolution to provide more detailed information on pollution levels within territories of parties of the convention.

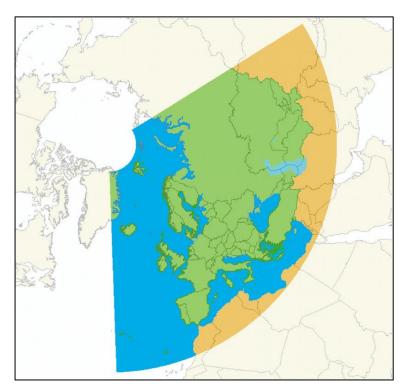


Figure 10-1 shows the EMEP grid domain.

Figure 10-1 EMEP domain in the latitude-longitude projection (30°N-82°N, 30°W-90°E) (EMEP 2012a, <u>https://www.emep.int/grid/lonlatgrid.pdf</u>).

The EMEP domain on regional-scale

In accordance with the requirements described above, grid resolution for standard EMEP regional simulations can be chosen in the range of $0.5^{\circ} \times 0.5^{\circ}$ to $0.2^{\circ} \times 0.2^{\circ}$ (EMEP 2012a). This means, for instance, that in a 0.2° -based EMEP grid the cell size at 40°N (Italy) is 17 x 22 km² whereas at 60°N (Scandinavia) the cell size is 11 x 22 km². In total, a $0.2^{\circ} \times 0.2^{\circ}$ resolution results in 156'000 grid cells.

EMEP domain on local-scale

For a more detailed assessment of air pollution levels, spatial resolution needs to be further refined. Several studies have shown that the EMEP modelling centres can provide more accurate results if refined resolution with more detailed input data is applied (EMEP 2012a). Therefore, a spatial resolution for national/local levels is defined at $0.1^{\circ} \times 0.1^{\circ}$. This results in a spatial resolution at 40°N (Italy) of 9 x 11 km² and 6 x 11 km² at 60°N (Scandinavia). Figure 10-2 illustrates the EMEP grid resolution for Europe as used on local scales. In total, approximately 624'000 grid cells exist within the local EMEP domain.

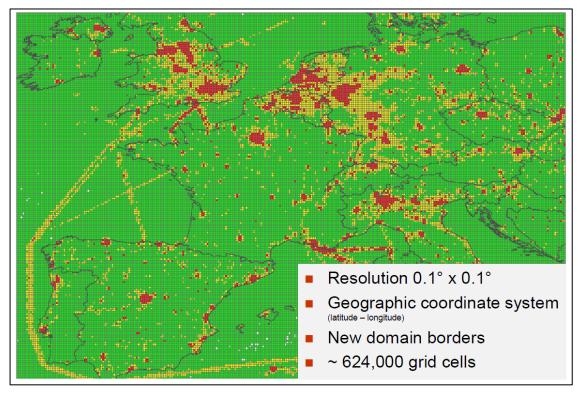


Figure 10-2 Resolution of the EMEP grid for Europe (EMEP 2012b).

In Switzerland's air pollution inventory of the latest submission 2025, the EMEP grid on local scale $(0.1^{\circ} \times 0.1^{\circ})$ is applied (see chapter 10.3) and contains 580 different grid cells. This includes also cells covering Lake of Constance. For grid cells outside Swiss borders no emissions are reported (see Figure 10-3).

The challenge in modelling on local scale $(0.1^{\circ} \times 0.1^{\circ})$ is the accurate allocation of emissions from the national total of emissions. Accordingly, emissions form national total should be processed to a resolution that is at least as fine as the resolution of the local-based EMEP grid. To achieve that, a separate study has been carried out which provides the allocation of the emissions sources within the local-scale EMEP grid (see Meteotest 2013 and 2021a).

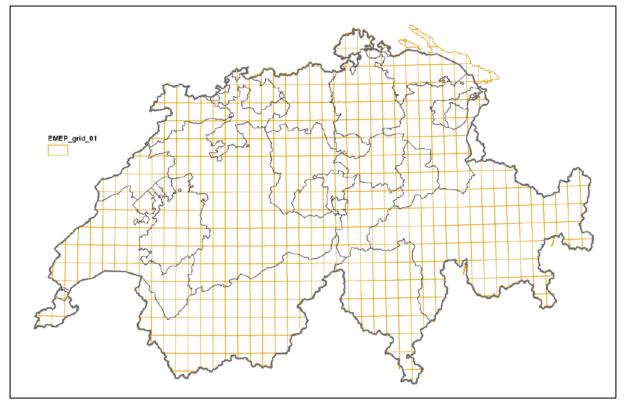


Figure 10-3 EMEP grid in Switzerland with 0.1° x 0.1° spatial resolution (from Meteotest 2013, downloaded from EMEP).

10.2 Gridding of emissions

10.2.1 Switzerland's emissions according to the GNFR-Code

As described above, the emissions of the Swiss national inventory have to be allocated to the EMEP grid. Therefore, the source categories according to the NFR (Nomenclature for Reporting) code need to be aggregated to the GNFR categories (NFR Aggregation for Gridding according to annexes V (GNFR) of ECE 2023a). Table 10-1 shows the relative shares of the GNFR categories of Switzerland's total emissions (national total) in 2023 for all main air pollutants including PM2.5 and CO.

GNFR aggregated	NO _x	NMVOC	SOx	NH ₃	PM2.5	CO
sectors						
A_PublicPower	5.0%	0.26%	9.1%	0.080%	0.74%	0.41%
B_Industry	12%	7.7%	69%	0.51%	15%	10%
C_OtherStatComb	15%	4.9%	12%	0.19%	40%	22%
D_Fugitive	0.0013%	3.4%	0.54%	NA	0.00063%	0.00010%
E_Solvents	0.038%	44%	0.12%	0.13%	5.3%	0.37%
F_RoadTransport	45%	9.5%	1.7%	1.7%	19%	41%
G_Shipping	2.0%	0.54%	0.017%	0.00040%	0.35%	3.5%
H_Aviation	4.4%	0.22%	5.0%	NA	0.25%	1.7%
I_Offroad	8.7%	2.2%	1.3%	0.0048%	13%	20%
J_Waste	0.27%	2.5%	1.1%	1.6%	4.3%	0.97%
K_AgriLivestock	2.0%	24%	NA	47%	1.6%	NA
L_AgriOther	5.7%	0.63%	NA	47%	0.72%	NA
M_Other	0.19%	0.23%	0.25%	1.8%	0.075%	0.32%
Total	100%	100%	100%	100%	100%	100%

Table 10-1 GNFR categories and their part (%) of total emissions in 2023 (national total) for the main air pollutants, PM2.5 and CO.

10.2.2 Data availability for emission allocation

To allocate the emissions of each GNFR category, an adequate allocation key has to be determined. Numerous GNFR categories overlap with various source categories thus it is not possible to apply a single approach. Depending on the properties of each GNFR category, evaluation and identification of an appropriate allocation key is required. This ensures the adequate allocation of total emissions in the EMEP grid. For allocation purposes only relative shares of the national total emissions are relevant. Details of this work can be found in Meteotest 2013 and 2021a.

For the latest submission 2025, Switzerland calculated gridded emissions for the entire time series 1980-2023. For the allocation process of the emissions various data sources were applied for the time intervals 1980-1989, 1990-1999, 2000-2009, 2010-2015, 2016-2019 and >2020. Table 10-2 illustrates the data source applied for each time interval.

Data source	Distribution pattern	Applied	data sou	rce for gri	dded emi	ssion time	series
		1980-89	1990-99	2000-09	2010-15	2016-19	> 2020
Population data	1990, 2000, annually from 2010	1990	1990	2000	2013	2017	2020
Census of enterprises sector 1	1996, 2000, 2005, 2008, annually from 2011	1996	1996	2005	2013	2017	2018
Census of enterprises sector 2+3	1995, 2000, 2001, 2005, 2008, annually from 2011	1995	1995	2005	2013	2017	2018
Land use statistics 1979/85, 1992/97, 2004/09, 2013/18		1979/85	1992/97	2004/09	2013/18	2013/18	2013/18
NO _X emission maps	IO _X emission maps 1990, 2000, 2005, 2010, 2015		2005	2005	2015	2015	2015
PM10 emission maps	emission maps 2005, 2010, 2015		2005	2005	2015	2015	2015
NH ₃ emission maps 1990, 2000, 2007, 2010 (manure management)		1990	2000	2007	2010	2010	2010
Aviation annual passenger numbers		1985	1995	2005	2013	2017	2019
Refineries	number of refineries		2	2	2	1	1
Cement production			1998	2006	2013	2013	2013

Table 10-2 Applied data sources for gridded emission time series 1980-1989, 1990-1999, 2000-2009, 2010-2015, 2016-2019 and >2020 (Meteotest 2013 and 2021a).

Population Density

At first sight, most emissions originate where people live and occur proportional to population density in an area. Therefore, population density is one of the main factors to allocate emissions in the EMEP grid. Geo-referenced population data is available annually by the Federal Statistical Office. The most populated area in Switzerland is the Swiss Plateau and the largest cities with their agglomerations in particular (see Figure 10-4).

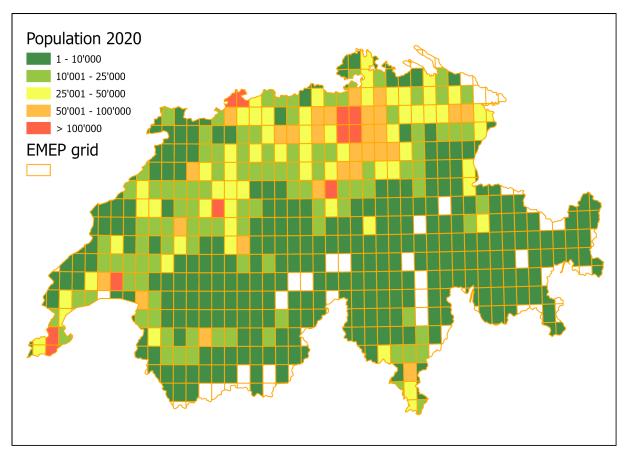


Figure 10-4 Population number per EMEP grid cell in Switzerland in 2020.

Census of enterprises/number of employees by economic sectors

Statistical surveys exist for enterprises, from which information about the specific economic use per hectare (100x100 m²) is derived. This data is provided annually by the Federal Statistical Office. For several GNFR categories covering industrial production, the number of employees per economic branch and per hectare combined with the information on the economic use per hectare is used for the allocation of the emissions in the EMEP grid.

Land Use Statistics

Switzerland's Land Use Statistics allows determining specific land use characteristics on a hectare-scale (100x100 m²). According to the Land Use Statistics by the Federal Statistical Office 74 categories are available. They are aggregated to 9 main land use categories to apply them to the EMEP grid (Meteotest 2013). The 9 main land use categories are:

- Wooded areas
- Industrial buildings

- Industrial grounds
- Residential buildings
- Surroundings of residential buildings
- Agricultural buildings
- Agricultural areas
- Unspecified buildings
- Wastewater treatment plants

Air pollution modelling data

The results of specific emissions models are used as additional data for allocation purposes. These specific emission models are described in detail in the associated documentations (FOEN 2011b, FOEN 2013a, Meteotest 2020a and Meteotest 2019b) Based on these models maps of selected emissions can be applied for allocation. For the following air pollutants and source categories, appropriate emission maps are available:

٠	NO _x :	Emissions of road traffic	(FOEN 2011b, Meteotest 2020a)
•	NO _x : Emissions of navigation		(FOEN 2011b, Meteotest 2020a)
•	NO _x :	Emissions of construction machinery	(FOEN 2011b, Meteotest 2020a)
٠	NO _x :	Emissions of industrial vehicles	(FOEN 2011b, Meteotest 2020a)
٠	PM10:	Emissions of rail traffic	(FOEN 2013a, Meteotest 2020a)
•	NH ₃ :	Emissions of manure management - farming of animals without pasture	(Meteotest 2019b)

10.2.3 Switzerland's allocation of emissions for the EMEP grid

Method

The data sets described in 10.2.2 are available for the allocation of total emissions to the EMEP grid. The application of those data sets results in various spatial patterns of national emissions in each GNFR category. The attribution of GNFR categories to the patterns is given in the Table 10-3. This allocation method is applied for every pollutant (Meteotest 2021a).

Example of a GNFR category allocation in the EMEP grid in a case where the emission is attributed to the pattern "population" that means that the emission per hectare is proportional to its population:

 $Emission_{gs} = \frac{Population_g}{Total \ population \ of \ Switzerland} \times Emission_{tot_s}$

Emission_{gs}: Emission of air pollutant (s) of a GNFR category in EMEP grid cell (g)

Population_g: Population of grid cell (g)

Emission_{tots}: Total emission of Switzerland of air pollutant (s) within the GNFR category with:

$$\sum_{g=0}^{n_g} Emission_{g_s} = Emission_{tot_s}$$

GNFR categories include by definition also Large Point Sources (LPS). The LPS for 2023 are described under chp. 10.4 and illustrated in Figure 10-11.

Allocation rules and emission shares

The GNFR categories including their shares of emissions (main air pollutants, PM10 and PM2.5) and their allocation rules are presented in Meteotest (2013) and Meteotest (2021a).

GNFR category	Source category	Distribution according to				
A PublicPower	1A1ai - 1A1aiii	Population density				
A_rubiicrowei	1A1aiv	Point sources				
	2A - 2I	Employees in the industry sector (sector 2)				
B_Industry	1A1b - 1A1c	Point sources				
D_IIIddatiy	1A2a - 1A2g	Employees in the industry sector (sector 2)				
	1A2f	Point sources				
	1A4ai	Employees in the service sector (sector 3)				
C_OtherStatComb	1A4bi	Population density				
	1A4ci	Employees in the agricultural sector (sector 1)				
D_Fugitive	1B1a, 1B2aiii, 1B2av, 1B2b	Inhabited area				
D_i ugitive	1B2aiv, 1B2c	Employees in the industry sector (sector 2)				
	2D3aCRT, 2D3b, 2D3h	Employees in the industry sector (sector 2)				
E_Solvents	2D3aNFR	Population density				
	2D3i, 2G3, 2G4	Inhabited area				
F_RoadTransport	1A3bi - 1A3bvii	Air pollution modelling data of NO _X emissions from road transport (fuel sold)				
G_Shipping	1A3d	Air pollution modelling data of NO _X Emissions from navigation				
LL Avriation	1A3ai(i), 1A3aii(i)	Statistics of flight passengers of the six largest airports in Switzerland				
H_Aviation		(excluding Basel since it lies on French territory)				
	1A2gvii	Air pollution modelling data of NOx-Emissions of construction machinery and				
		industrial vehicles				
	1A4aii, 1A4bii	Private gardening				
I_Offroad	1A4cii	Agricultural area				
	1A5bi, 1A5bii	Area of Switzerland below 1'500m a.s.l.				
	1A3c	Air pollution modelling data of PM10-Emissions from rail transport				
	1Ae	Employees in the industry sector (sector 2)				
	5A1, 5B1, 5B2, 5E	Inhabited area				
J Waste	5D2	Employees in the industry sector (sector 2)				
J_wasie	5D1	Wastewater treatment plants				
	5C1, 5C2	Population density				
K_AgriLivestock	3B1 - 3B4	Air pollution modelling data of NH3-Emissions of manure management -				
K_AGHLIVESIOCK	301-304	farming of animals without pasture				
L_AgriOther	3Da - 3Db	Agricultural area				
M_Other	3A4h, 3B4, 6Aa - 6Ad	Population density				

Table 10-3 GNFR categories and their allocation indicators.

Emissions not included in national total emissions

The following GNFR categories are not part of the national total emissions for the EMEP grid domain. These emissions are, therefore, not allocated to the EMEP grid cells.

GNFR	NFR Code	Longname
K_CivilAviCruise	1 A 3 a ii (ii)	1 A 3 a ii (ii) Civil Aviation (Domestic Cruise)
T_IntAviCruise	1 A 3 a i (ii)	1 A 3 a i (ii) Civil Aviation (International Cruise)
z_memo	1 A 3 d i (i)	1 A 3 d i (i) International maritime Navigation
	1 A 3	Transport (fuel used)
	7 B	Other (not included in National Total for Entire Territory)
S_Natural	11 A	11 (11 08 Volcanoes)
	11 B	Forest fires
	11 C	Other natural emissions

Table 10-4 GNFR categories not included in the EMEP grid domain (according to Meteotest 2013).

10.3 EMEP grid results (visualizations)

10.3.1 Spatial distribution of Switzerland's NO_x emissions 2023

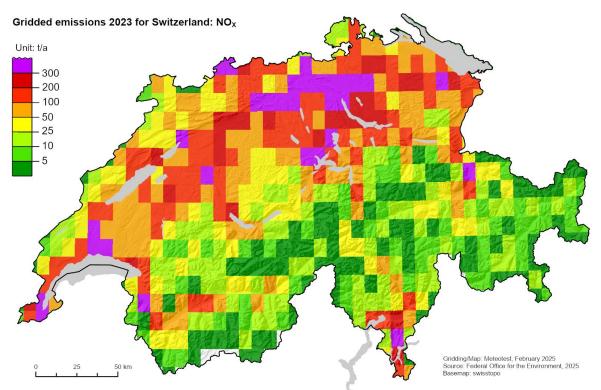
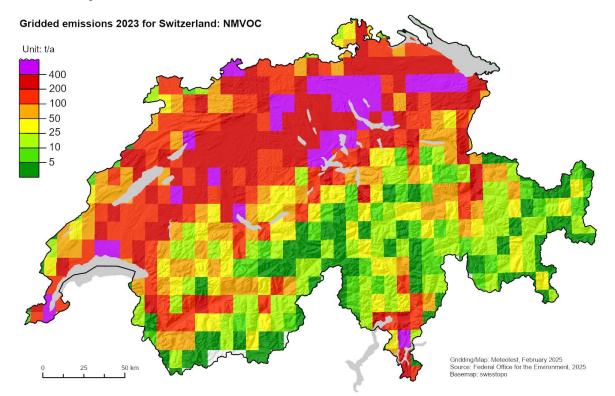



Figure 10-5 Spatial distribution of the NO_x emissions in Switzerland.

10.3.2 Spatial distribution of Switzerland's NMVOC emissions 2023

Figure 10-6 Spatial distribution of the NMVOC emissions in Switzerland.

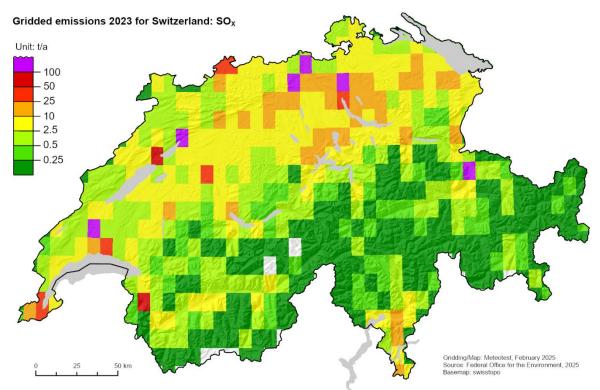
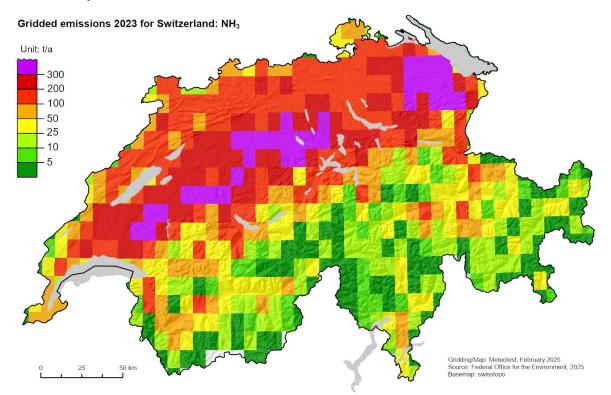
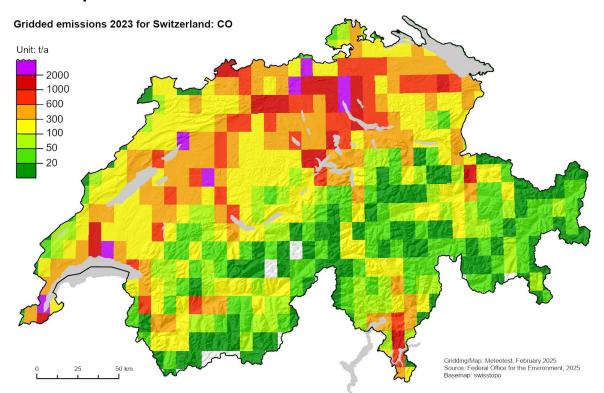



Figure 10-7 Spatial distribution of the SO_x emissions in Switzerland.

10.3.4 Spatial distribution of Switzerland's NH₃ emissions 2023

Figure 10-8 Spatial distribution of the NH_3 emissions in Switzerland.


10.3.5 Spatial distribution of Switzerland's PM2.5 emissions 2023

Gridding/Map: Meteotest, February 2025 Source: Federal Office for the Environment, 2025 Basemap: swisstopo

Figure 10-9 Spatial distribution of the PM2.5 emissions in Switzerland.

50 km

25

10.3.6 Spatial distribution of Switzerland's CO emissions 2023

Figure 10-10 Spatial distribution of the CO emissions in Switzerland.

10.4 Large point sources (LPS)

Large Point Sources (LPS) are reported according to the definitions of the ECE Guidelines (ECE 2023). LPS are defined as facilities or installations whose emissions of at least one of 14 pollutants exceed the threshold value given in Table 1 of the ECE Guidelines (ECE 2023).

Facility designations, locations and emissions of Switzerland's LPS of the years 2007-2023 are reported based on the most recent data of the Swiss Pollution Release and Transfer Register (PRTR 2025). Data concerning air pollution release are reported annually by the facility operators and may be calculated based on periodic measurements, fuel consumption or other methods.

In 2023, the list of Switzerland's LPS includes 32 facilities, in particular of the industrial and waste sectors. As in previous years, most significant LPS are cement production plants and municipal solid waste incineration plants, followed by different facilities of the manufacturing industry such as steel production and chemicals (see Figure 10-11).

Information concerning the physical height of stack is reported as stack height class and the locations of the LPS are given in WGS 84 decimal coordinates, recalculated from Swiss grid coordinates (CH1903) as given in the Swiss PRTR.

The reported E-Swiss PRTR facility IDs correspond to the BER-Code (Business and Enterprise Register) of the Swiss Federal Statistical Office.

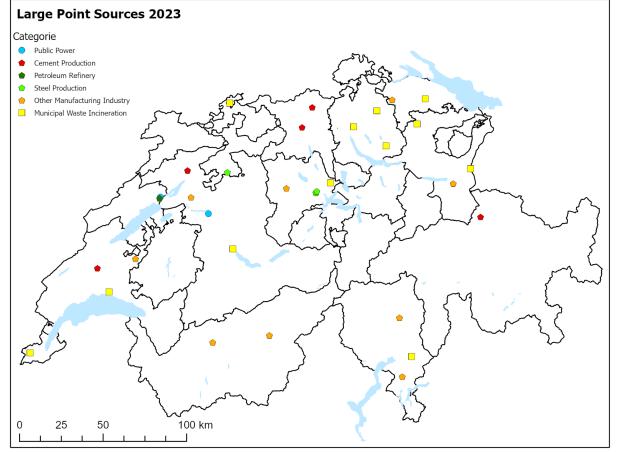


Figure 10-11 Spatial distribution of Switzerland's LPS in 2023. Note, that this figure only shows the LPS that exceed the limit values of emissions as defined in ECE (2023) and not all existing plants in Switzerland of the categories listed.

11 Adjustments

There are no adjustments in Switzerland's air pollutant emission inventory.

12 References and assignments to EMIS categories

12.1 References

ADEME 2013: Improvement of the knowledge of the atmospheric emission from vehicles fires – Contribution of this source to the national emission inventory. Final Report in French, 07.05.2013, decision 11-81C0087, technical coordination: Emmanuel Fiani. Programme EMBRUVE, Agence de l'Environnement et de la Maîtrise de l'Energie ADEME (FR). https://librairie.ademe.fr/air-et-bruit/2748-embruve-improving-knowledge-of-atmospheric-emissions-from-burning-vehicles.html [15.01.2024]

AGRAMMON 2018: The Swiss agricultural ammonia emission calculation model, developed by the Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences in cooperation with Bonjour Engineering GmbH and Oetiker + Partner AG on behalf of the Federal Office for the Environment FOEN. Internet version 5.0 in German, French and English: <u>https://agrammon.ch/de/downloads/</u> [05.02.2025]; Technical description for download (updated periodically): <u>https://agrammon.ch/en/dokumentation-zum-modell/</u> [05.02.2024]

Agricura 2023: Geschäftsbericht 2022/2023. Agricura, Bern [confidential/internal].

ARE 2002: Fahrleistungen der Schweizer Fahrzeuge. Ergebnisse der periodischen Erhebung Fahrleistungen (PEFA) 2000. Federal Office for Spatial Development, Bern. <u>http://www.climatereporting.ch</u>

ARE 2022: Schweizerische Verkehrsperspektiven 2050 - Schlussbericht. <u>https://www.are.admin.ch/dam/are/de/dokumente/verkehr/publikationen/verkehrsperspektive</u> <u>n-schlussbericht.pdf.download.pdf/verkehrsperspektiven-schlussbericht.pdf</u> [29.01.2024]

ARE/SFSO 2005: Mobilität in der Schweiz. Ergebnisse des Mikrozensus 2005 zum Verkehrsverhalten. [La mobilité en Suisse. Résultats du microrecensement 2005 sur le comportement de la population en matière de transports]. Federal Office for Spatial Development, Bern and Swiss Federal Statistical Office, Neuchâtel. <u>https://www.bfs.admin.ch/bfs/de/home/statistiken/kataloge-</u> <u>datenbanken/publikationen.assetdetail.344011.html</u> [27.01.2025]

ARE/SFSO 2012: Mobilität in der Schweiz. Ergebnisse des Mikrozensus Mobilität und Verkehr 2010. [La mobilité en Suisse. Résultats du microrecensement mobilité et transports 2010]. Federal Office for Spatial Development, Bern and Swiss Federal Statistical Office, Neuchâtel.2012 <u>http://www.portal-stat.admin.ch/mz10/files/fr/00.xml</u> [27.01.2024]

ARE/SFSO 2017: Verkehrsverhalten der Bevölkerung – Ergebnisse des Mikrozensus Mobilität und Verkehr 2015. Federal Office for Spatial Development, Bern and Swiss Federal Statistical Office, Neuchâtel. 2017.

https://www.bfs.admin.ch/bfsstatic/dam/assets/1840477/master [27.01.2024]

Armendáriz, C.R., Garcia, T., Soler, A., Fernández, A.J.G., Glez-Weller, D., González, G.L., de la Torre, A.H., Gironés, C.R. 2015: Heavy metals in cigarettes for sale in Spain. Environmental Research, vol. 143, pp. 162-169. <u>https://doi.org/10.1016/j.envres.2015.10.003</u> [10.03.2025]

ART/SHL 2012: Categorization of livestock animals in Switzerland. D. Bretscher and T. Kupper. Agroscope Research Station Zürich (ART), Schweizerische Hochschule für Landwirtschaft Zollikofen (SHL). March 2012. <u>http://www.climatereporting.ch</u>

Aschmann, V., Effenberger, M., Prager, M., Tappe, S. J. 2019: Emissionsarmer Betrieb von Biogasmotoren. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL).

https://www.ktbl.de/fileadmin/user_upload/Artikel/Energie/Biogasmotoren/Biogasmotoren-.pdf [28.01.2025]

Avenergy 2024: Jahresbericht 2023. Avenergy Suisse, Zürich. https://www.avenergy.ch/de/publikationen/jahresbericht [05.02.2025]

Baier, U. 2023: Expert judgement by Urs Baier, vice president of Biomasse Suisse, Brugg, 31.10.2023 <u>www.climatereporting.ch</u>

Battelle 1989: Ermittlung der Methan-Freisetzung durch Stoffverluste bei der Erdgasversorgung der Bundesrepublik Deutschland – Beitrag des Methans zum Treibhauseffekt. Battelle-Institut e.V., Frankfurt am Main. [confidential/internal]

Battelle 1994: Methanfreisetzung bei der Erdgasnutzung in der Schweiz und Vergleich mit anderen Emittenten. V-68.225. Battelle Ingenieurtechnik GmbH, Eschborn. [confidential/internal]

BIPM 2019: The International System of Units (SI). 9th Edition. Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sèvres Cedex, France. ISBN 978-92-822-2272-0. <u>https://www.bipm.org/en/publications/si-brochure/</u>[10.03.2025]

Bühler and Kupper 2018: Agricultural emissions of NMVOC and PM. Literature review and selection of emission factors, HAFL Zollikofen, Bern.

https://www.aramis.admin.ch/Default.aspx?DocumentID=49767&Load=true [31.01.2025]

Butz 2003: Neuere rechtliche Vorgaben im Bereich Deponiegasanlagen – TA-Luft, EEG, Deponieverordnung. Trierer Berichte zur Abfallwirtschaft Band 14.

BUWAL 2001: Massnahmen zur Reduktion der PM10-EMissionen. Umwelt-Materialien Nr. 136. Bundesamt für Umwelt, Wald und Landschaft (BUWAL).

Canton of Neuchâtel 2019: Émissions de la raffinerie. Information concerning fugitive emissions of oil at the refinery in Cressier. E-Mail communication from F. Gretillat, Canton of Neuchâtel, to A. Bass, FOEN (15.10.2019).

Carbotech 2000: PM10-Emissionsfaktoren: Mechanischer Abrieb im Offroad-Bereich. Folgearbeiten zum BUWAL-Bericht SRU Nr. 255. Arbeitsunterlage 16.

Carbura 2022: Untersuchung der historischen VOC-Emissionen aus Benzin-Tanklagern, Carbura, 01.03.2022. Carbura, im Auftrag des Bundesamtes für Umwelt (BAFU), Bern, 2022 [confidential/internal].

Carbura 2023: Untersuchung der VOC-Emissionen aus Flugpetrol-Tanklagern. Carbura, 16. Januar 2023. Report on behalf of the Federal Office for the Environment, Bern. [confidential/internal]

Carbura 2023b: Geschäftsbericht 2023, Carbura.

https://www.carbura.ch/fileadmin/user_upload/editors/web_dokumente/pdf_dokumente/Gesc haeftsberichte/2023_CARBURA_GB_DE.pdf

Carbura 2024: VOC-Emissionen aus Benzin- und Flugpetrol-Grosstankanlagen im Jahr 2023 Carbura, 5. November 2024. Report on behalf of the Federal Office for the Environment, Bern. [confidential/internal]

Caruso, R. V., O'Connor, R. J., Stephens, W. E., Cummings, K. M., & Fong, G. T. 2014: Toxic Metal Concentrations in Cigarettes Obtained from U.S. Smokers in 2009: Results from the International Tobacco Control (ITC) United States Survey Cohort. International Journal of Environmental Research and Public Health, 11(1), 202-217. <u>https://doi.org/10.3390/ijerph110100202</u> [10.03.2025]

Cemsuisse 2010a: Bestimmung der Emissionsfaktoren an Mischproben, Interner Bericht von Wessling im Auftrag von cemsuisse, 2010 [confidential/internal].

Citepa 2012: Inventaire des emissions de polluants atmospheriques en France au titre de la Convention sur la Pollution Atmospherique Transfrontaliere a longue Distance et de la

Directive Europeenne relative aux plafonds d'emissions nationaux (NEC). Ministère de l'Ecologie, du Développement Durable, des Transport et du Logement. CITEPA, Mars 2012.

Consaba 2016: Erhebung Verwertung Deponiegas über Fackelanlagen in der Schweiz 1990 bis 2014. Consaba GmbH (A. Bauen) im Auftrag des Bundesamtes für Umwelt (BAFU), Bern, Schlussbericht, 23.09.2016. <u>http://www.climatereporting.ch</u>

Cuhls, C., Mähl, B., Clemens J., 2010: Emissionen aus Biogasanlagen und technische Massnahmen zu ihrer Minderung. TK Verlag – Fachverlag für Kreislaufwirtschaft. Band 4 (2010). September 2010.

Danish Informative Inventory Report 2018: Annual Danish Informative Inventory Report to UNECE. Emission inventories from the base year of the protocols to year 2016. Nielsen, O-K., Plejdrup, M.S., Winther, M., Mikkelsen, M.H., Nielsen, M., Gyldenkærne, S., Fauser, P., Albrektsen, R., Hjelgaard, K.H., Bruun, H.G. & Thomsen, M. Aarhus University, DCE – Danish Centre for Environment and Energy, 495 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 267 <u>http://dce2.au.dk/pub/SR267.pdf</u> [05.02.2025]

DDPS 2014a: List of military non-road machinery (stocks, engine-power, annual operating hours). E-Mail C. Stucki (Federal Department of Defence, Civil Protection and Sport) to B. Notter (INFRAS) 27.05.2014 [confidential/internal].

DDPS 2020: Consumption of aviation fuel and jet kerosene of Swiss military aircraft 1990-2019. Désirée Föry (Federal Department of Defence, Civil Protection and Sport) to Anouk Aimée Bass (FOEN, Bern), 21.07.2020 [confidential/internal]

Düring, I., Schmidt, W. 2016: Ermittlung von Emissionsfaktoren von Kraftfahrzeugen unter Berücksichtigung zukünftiger Antriebskonzepte und der Vorkette von Kraftstoffen Arbeitspaket 2: Emissionsfaktoren aus Abrieb und Wiederaufwirbelung. Ingenieurbüro Lohmeyer GmbH & Co. KG, Radebeul.

DVGW 2022: Ermittlung von Methanemissionen des Gasverteilnetztes (ME DSO) – Inventur der Datenlage zur Abschätzung von Methanemissionen aus dem deutschen Gasverteilnetz, Entwicklung und Durchführung eines repräsentativen Messprogramms zur Erhebung der erforderlichen Daten. DVGW-Förderkennzeichen G201812. Deutscher Verein des Gas- und Wasserfaches e.V. <u>https://www.dvgw-regelwerk.de/plus#technische-regel/dvgw-abschlussbericht-g-201812/deadc2</u> [02.02.2025]

Ebertsch, G. 2021: Ergebnisse von Langzeitmessungen von Formaldehyd, CO, NOx und Gesamt-C an einer genehmigungsbedürftigen Biogasmotoranlage. Präsentation am Online-Workshop "Stand der Emissionsminderungstechnik bei kleinen Motoranlagen", UBA Deutschland, 19.10.2021. <u>https://www.umweltbundesamt.de/programm-workshop-stand-der https://www.umweltbundesamt.de/sites/default/files/medien/3521/dokumente/ebertsch_ergeb nisse_langzeitmessungen.pdf [28.01.2025]</u>

EC 2004: Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC. Official Journal of the European Union. <u>http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004L0042&qid=1455622565462&from=EN</u> [27.01.2025]

ECE 2023: Guidelines for Reporting Emissions and Projections data under the Convention on Long-range Transboundary Air Pollution.

https://www.ceip.at/fileadmin/inhalte/ceip/00_pdf_other/2022/emissions_reporting_guidelines 2023_final.pdf [17.01.2025]

ECE 2023a: Annexes to the 2023 reporting guideline: Annex II: Recommended Structure for Informative Inventory Repor (IIR), Annex V: Gridded emissions template, Annex VI: LPS emissions template <u>https://www.ceip.at/reporting-instructions/annexes-to-the-2023-reporting-guidelines</u> [17.01.2025]

Ecoinvent 2021: Ecoinvent Database v3.8. Swiss Centre for Life Cycle Inventories, Dübendorf. <u>https://ecoinvent.org/</u> [28.01.2025]

Edelmann, W., Schleiss, K. 1999: Ökologischer, energetischer und ökonomischer Vergleich von Vergärung, Kompostierung und Verbrennung fester biogener Abfallstoffe. [Ecologic,energetic and economic comparison of treating biogenic wastes by digesting, composting or incinerating]. On behalf of the Swiss Federal Office of Energy, Bern and the Swiss Agency for the Environment, Forests and Landscape, Bern. https://www.bafu.admin.ch/dam/bafu/en/dokumente/klima/klima-climatereporting-referenzen-cp1/edelmann_w_schleissk1999.pdf.download.pdf/edelmann_w_schleissk1999.pdf [02.02.2024]

EMEP 2012a: Considerations of Changing the EMEP Grid. 36th Session of the EMEP Steering Body, 17 to 19 September 2012, Geneva, Switzerland. http://www.unece.org/fileadmin/DAM/env/documents/2012/air/EMEP_36th/n_3_EMEP_note_on_grid_scale__projection_and_reporting.pdf [24.01.2024]

EMEP 2012b: The new EMEP grid – An overview of the upcoming changes. https://www.ceip.at/fileadmin/inhalte/ceip/6_grid_lps/ceip_new_emep_grid.pdf [24.01.2024]

EMEP/EEA 2002: EMEP/CORINAIR Emission Inventory Guidebook. European Environment Agency. 3rd edition October 2002 update.

http://www.eea.europa.eu/publications/EMEPCORINAIR3/page002.html [27.01.2025]

EMEP/EEA 2016: Air pollutant emission inventory guidebook – 2016. European Environment Agency. <u>https://www.eea.europa.eu/publications/emep-eea-guidebook-2016</u> [07.03.2025]

EMEP/EEA 2019: EMEP/EEA air pollutant emission inventory guidebook 2019. Technical guidance to prepare national emission inventories. European Environment Agency. <u>https://www.eea.europa.eu/ds_resolveuid/e0473b3047bf435b95cf245894a9b197</u> [23.01.2025]

EMEP/EEA 2023: EMEP/EEA air pollutant emission inventory guidebook 2023. Technical guidance to prepare national emission inventories. European Environment Agency. <u>https://www.eea.europa.eu//publications/emep-eea-guidebook-2023</u> [10.01.2025]

EMIS 2025/(NFR-Code): Comments to EMIS (Swiss Emission Information System) database. Internal documents. Federal Office for the Environment, Bern [confidential/internal]

EMPA 1999: Written communication from Dr. H.W. Jäckle (EMPA, Dübendorf) to Andreas Liechti (FOEN, Bern), 09.03.1999. <u>http://www.climatereporting.ch</u>

EMPA 2004b: PM10-Emissionen bei Anlagen der Holzbearbeitung, Bericht zur Hauptstudie, März 2004. Swiss Federal Laboratories for Materials Testing and Research (EMPA), Dübendorf.

EV 2014: Jahresbericht 2013. Erdöl-Vereinigung, Zürich. <u>https://www.avenergy.ch/images/pdf/1621_ev_jb13_d.pdf</u> [29.01.2025]

FCA 2015a: Bunkers of diesel oil 1990–2014. Written communication Wolfgang Kobler, Federal Customs Administration (FCA) to Anouk Bass (FOEN), 13.11.2015 [confidential/internal].

FCA 2015c: Import- und Exportstatistik Swiss-Impex. Tarifnummer 87 Automobile etc. (tarif no. 87 motorised vehicles) <u>https://www.swiss-impex.admin.ch</u> [04.02.2022]

FEDPOL 2024: Bundesamt für Polizei fedpol, Statistiken Pyrotechnikumsatz und Sprengmittelumsatz in der Schweiz.

https://www.fedpol.admin.ch/fedpol/de/home/sicherheit/explosivstoffe.html [07.03.2025]

FEDRO 2014: Extract 2AA of MOFIS database (reference date 30.09.2013) of the Federal Roads Office (FEDRO) containing vehicle stock numbers. E-mail from A. Lehmann (FEDRO) to P. Wüthrich, INFRAS on 14.11.2014 [hardcopy].

Fial 2013: Die Schweizer Nahrungsmittel-Industrie im Jahr 2012. Foederation der Schweizerischen Nahrungsmittel-Industrien (fial).

FM Global 2010: Environmental impact of automatic fire sprinklers. Research technical report. By Wieczorek, C.J., Ditch, B., Bill, R.G., 2010, FM Global Research Division. <u>https://www.fm.com/-/media/Files/FM-Global/Research-Technical-Reports/p10062.pdf</u> [07.03.2025]

FOAG 2011: Klimastrategie Landwirtschaft: Klimaschutz und Anpassung an den Klimawandel für eine nachhaltige Schweizer Land- und Ernährungswirtschaft. Federal Office for Agriculture, Bern.

https://www.news.admin.ch/NSBSubscriber/message/attachments/23213.pdf [07.02.2025], [in German]

FOAG 2021: Verordnungspaket Parlamentarische Initiative 19.475 «Das Risiko beim Einsatz von Pestiziden reduzieren». Erläuternder Bericht zur Eröffnung des Vernehmlassungsverfahrens. Bern, Schweiz.

https://www.fedlex.admin.ch/filestore/fedlex.data.admin.ch/eli/dl/proj/2021/42/cons_1/doc_2/ de/pdf-a/fedlex-data-admin-ch-eli-dl-proj-2021-42-cons_1-doc_2-de-pdf-a.pdf [27.02.2025]

FOCA 1991: Crossair confidential data 1991. Federal Office of Civil Aviation, Bern [confidential/internal].

FOCA 1991a : L'aviation civile Suisse en 1990. Federal Office of Civil Aviation, Bern. <u>http://www.climatereporting.ch</u>

FOCA 2004: Unternehmensstatistik der Schweizerischen Helikopterunternehmungen. Federal Office of Civil Aviation, Bern. **Fehler! Linkreferenz** ungültig.<u>http://www.climatereporting.ch</u>

FOCA 2006: GHG emissions of Swiss civil aircraft in 1990 and 2004: data, proceeding and description of the calculations. Written communication from Theo Rindlisbacher and Paul Stulz (FOCA, Bern) to Andreas Liechti (FOEN, Bern), 20./22.02.2006. <u>http://www.climatereporting.ch</u>

FOCA 2006a: GHG emissions of Swiss civil aircraft in 1990, 1995, 2000, 2002, 2004 and 2005: data, proceeding and description of the calculations. Written communication from Theo Rindlisbacher (FOCA, Bern) to Paul Filliger (FOEN, Bern), 17.11.2006. <u>http://www.climatereporting.ch</u>

FOCA 2007a: Aircraft Piston Engine Emissions. Summary Report. Federal Office of Civil Aviation. Report Ref. 0/3/33/33-05-003 ECERT. Bern. <u>http://www.climatereporting.ch</u>

FOCA 2008: GHG emissions of Swiss civil aircraft in 2007. Written communication from Theo Rindlisbacher (FOCA, Bern) to Beat Müller (FOEN, Bern), 01.12.2008. <u>http://www.climatereporting.ch</u>

FOCA 2009: GHG emissions of Swiss civil aircraft in 2008. Written communication from Theo Rindlisbacher (FOCA, Bern) to Beat Müller (FOEN, Bern), 04.11.2009. <u>http://www.climatereporting.ch</u>

FOCA 2010: GHG emissions of Swiss civil aircraft in 2009. Written communication from Theo Rindlisbacher (FOCA, Bern) to Sophie Hoehn (FOEN, Bern), 18.11.2010. <u>http://www.climatereporting.ch</u>

FOCA 2011: GHG emissions of Swiss civil aircraft in 2010. Written communication from Theo Rindlisbacher (FOCA, Bern) to Sopie Hoehn (FOEN, Bern), 09.11.2011. <u>http://www.climatereporting.ch</u>

FOCA 2012: GHG emissions of Swiss civil aircraft in 2011. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 07.09.2012. <u>http://www.climatereporting.ch</u> **FOCA 2013:** GHG emissions of Swiss civil aircraft in 2012. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 07.11.2013. <u>http://www.climatereporting.ch</u>

FOCA 2014: GHG emissions of Swiss civil aircraft in 2013 and corrections for the year 2011. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 30.10.2014 [confidential/internal].

FOCA 2015: GHG emissions of Swiss civil aircraft in 2014. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 29.10.2015 [confidential/internal].

FOCA 2016: GHG emissions of Swiss civil aircraft in 2015. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 6.12.2016 [confidential/internal].

FOCA 2016b: Estimation of PM emissions from aviation. Federal Office of Civil Aviation FOCA. 26.09.2016 [confidential/internal].

FOCA 2017: GHG emissions of Swiss civil aircraft in 2016. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 24.11.2017 [confidential/internal].

FOCA 2018: GHG emissions of Swiss civil aircraft in 2017. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 12.07.2018 [confidential/internal].

FOCA 2019: GHG emissions of Swiss civil aircraft in 2018. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 25.06.2019 [confidential/internal].

FOCA 2020: GHG emissions of Swiss civil aircraft in 2019. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 24.8.2020 [confidential/internal].

FOCA 2021: GHG emissions of Swiss civil aircraft in 2020. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 14.10.2021 [confidential/internal].

FOCA 2022: GHG emissions of Swiss civil aircraft in 2021 and update for 2020. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 18.08.2022 [confidential/internal].

FOCA 2023: GHG emissions of Swiss civil aircraft in 2022. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern), 14.07.2023 [confidential/internal].

FOCA 2024: GHG emissions of Swiss civil aircraft in 2023. Written communication from Theo Rindlisbacher (FOCA, Bern) to Anouk-Aimée Bass (FOEN, Bern) 17.07.2024 [confidential/internal].

FOEN 2006: Prozess EMIS (Emissions-Informationssytem Schweiz). Beschrieb des Prozesses (= Handbuch zur EMIS-Datenbank (Entwurf)). Internes Dokument. [Manual to EMIS database]. Federal Office for the Environment. 23. Mai 2006. Bern

FOEN 2008: Switzerland's Informative Inventory Report 2008 (IIR). Submission under the UNECE Convention on Long-range Transboundary Air Pollution. Submission of March 2008 to the United Nations ECE Secretariat

FOEN 2011b: NO₂ ambient concentrations in Switzerland. Modelling results for 2005, 2010, 2015. Federal Office for the Environment, Bern. Environmental studies no. 1123. INFRAS/Meteotest, Zürich, Bern.

FOEN 2013a: PM10 and PM2.5 ambient concentrations in Switzerland. Modelling results for 2005, 2010, 2020. Federal Office for the Environment, Bern. Environmental studies no. 1301. INFRAS/Meteotest, Zürich, Bern.

FOEN 2014p: Von Arx U.: Feuerwerkskörper. Umweltauswirkungen und Sicherheitsaspekte. Bundesamt für Umwelt, Bern. Umwelt-Wissen Nr. 1423.

FOEN 2015j: Non-road energy consumption and pollutant emissions. Study for the period from 1980 to 2050 (Original in German: Energieverbrauch und Schadstoffemissionen des Nonroad-Sektors. Studie für die Jahre 1980–2050. Schlussbericht). INFRAS. Ed. By the Federal Office for the Environment.

https://www.bafu.admin.ch/dam/bafu/en/dokumente/luft/uw-umwelt-

wissen/energieverbrauchundschadstoffemissionendesnon-road-

sektors.pdf.download.pdf/non-road_energy_consumptionandpollutantemissions.pdf [31.01.2025]

FOEN 2017I: Adressliste der Schweizer Kläranlagen mit Angaben zur Ausbaugrösse. Swiss Federal Office of Energy, Bern.

https://www.bafu.admin.ch/dam/bafu/de/dokumente/wasser/fachinfo-

daten/ARA Liste August2017 Version Internet .pdf.download.pdf/ARA Liste August2017 Version Internet .pdf [27.01.2025]

FOEN 2024: Switzerland's Greenhouse Gas Inventory 1990–2022, National Inventory Document. Submission of 2024 under the United Nations Framework Convention on Climate Change. Federal Office for the Environment, Bern.

https://www.bafu.admin.ch/bafu/en/home/topics/climate/state/data/climate-reporting/ghginventories/previous.html

FOEN 2024d: Switzerland's first biennial transparency report under the Paris Agreement, Swiss Federal Office for the Environment, Bern, Switzerland, December 2024. <u>http://www.climatereporting.ch</u>

FOEN 2024f: Annuaire La forêt et le bois 2023. État de l'environnment n°2225 [Jahrbuch Wald und Holz 2023. Umwelt-Zustand Nr. 2225]. Federal Office for the Environment, Bern. **Fehler! Linkreferenz ungültig.**<u>http://www.bafu.admin.ch/uz-2225-f</u> [07.03.2025]

FOEN 2024h: Abfallstatistiken des Jahres 2023 sowie Zeitreihen. Diverse Dateien. Federal Office for the Environment, Bern

https://www.bafu.admin.ch/bafu/en/home/topics/waste/state/data.html [29.01.2025]

FOEN 2024i: CO₂-Emissionsfaktor Erdgas, Zeitreihe 1990–2023 für das Treibhausgasinventar der Schweiz, internal documentation, Federal Office for the Environment, Bern [confidential/internal]

FOEN 2025: Switzerland's Greenhouse Gas Inventory 1990–2023, National Inventory Document. Submission of 2025 under the United Nations Framework Convention on Climate Change. Federal Office for the Environment, Bern. Forthcoming.

FOEN 2025a: Qualitätsmanagement Treibhausgasinventar – Handbuch. Bundesamt für Umwelt (BAFU), Bern [German for: Quality management system Greenhouse Gas Inventory – Manual. Federal Office for the Environment (FOEN), Bern [confidential/internal]

Frei E., Vökt U., Flückiger R., Brunner H. and Schai F. 1980: Bodeneignungskarte der Schweiz, Massstab 1:200000. Grundlagen für die Raumplanung, Bundesämter für Raumplanung, Landwirtschaft und Forstwesen, EDMZ Bern.

FSO 2022c: Switzerland's population in 2021. Federal Statistical Office. Neuchâtel. <u>https://www.bfs.admin.ch/asset/en/1155-2100</u> <u>https://www.bfs.admin.ch/bfs/en/home/statistics/population/effectif-</u> change.assetdetail.19964430.html[30.01.2023] **FSO 2023a**: STAT-TAB: Die interaktive Statistikdatenbank; Datenwürfel für Thema 07.2 – Landwirtschaft. Federal Statistical Office, Neuchâtel. https://www.pxweb.bfs.admin.ch/pxweb/de/ [05.02.2024]

FSO 2024b: Background data of the Gross Nutrient Balance of the Swiss Federal Statistical Office. Federal Statistical Office, Neuchâtel. [confidential/internal, queries from database].

FSO 2024c: Switzerland's population in 2023. Federal Statistical Office. Neuchâtel. https://www.bfs.admin.ch/bfs/en/home/statistics/cataloguesdatabases.assetdetail.32786818.html https://www.bfs.admin.ch/bfs/en/home/statistics/population/effectifchange.assetdetail.19964430.html[27.01.2025]

FSO 2024d: Die Beschäftigungsstatistik der Schweiz (Job Statistics). Federal Statistical Office, Neuchâtel. <u>https://www.bfs.admin.ch/bfs/de/home/statistiken/industrie-dienstleistungen/unternehmen-beschaeftigte/beschaeftigungsstatistik.html</u> [28.01.2025]

FSO 2024e: Distribution of road vehicles by vehicle group. Federal Statistical Office, Neuchâtel.

https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/transport-infrastructurevehicles/vehicles/road-vehicles-stock-level-motorisation.assetdetail.32386677.html [22.01.2025]

FSO 2024f: Fahrleistungen und Fahrzeugbewegungen im Personenverkehr. Federal Statistical Office, Neuchâtel. <u>https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases.assetdetail.je-d-11.04.01.01.html</u> [21.01.2025]

FSO 2024i: Farm structure census 2023 (Landwirtschaftliche Strukturerhebung). Federal Statistical Office. Neuchâtel. <u>https://www.bfs.admin.ch/bfs/en/home/statistics/agriculture-forestry/farming.html</u> [05.02.2025]

Glüge J., Steinlin C., Schalles S., Wegmann L., Tremp J., Breivik K., et al. 2017: Import, use, and emissions of PCBs in Switzerland from 1930 to 2100. <u>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183768#sec039ht</u> [15.01.2025]

Graf 1990: Schmoll AG Basel Kabelzerlegungsanlage, Konzept Rauchgasreinigung.

HTAP 2010: Task Force on Hemispheric Transport of Air Pollution – Advice on Future O3 Boundary Conditions for Europe. Assessment Report, October 2012.

IFEU 2010: Aktualisierung des Modells TREMOD – Mobile Machinery (TRE-MOD-MM). Endbericht im Auftrag des Umweltbundesamtes. UBA Texte 28/2010. Institut für Energieund Umweltforschung (IFEU), Heidelberg.

https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3944.pdf [22.01.2025]

IFEU/INFRAS 2010: Ermittlung der Unsicherheiten der mit den Modellen TREMOD und TREMOD-MM berechneten Luftschadstoffemissionen des landgebundenen Verkehrs in Deutschland, Endbericht. IFEU und INFRAS im Auftrag des Umweltbundesamts Dessau/Deutschland, FKZ 360 16 023. Dessau-Rosslau. Mai 2010. http://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/3937.pdf [06.02.2025]

INERIS 2019: Émissions atmosphériques de dioxines et de furanes bromés lors de feux accidentels de déchets contenant des substances bromées, 15.03.2019. Institut national de l'environnement industriel et des risques, rédaction : Sabine Guerin et Serge Collet, Essais en plateforme incendie, Verneuil-en-Halatte : Ineris – 170785-00117B, <u>https://www.ineris.fr/fr/emissions-atmospheriques-dioxines-furanes-bromes-lors-feux-accidentels-dechets-contenant-substances [15.01.2025]</u>

INFRAS 2007: PM10-Emissionen des Verkehrs, Teil Schienenverkehr. INFRAS commissioned by FOEN. <u>https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/fachinfo-</u>

daten/pm10-emissionen_schienenverkehr.pdf.download.pdf/pm10emissionen_schienenverkehr.pdf [03.02.2025]

INFRAS 2011a: Bunker fuels Bodensee/Genfersee, Datenverfügbarkeit und Berechnung der Bunker Fuels. Internal document. Federal Office for the Environment. September 2011. <u>www.climatereporting.ch</u>

INFRAS 2014: Verbrennung natürlicher Wald-, Feld- und Gartenabfälle im Freien. Datengrundlagen zur Aktualisierung der Jahresleistungen. Zürich, 29. Januar 2014. [confidential/internal]

INFRAS 2015a: Online database of emission factors, activity data and emissions of non-road vehicles (queries from database, corresponding report is FOEN 2015j) <u>https://www.bafu.admin.ch/bafu/en/home/topics/air/state/non-road-datenbank.html</u> [31.01.2025].

INFRAS 2017: Pilotstudie zum Treibstoffverbrauch und den Treibhausgasemissionen im Verkehr 1990-2050 – Szenarien für den Strassenverkehr. Schlussbericht. INFRAS, Zurich. Mandated by the Swiss Federal Office for the Environment, Bern. <u>https://t1p.de/INFRAS2017</u> [31.01.2025]

INFRAS 2017b: Ammoniakemissionen aus der Landwirtschaft. Unsicherheitsanalyse Teil II. Schlussbericht. (Uncertainties of agricultural ammonia emissions – part II; Report in German only). INFRAS mandated by the Federal Office for the Environment FOEN. Internal report, January 2017 Zürich.

INFRAS 2017c: Luftschadstoffemissionen des Strassenverkehrs der Schweiz. 1990-2050. Schlussbericht, Bern, 24. November 2017.

https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/externe-studienberichte/Bericht_Luftschadstoffemissionen_des_Strassenverkehrs_der_Schweiz_1990_2050 .pdf.download.pdf/Bericht_Luftschadstoffemissionen_des_Strassenverkehrs_der_Schweiz_1 990_2050.pdf [24.01.2025], [in German]

INFRAS 2019a: HBEFA 4.1 – Development Report. Notter, B., Keller, M., Althaus, H.-J., Cox, B., Knörr, W., Heidt, C., Biemann, K., Räder, D., Jamet, M. Commissioned by FOEN/Switzerland; Umweltbundesamt Dessau/Germany; Umweltbundesamt Wien/Austria; Swedish Road Administration, ADEME/France; SFT/Norway. Bern, Heidelberg. 21.08.2019. https://assets-global.website-

files.com/6207922a2acc01004530a67e/625e8c74c30e26e022b319c8_HBEFA41_Developm ent_Report.pdf [25.01.2025]

INFRAS 2021: Ammoniakemissionen aus der Landwirtschaft 2021, Schlussbericht. (Uncertainties of agricultural ammonia emissions, final report; Report in German only). INFRAS mandated by the Federal Office for the Environment FOEN. Internal report, November 2021 Zürich.

INFRAS 2022: The Handbook Emission Factors for Road Transport (HBEFA), version 4.2 (MS Access runtime application). INFRAS in cooperation with further editors: FOEN/Switzerland; Umweltbundesamt Dessau/Germany; Umweltbundesamt Wien/Austria; Swedish Road Administration, ADEME/France; SFT/Norway. Bern, 31.01.2022. http://www.hbefa.net/e/index.html [25.01.2025]

INFRAS 2022a: Emissionsinventar stationäre Motoren und Gasturbinen, Basisjahr 2019 und Zeitreihe 1990–2060, Schlussbericht von Notter, B., Graf, C., Bieler, C., Etter, N. an das Bundesamt für Umwelt, Bern, 15.05.2022,

https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/externe-studienberichte/emissionsinventar-stationaere-motoren-und-gasturbinen-basisjahr-2019-undzeitreihe-1990-2060.pdf.download.pdf/Emissionsinventar_Motoren_Gasturbinen.pdf [27.01.2025]

Integer 2013: Emissions Control in Non-Road Mobile Machinery (NRMM) Markets: 2013 Edition. Integer Research Limited, London. [confidential/internal]

IPCC 1996: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change. <u>https://www.ipcc.ch/report/revised-1996-ipcc-guidelines-for-national-greenhouse-gas-inventories</u> [29.01.2025]

IPCC 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan. Copyright by The Intergovernmental Panel on Climate Change (IPCC), 2006. <u>http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html</u> [27.01.2025]

IPCC 2019: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). Published: IPCC, Switzerland. Copyright by The Intergovernmental Panel on Climate Change (IPCC), 2019. <u>https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html</u> [29.01.2025]

Jardin Suisse 2012: Zahlen zum Schweizerischen Gartenbau. Unternehmerverband Gärtner Schweiz. <u>http://www.climatereporting.ch</u>

Joint Committee for Guides in Metrology, 2008: Evaluation of measurement data – Supplement 1 to the "Guide to the expression of uncertainty in measurement" – Propagation of distributions using a Monte Carlo method. https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf [07.03.2025]

Külling, D.R., Stadelmann, F.X., 2002: Nährstoffe und Schwermetalle im Klärschlamm 1975 – 1999. AGRARForschung 9 (5): 200-205, 2002.

Kupper 2012: Expert judgement on uncertainty estimates of emission factors of the AGRAMMON model, oral communication to S. Liechti and B. Achermann (FOEN), 13 March 2012

Kupper, T., Bonjour, C., Menzi, H., 2015: Evolution of farm and manure management and their influence on ammonia emissions from agriculture in Switzerland between 1990 and 2010. Atmospheric Environment 103, 215-221

https://www.sciencedirect.com/science/article/pii/S1352231014009728?via%3Dihub [27.01.2025]

Kupper, T., Bonjour, C., Menzi, H., Zaucker, F., Bretscher, D. 2018: Ammoniakemissionen in der Schweiz: Neuberechnung 1990–2015. Prognose bis 2030. Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften. Zollikofen, Schweiz. <u>https://agrammon.ch/en/downloads/</u> [27.01.2025]

Kupper, T., Häni, C. 2022: Anteil Silagefütterung von Rindvieh in der Schweiz 1990-2019. Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften. Zollikofen, im Auftrag des Bundesamts für Umwelt.

Kupper, T., Häni, C., Bretscher, D., Zaucker, F., 2022: Ammoniakemissionen der schweizerischen Landwirtschaft 1990–2020. Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften. Zollikofen, Schweiz. <u>http://www.climatereporting.ch</u>

Kurz, D., Alveteg, M., Sverdrup, H., 1998: Acidification of Swiss forest soils. Development of a regional dynamic assessment. Bern: Swiss Agency for the environment, Forests and Landscape (SAEFL), Environmental Documentation 89. 115 p.

KWF 2012: Forstmaschinenstatistik zeigt deutliche Stabilisierung des Marktes. 17. KWF-Tagung. <u>http://kwf2018.kwf-online.de/index.php/aktuelles/presse/159-kwf-</u> <u>forstmaschinenstatistik-zeigt-deutliche-stabilisierung-des-</u> marktes?highlight=WyJmb3JzdG1hc2NoaW5lbnN0YXRpc3RpayIsInplaWd0liwiZm9yc3RtYX

marktes?highlight=WyJmb3JzdG1hc2NoaW5lbnN0YXRpc3RpayIsInplaWd0IiwiZm9yc3RtYX NjaGluZW5zdGF0aXN0aWsgemVpZ3QiXQ== [04.02.2022]

Lemieux, P., Gullet B., Lutes C., Winterrowd C., Winters D., 2003: Variables affecting emissions of PCDD/Fs from uncontrolled combustion of household waste in barrels. Air & Waste Management Association. 53: 523–531. USA

Leupro 2012: Entwicklung und Prognose der Emissionsfaktoren Feuerungen für den Zeitraum 1990–2035. <u>http://www.climatereporting.ch</u>

Lönnermark, A. and Blomqvist, P. 2006: Emissions from an automobile fire. Chemosphere, 62, 7, 1043-1056, <u>https://doi.org/10.1016/j.chemosphere.2005.05.002</u>

LUBW 1995: Stoffbericht Hexachlorbenzol (HCB). Texte und Bericht zur Altlastenbearbeitung 18/95. Landesanstalt für Umweltschutz, Baden-Württemberg, Karlsruhe. Germany. <u>https://pudi.lubw.de/detailseite/-/publication/27419-</u> <u>Stoffbericht_Hexachlorbenzol_%28HCB%29.pdf</u> [05.02.2025]

Luftkollektiv 2023: Abschätzung der NMVOC Emissionen von Tankstellen – Aktualisierung der Abschätzungen für die Jahre 1990 – 2030. Luftkollektiv GmbH, Basel. Forthcoming. [confidential/internal]

Mack, G., Möhring, A. 2021: SWISSland-Modellierung zur Palv 19.475: «Das Risiko beim Einsatz von Pestiziden reduzieren». Agroscope. Tänikon-Ettenhausen, Schweiz. https://www.agroscope.admin.ch/agroscope/en/home/topics/economics-technology/economic-modelling-policy-analysis.html [07.02.2025]

Matzer, C., Weller, K., Dippold, M., Lipp, S., Röck, M., Rexeis, M., Hausberger, S., 2019: Update of emission factors for HBEFA 4.1. Final report. Technische Universität (TU) Graz, Austria. 09.09.2019. <u>https://assets-global.website-</u> files.com/6207922a2acc01004530a67e/625e8d14b70af84fba1ef10c_HBEFA41_Report_TU G_09092019.pdf [24.01.2025]

Mejía-Centeno 2007: Effect of low-sulfur fuels upon NH3 and N2O emission during operation of commercial three-way catalytic converters. Topics in Catalysis. Volume 42-43, Numbers 1-4. <u>https://link.springer.com/content/pdf/10.1007/s11244-007-0210-2.pdf</u> [02.02.2024]

Menzi H., 2022: Comparison of Swiss IIR submission for NH3 emissions from livestock production and manure management with Tier 2 approach. Internal Memo Swiss Federal Office for the Environment. Final version December 2022.

Meteotest 2013: Rasterung der Emissionsdaten der Schweiz auf 0.1°-Gitter – Dokumentation von Methodik und Exceltool. Meteotest im Auftrag des Bundesamtes für Umwelt (BAFU), 2013.

Meteotest 2019a: NMVOC-Emissionen der Waldflächen in der Schweiz; Zeitreihe 1990–2016, langfristige Entwicklung, Sensitivitätsanalyse für zwei Extremtage. Meteotest AG, Bern, commissioned by the Federal Office for the Environment (FOEN). <u>https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/externe-studien-berichte/nmvoc-emissionen-der-waldflaechen-in-der-schweiz.pdf</u> [27.01.2025]

Meteotest 2019b: Mapping Nitrogen Deposition 2015 for Switzerland. Technical Report on the Update of Critical Loads and Exceedance, including the years 1990, 2000, 2005 and 2010. Meteotest AG, Bern, commissioned by the Federal Office for the Environment (FOEN). https://www.bafu.admin.ch/dam/bafu/en/dokumente/luft/externe-studien-berichte/mapping-nitrogen-deposition-2015-for-

switzerland.pdf.download.pdf/Mapping%20Nitrogen%20Deposition%202015%20for%20Swit zerland.pdf [27.01.2025]

Meteotest 2020a: Emissionen Schweiz. Aufbereitung von Emissionskatastern für die Luftschadstoffe Nox, PM10 und PM2.5 der Jahre 2015, 2020 und 2030. Schlussbericht im Auftrag des Bundesamtes für Umwelt (BAFU).

https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/externe-studien-

berichte/emissionskataster-

schweiz.pdf.download.pdf/201222_emissionskataster_schweiz.pdf [2324.0201.20222024]

Meteotest 2021a: Datengrundlagen/Verteilschlüssel für GNFR-Tool in MESAP. Metoetest im Auftrag des Bundesamtes für Umwelt (BAFU). Aktennotiz vom 16.12.2021.

Neosys 2013: EMIS Comments Black Carbon factors. Im Auftrag des Bundesamts für Umwelt (BAFU), 2013.

Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Fauser, P., Mikkelsen, M.H., Albrektsen, R., Hjelgaard, K., Hoffmann, L., Thomsen, M., Bruun, H.G., 2013: Danish emission inventory for hexachlorobenzene and polychlorinated biphenyls. Aarhus University, DCE – Danish Centre for Environment and Energy, 65 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 103 <u>http://dce2.au.dk/pub/SR103.pdf</u> [29.01.2025]

Norwegian Environment Agency 2020: Informative Inventory Report (IIR) 2020. Norway. Air pollutant emissions 1990-2018. Norwegian Environment Agency. <u>https://www.miljodirektoratet.no/publikasjoner/2020/april-2020/informative-inventory-report-2020-norway/</u><u>https://www.miljodirektoratet.no/publikasjoner/2020/april-2020/informative-inventory-report-2020-norway/[07.03.2025]</u>

Norwegian Environment Agency 2021: Informative Inventory Report (IIR) 2021. Norway – Air Pollutant Emissions 1990-2019.

https://www.miljodirektoratet.no/publikasjoner/2021/mars-2021/informative-inventory-report-iir-2021.-norway/ [27.01.2025]

Notter, B., Cox, B., Hausberger, S., Matzer, C., Weller, K., Dippold, M., Politschnig, N., Lipp, S., Allekotte, M., Knörr, W., André, M., Gagnepain, L., Hult, C., Jerksjö, M. 2022: HBEFA 4.2: Documentation of Updates. Bundesamt für Umwelt BAFU (CH),

Umweltbundesamt UBA (DE), Umweltbundesamt UBA (AT), Agence de l'Environnement et de la Maîtrise de l'Energie ADEME (FR), Trafikverket (SE), Miljødirektoratet (NO), Bern, Graz, Heidelberg, Lyon, Göteborg. <u>https://assets-global.website-files.com/6207922a2acc01004530a67e/6217584903e9f9b63093c8c0_HBEFA42_Update_D</u>ocumentation.pdf

[24.01.2025]

Off-Highway Research 2005: The Market for Construction Equipment and Agricultural Tractors in Switzerland. Internal document INFRAS Bern. September 2005 [confidential/hardcopy].

Off-Highway Research 2008: The Market for Construction Equipment and Agricultural Tractors in Switzerland. Internal document FOEN. November 2008 [confidential/internal].

Off-Highway Research 2012: The Market for Construction Equipment and Agricultural Tractors in Switzerland. Internal document FOEN. April 2012 [confidential/internal].

OS 2024: Liechtenstein's energy statistics 2023. Office of statistics Liechtenstein. <u>https://www.statistikportal.li/de/themen/raum-umwelt-und-energie/energie</u> [02.02.2025]

Passant et al. 1993: Emissions of volatile organic compounds (VOCs) from the food and drink industries of the European Community, Atmospheric Environment Vol. 27A, No. 16, 1993. <u>https://www.sciencedirect.com/science/article/abs/pii/096016869390029X?via%3Dihub</u> [10.01.2025]

Piadé, J.-J., Jaccard, G., Dolka, C., Belushkin, M., Wajrock, S. 2015: Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead. Toxicology Reports, Vol. 2, pp. 12-26. <u>https://doi.org/10.1016/j.toxrep.2014.11.005</u> [10.03.2025]

Prognos 2012a: Die Energieperspektiven für die Schweiz bis 2050 – Energienachfrage und Elektrizitätsangebot in der Schweiz 2000–2050. Prognos AG im Auftrag des Bundesamtes für Energie, Basel. <u>https://www.bfe.admin.ch/bfe/de/home/politik/energiestrategie-</u>2050/dokumentation/energieperspektiven-

2050.exturl.html/aHR0cHM6Ly9wdWJkYi5iZmUuYWRtaW4uY2gvZGUvcHVibGljYX/Rpb24v ZG93bmxvYWQvNjczNw==.html [in German] [07.02.2025] **Prognos 2013:** CO₂-Emissionen 1990–2012 von Industrie- und Dienstleistungen, Endbericht/Kurzdokumentation zuhanden Bundesamt für Umwelt, Bern. Prognos, Basel [confidential/internal].

Prognos/INFRAS/TEP/Ecoplan 2020: Swiss Energy Perspectives 2050+. Prognos, Basel / Infras, Zurich / TEP Energy, Zurich / Ecoplan, Bern (mandated by the Swiss Federal Office of Energy, Bern). <u>https://www.bfe.admin.ch/bfe/de/home/politik/energieperspektiven-2050-plus.html</u> [27.01.2025]

PRTR 2021: Swiss Pollutant Release and Transfer Register (Swiss PRTR) in year 2019. <u>https://www.bafu.admin.ch/bafu/en/home/topics/chemicals/state/swissprtr-pollutant-register.html</u> [05.02.2025]

PRTR 2025: Swiss Pollutant Release and Transfer Register (Swiss PRTR) in year 2023. <u>https://www.bafu.admin.ch/bafu/en/home/topics/chemicals/state/swissprtr-pollutant-register.html</u> [27.01.2025]

Quantis 2014: Methanemissionen der Schweizer Gaswirtschaft. Zeitreihe 1990 bis 2012. Schlussbericht. Quantis im Auftrag des Schweizerischen Vereins des Gas- und Wasserfaches SVGW und des Bundesamts für Umwelt BAFU. <u>http://www.climatereporting.ch</u>

Raffinerie de Cressier 1992 : Project CRISTAL – Influence sur l'environnement (incl. Annexes), Raffinerie de Cressier (rapports préparé en collaboration avec Badger BV, Pays-Bas), Cressier [confidential/internal].

Reidy, B. and Menzi H. 2005: Ammoniakemissionen in der Schweiz: Neues Emissionsinventar 1990 bis 2000 mit Hochrechnungen bis 2003. Technischer Schlussbericht, HAFL Zollikofen, Bern.

Rentz, O., Karl, U., Haase, M., Koch, M. 2008: Nationaler Durchführungsplan unter dem Stockholmer Abkommen zu persistenten organischen Schadstoffen (POPs). Umweltbundesamt (UBA) 2008. <u>Nationaler Durchführungsplan unter dem Stockholmer</u> <u>Abkommen zu persistenten organischen Schadstoffen (POPs) | Umweltbundesamt</u> [27.01.2025]

Richner, W., Sinaj, S., Carlen, Ch., Flisch, R., Gilli, C., Huguenin-Elie, O., Kuster, T., Latsch, A., Mayer, J., Neuweiler, R., Spring, J.L. 2017: GRUD 2017: Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz. Agroscope. Bern, Schweiz. [hardcopy]

SAEFL 1996a: Luftschadstoff-Emissionen aus natürlichen Quellen der Schweiz. [Emissions polluantes dues aux sources naturelles en Suisse]. Schriftenreihe Umwelt Nr. 257. [Cahier de l'environnement No 257]. Swiss Agency for the Environment, Forests and Landscape, Bern. <u>http://www.climatereporting.ch</u>

SAEFL 2000: Handbuch Emissionsfaktoren für stationäre Quellen. Ausgabe 2000, Reihe Vollzug Umwelt. Swiss Agency for the Environment, Forests and Landscape, Bern. http://www.climatereporting.ch

SBB 2005: PM10-Emissionen des Schienenverkehrs. Schlussbericht Teil SBB, UmweltCenter der Schweiz. Bundesbahnen. FOEN-internal document. 25. August 2005.

SBV 2013: Betriebsinterne Verrechnungsansätze und Inventar-Grunddaten (BIV) 2013. Schweizerischer Baumeisterverband. Verlag SBV [confidential/internal].

SBV 2024: Statistiques et évaluations concernant l'agriculture et l'alimentation, 2023. [Statistische Erhebungen und Schätzungen über Landwirtschaft und Ernährung, 2023]. Swiss Farmers' Union, Brugg. [available in German and French, partly online, partly hardcopy] <u>https://www.sbv-usp.ch/de/services/agristat-statistik-der-schweizer-landwirtschaft/statistische-erhebungen-und-schaetzungen-ses</u> [05.02.2025]

Schleiss, K. 2017: Erhebung Schweizer Daten zu Mengen in der Kompostierung, im Auftrag des Bundesamtes für Umwelt (BAFU), Bern, 17.11.2017. <u>http://www.climatereporting.ch</u>

Schrade, S. 2009: Ammoniak- und PM10-Emissionen im Laufstall für Milchvieh mit freier Lüftung und Laufhof anhand einer Tracer-Ratio-Methode, Christian-Albrechts-Universität, Kiel, Germany, 2009. <u>https://www.agrar.uni-kiel.de/de/promotion-habilitation/promotion/kurzfassungen.pdf/sabine-schrade [in German] [05.02.2025]</u>

Schrade, S., Zeyer, K., Wyss, S., Steger, D., Mohn, J., Zähner, M. 2025: Emissionen von flüchtigen organischen Verbindungen (NMVOC), Ammoniak (NH₃) und Treibhausgasen (CH₄, CO₂) aus der Rindviehhaltung. Agroscope und Empa, im Auftrag des Bundesamts für Umwelt, Bern. [German report in preparation, which will become available on the FOEN webpage later.]

Schwager, S. 2005: Personal communication from Stefan Schwager (FOEN, Bern) to Andreas Liechti (FOEN, Bern), 23.12.2005. <u>http://www.climatereporting.ch</u>

Sebos 2022: Fossil fraction of CO₂ emissions of biofuels. Carbon Management, Vol. 13, 2022, Issue 1, p. 154-163.

https://www.tandfonline.com/doi/full/10.1080/17583004.2022.2046173 [29.01.2025]

SEPA 2010: Sweden's Informative Inventory Report 2010, Submitted under the Convention on Long-Range Transboundary Air Pollution. Swedish Environmental, Protection Agency.

SFOE 1991: Schweizerische Gesamtenergiestatistik 1990. Statistique globale suisse de l'énergie 1990. Swiss Federal Office of Energy, Bern.

SFOE 2015d: Energieverbrauch in der Industrie und im Dienstleistungssektor. Resultate 2014 (German). Swiss Federal Office of Energy, Bern. <u>https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/sector-statistics.html#kw-107796</u> [29.01.2025]

SFOE 2021c: Thermische Stromproduktion inklusive Wärmekraftkopplung (WKK) in der Schweiz. Ausgabe 2020. Swiss Federal Office of Energy, Bern. <u>https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/sector-statistics.html</u> [28.01.2025]

SFOE 2024: Schweizerische Gesamtenergiestatistik 2023. Statistique globale suisse de l'énergie 2023. Swiss Federal Office of Energy, Bern. In German and French. <u>https://t1p.de/BFE-GEST [</u>08.01.2025]

SFOE 2024a: Schweizerische Statistik der erneuerbaren Energien (Swiss renewable energy statistics). Ausgabe 2023. Swiss Federal Office of Energy, Bern. https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/sector-statistics.htmlhttps://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/sector-statistics.html [24.01.2025]

SFOE 2024b: Schweizerische Holzenergiestatistik. Erhebung für das Jahr 2023. Swiss Federal Office of Energy, Bern. <u>https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/sector-statistics.html</u>

SFOE 2024c: Thermische Stromproduktion inklusive Wärmekraftkopplung (WKK) in der Schweiz. Ausgabe 2023. Swiss Federal Office of Energy, Bern. <u>https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/sector-statistics.html</u> [29.01.2024]

SFOE 2024d: Energieverbrauch in der Industrie und im Dienstleistungssektor. Resultate 2023 (German/French). Swiss Federal Office of Energy, Bern. <u>https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/sector-statistics.html</u> [29.01.2025]

SFOE 2024e: Analyse des schweizerischen Energieverbrauchs 2000 – 2023 nach Verwendungszwecken. Prognos, im Auftrag des Bundesamts für Energie. 2024. Und Ex-Post-Analyse Energieverbrauch nach Verwendungszwecken 2000 – 2023 (xlsx, 314 KB), Tabellen. <u>https://www.bfe.admin.ch/bfe/en/home/supply/statistics-and-geodata/energy-statistics/analysis-of-energy-consumption-by-specific-use.html</u> [21.02.2025]

SFOE 2024g: Schweizerische Elektrizitätsstatistik (Swiss electricity statistics). Ausgabe 2023. Swiss Federal Office of Energy, Bern. <u>https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-</u> geodaten/energiestatistiken/elektrizitaetsstatistik.html/ [02.02.2025]

SFOE/FOEN 2014: Messung von Heizwerten und CO₂-Emissionsfaktoren von Erdölprodukten 2013. Statistische Analyse der Messresultate, Bern [confidential/internal].

SFSO 2013a: Landwirtschaftliche Betriebszählung – Zusatzerhebung. Swiss Federal Statistical Office (SFSO), Neuchâtel. [internal/confidential].

SFSO 2020p: Szenarien zur Bevölkerungsentwicklung der Schweiz 2020-2050. Referenzszenario A-00-2020. <u>https://www.pxweb.bfs.admin.ch/pxweb/en/px-x-0104000000_102/-/px-x-0104000000_102.px/</u> [07.02.2025]

SFSO/BUWAL 2004: Wald und Holz in der Schweiz Jahrbuch 2004. Bundesamt für Statistik (SFSO) und Bundesamt für Umwelt, Wald und Landschaft (BUWAL). Bern. <u>https://www.bfs.admin.ch/bfs/de/home/statistiken/kataloge-</u> datenbanken/publikationen.assetdetail.344300.html [28.01.2025]

SGWA 2023a: Technischer Hintergrundbericht: Methanemissionen der Schweizer Gasindustrie – Tool zur Berechnung der Methanemissionen. Swiss Gas and Water Industry Association. 2023. <u>http://www.climatereporting.ch</u>

SGWA 2024: Erdgaseigenschaften. Calculations and written communication R. Huber (Swiss Gas and Water Industry Association) to A. Schilt (FOEN). 26.01.2024 [confidential/internal]

Sigler, J. M., Lee, X., Munger, W. 2003: Emission and Long-Range Transport of Gaseous Mercury from a Large-Scale Canadian Boreal Forest Fire. Environ. Sci. Technol. 2003, 37, 4343-4347. <u>https://pubs.acs.org/doi/full/10.1021/es026401r</u> [27.01.2025]

Stehfest, E., Bouwman, L. 2006: N₂O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modelling of global annual emissions. Nutrient Cycling in Agroecosystems 74(3): 207–228. http://dx.doi.org/10.1007/s10705-006-9000-7 [05.02.2025]

Sutton, M. A., U. Dragosits, Y. S. Tang, and D. Fowler. 2000: Ammonia Emissions From Non-Agricultural Sources in the UK. Atmospheric Environment 34(6) : 855-869 https://doi.org/10.1016/S1352-2310(99)00362-3 [15.01.2025]

Swiss Confederation 1983 : Loi fédérale du 7 octobre 1983 sur la protection de l'environnement (Loi sur la protection de l'environnement, LPE). Status as of 01 January 2018. <u>http://www.admin.ch/ch/f/rs/c814_01.html</u> [official text in German, French and Italian]; Federal Act on the Protection of the Environment [English translation for information purposes only]: <u>https://www.admin.ch/opc/en/classified-compilation/19830267/index.html</u> [2403.012.20243]

Swiss Confederation 1985: Ordonnance du 16 décembre 1985 sur la protection de l'air (Opair). Status as of 1 January 2024 <u>http://www.admin.ch/ch/f/rs/c814_318_142_1.html</u> [official text in German, French and Italian]; Ordinance on Air Pollution Control [English translation for information purposes only]: <u>https://www.admin.ch/opc/en/classified-compilation/19850321/index.html</u> [27.01.2025]

Swiss Confederation 1995: Ordinance of 19 June 1995 on the Technical Standards for Motor Vehicles and Their Trailors (TAFV1). As at 1 July 2008. <u>http://www.admin.ch/ch/d/sr/c741_412.html</u> [official text in German/French/Italian] [24.01.2024]

Swiss Confederation 1997: Ordonnance du 12 novembre 1997 sur la taxe d'incitation sur les composés organiques volatils (OCOV). As at 01 January 2018. <u>http://www.admin.ch/ch/f/rs/c814_018.html</u> [official text in German, French and Italian]; Ordinance on the Incentive Tax on Volatile Organic Compounds [English translation for information purposes only]: <u>https://www.fedlex.admin.ch/eli/cc/1997/2972_2972_2972/en</u> [23.01.2024]

Swiss Confederation 1999: Federal Constitution of the Swiss Confederation of 18 April 1999 (Status as of 12 February 2017). In French: <u>https://www.admin.ch/opc/fr/classified-compilation/19995395/index.html</u> in English: <u>https://www.admin.ch/opc/en/classified-compilation/19995395/index.html</u> (English is not an official language of the Swiss Confederation. This translation is provided for information purposes only and has no legal force.) [22.01.2025]

Swiss Confederation 2004: Botschaft zur Ratifikation des Protokolls vom 30. November 1999 zum Übereinkommen von 1979 über weiträumige grenzüberschreitende Luftverunreinigung, betreffend die Verringerung von Versauerung, Eutrophierung und bodennahem Ozon. <u>http://www.admin.ch/ch/d/ff/2004/3013.pdf</u> [in German] [05.02.2025]

Swiss Confederation 2005: Verordnung zur Reduktion von Risiken beim Umgang mit bestimmten besonders gefährlichen Stoffen, Zubereitungen und Gegenständen (Chemikalien-Risikoreduktions-Verordnung, ChemRRV) vom 18. Mai 2005. https://www.fedlex.admin.ch/eli/cc/2005/478/de [in German] [07.03.2025]

Swiss Confederation 2009: Bericht zum Konzept betreffend Lufthygienischen Massnahmen des Bundes (LRK) vom 11. September 2009. <u>http://www.admin.ch/ch/d/ff/2009/6585.pdf</u> [in German] [24.01.2024]

Swiss Confederation 2011: Bundesgesetz über die Reduktion der CO₂-Emissionen (CO₂-Gesetz). Status as of 01.01.2020. <u>http://www.admin.ch/ch/d/sr/c641_71.html [official text in German, French and Italian]; Federal Act on the Reduction of CO₂ Emissions [English translation for information purposes only]: <u>https://www.admin.ch/opc/en/classified-compilation/20091310/index.html [07.03.2025]</u></u>

Swiss Confederation 2012: Verordnung über die Reduktion der CO₂-Emissionen (CO₂-Verordnung). Status as of 19.02.2019. <u>http://www.admin.ch/ch/d/sr/c641_711.html</u>official text in German, French and Italian]; Ordinance on the Reduction of CO₂ Emissions [English translation for information purposes only]: <u>https://www.admin.ch/opc/en/classified-compilation/20120090/index.html</u> [07.03.2025]

Swiss Confederation 2017: Verordnungspaket zur Agrarpolitik 2018-2021. Schweizerischer Bundesrat.Bern. https://www.newsd.admin.ch/newsd/message/attachments/49984.pdf [in German] [07.02.2025]

Swiss Confederation 2019: Parlamentarische Initiative 19.475: Das Risiko beim Einsatz von Pestiziden reduzieren. Swiss Confederation. https://www.parlament.ch/de/ratsbetrieb/suche-curia-vista/geschaeft?AffairId=20190475 [27.02.2025]

Swiss Safety Center 2022: Quality management system according to ISO 9001:2015. Certificate. Scope: National Inventory System and Reporting under the United Nations Framework Convention on Climate Change. Registration Number: 13-299-113. Initial certification: 25.11.2013. Recertification: 16.06.2022. Valid until: 24.11.2025 http://www.climatereporting.ch

TBF 2005: «Projekt LEA – Emissionsfaktoren aus der Abfallverbrennung». Schlussbericht. Zürich, 22. August 2005.

TBF 2015: Neubearbeitung des Projektes «LEA – Emissionsfaktoren aus der Abfallverbrennung». Schlussbericht. Zürich, 22. September 2015. <u>https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/externe-studien-berichte/lea_2_neubearbeitungdesprojekteslea-emissionsfaktorenausderabfal.pdf.download.pdf/lea_2_neubearbeitungdesprojekteslea-emissionsfaktorenausderabfal.pdf [27.01.2025]</u> **TBF 2021:** Neubearbeitung des Projektes «LEA – Emissionsfaktoren aus der Abfallverbrennung». Schlussbericht. Zürich, 18. November 2021.

Theloke, J. 2005: NMVOC-Emissionen aus der Lösemittelanwendung und Möglichkeiten zu ihrer Minderung. Fortschritt-Berichte VDI Reihe 15 Nr. 252. Düsseldorf: VDI-Verlag. <u>http://dx.doi.org/10.18419/opus-1660</u> [27.01.2025]

Theloke, J., Obermeier, A., Friedrich, R. 2000: Ermittlung der Lösemittelemissionen 1994 in Deutschland und Methoden zur Fortschreibung. Institut für Energiewirtschaft und Rationelle Energieanwendung (IER) der Universität Stuttgart.Forschungsbericht 295 42 628. Im Auftrag des Umweltbundesamtes.

https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/2484.pdf [27.01.2025]

UBA 2020: National Inventory Report for the German Greenhouse Gas Inventory 1990 – 2018. Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2020. Umweltbundesamt Deutschland (UBA). **Fehler! Linkreferenz ungültig.**<u>https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/202 0-04-15-climate-change 23-2020 nir_2020_en_0.pdf</u> [28.01.2025]

UK NAEI 2019: UK NAEI – National Atmospheric Emissions Inventory <u>http://naei.beis.gov.uk/</u> [10.01.2025]

UNECE 2010: Report for the Stage 3 in-depth review of emission inventories submitted under the UNECE LRTAP Convention and EU National Emissions Ceilings, CEIP/S3.RR/2010/SWITZERLAND, 24.11.2010.

https://www.ceip.at/fileadmin/inhalte/ceip/00_pdf_other/2010_s3/ch_stage3_review_report_2 010.pdf [05.02.2024]

UNECE 2016: Report for the Stage 3 in-depth review of emission inventories submitted under the UNECE LRTAP Convention and EU National Emissions Ceilings, CEIP/S3.RR/2016/SWITZERLAND, 26.09.2016

https://www.ceip.at/fileadmin/inhalte/ceip/00_pdf_other/2016_s3/switzerland-s3reviewreport-2016.pdf [05.02.2025]

UNECE 2020a: Report for the Stage 3 in-depth review of emission inventories submitted under the UNECE LRTAP Convention and EU National Emissions Ceilings, CEIP/S3.RR/2020/SWITZERLAND, 3.11.2020.

https://www.ceip.at/fileadmin/inhalte/ceip/00_pdf_other/2020_s3/ch_s3_rr_2020_clean.pdf [05.02.2025]

UNECE 2022a: Report for the Stage 3 ad-hoc review of emission inventories submitted under the UNECE LRTAP Convention: Stage 3 review report, Switzerland. CEIP/S3.RR/2022, 28.09.2022. <u>https://www.ceip.at/status-of-reporting-and-review-results/2022-submission</u> [22.02.2025]

UNECE 2023a: Report for the Stage 3 ad-hoc review of emission inventories submitted under the UNECE LRTAP Convention: Stage 3 review report, Switzerland. CEIP/S3.RR/2023, 04.10.2023. <u>https://www.ceip.at/status-of-reporting-and-review-results/2023-submission</u> [03.02.2025]

UNECE 2024: Stage 1 review report and Stage 2 review data from the Annual Synthesis & Assessment CLRTAP Inventory review. <u>https://www.ceip.at/status-of-reporting-and-review-results/2024-submission</u> [03.02.2025]

UNECE 2024a: Report for the Stage 3 ad-hoc review of emission inventories submitted under the UNECE LRTAP Convention: Stage 3 review report, Switzerland. CEIP/S3.RR/2024, 12.08.2024. <u>https://www.ceip.at/status-of-reporting-and-review-results/2024-submission</u> [03.02.2025]

UNFCCC 2014a: Revision of the UNFCCC reporting guidelines on annual inventories for Parties included in Annex I to the Convention. Decision 24/CP.19 (FCCC/CP/2013/10/Add.3) http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf [05.02.2025]

USEPA 1995: Compilation of air pollutant emission factors (AP-42). <u>https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors</u> [27.01.2025]

USEPA 1998: Locating and Estimating Air Emissions from Sources of Polycyclic Organic Matter. EPA document No. 454/R-98-014. <u>https://www3.epa.gov/ttn/chief/le/pompta.pdf</u> (part 1), <u>https://www3.epa.gov/ttn/chief/le/pomptb.pdf</u> (part 2) [15.01.2025]

USEPA 2010: Exhaust and Crankcase Emission Factors for Nonroad Engine Modelling – Compression Ignition. EPA-420-R-10-018 / NR-009d. Assessment and Standards Division Office of Transportation and Air Quality U.S. Environmental Protection Agency. July 2010. <u>https://nepis.epa.gov/Exe/ZyPDF.cgi/P10005BI.PDF?Dockey=P10005BI.PDF</u> [22.01.2025]

van Bruggen, C., Bannink, A., Groenestein, C.M., de Haan, B.J., Huijsmans, J.F.M., Luesink, H.H., van der Sluis, S.M., Velthof, G.L. 2014: Emissions into the atmosphere from agricultural activities in 2012. Calculations for ammonia, nitric oxide, nitrous oxide, methane and fine particulate matter using the NEMA model. Wageningen. Wot technical report 3 (in Dutch). Wageningen, NL: The Statutory Research Task Unit for Nature and the Environment (WOT Natuur & Milieu). <u>https://edepot.wur.nl/299687</u> [05.02.2025]

VBSA 2017: Klärschlammentsorgung in der Schweiz – Erhebung der Daten 2016. B. Freidl, VBSA, im Auftrag des Bundesamtes für Umwelt.

VTG 2011: Consumption of aviation fuel and jet kerosene of Swiss military aircraft 1990–2000. Written communication from Urs Baserga (VTG, Dübendorf) to Paul Filliger (FOEN, Bern), 04.07.2011 [confidential/internal]

VTG 2024: Consumption of aviation fuel and jet kerosene of Swiss military aircraft 2001–2023. Philipp Merz (VTG, Dübendorf) to Anouk Aimée Bass (FOEN, Bern), 05.06.2024 [confidential/internal]

Watanabe, T., Kasahara, M., Nakatsuka, H., Ikeda, M. 1987: Cadmium and lead contents of cigarettes produced in various areas of the world. Science of The Total Environment, Vol. 66, pp. 29-37. <u>https://doi.org/10.1016/0048-9697(87)90074-X</u> [10.03.2025]

Wevers, M., De Fré, R., Desmedt, M., 2004: Effect of backyard burning on dioxin deposition and air concentrations. Chemosphere 54, pp. 1351-1356. https://www.sciencedirect.com/science/article/pii/S0045653503002534 [27.01.2024]

Zotter, P. and Nussbaumer, T. 2022: Emissionsfaktoren von Holzfeuerungen – Aktualisierung und Ergänzung 2020. Verenum, im Auftrag des Bundesamtes für Umwelt 2022. <u>https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/externe-studienberichte/aktualisierung-ef-holz.pdf.download.pdf/aktualisierung-ef-holz.pdf</u> [in German] [29.01.2025]

Zotter, P. and Nussbaumer T. 2025: Aktualisierung Emissionsmodell Oel und Gasfeuerungen 2024, in preparation.

Assignment of EMIS categories to NFR code 12.2

Table 12-1 Assignments of NFR Code to titles of EMIS database comments. In case the code corresponding to the CLRTAP nomenclature is different compared to the code given by the UNFCCC nomenclature, or in case the code is only applicable for the CLRTAP, the code for the CLRTAP is given in square brackets.

INFO	716.1. 5400		
"NFR code" for reporting to the UNFCCC and CLRTAP, if different,	Title in EMIS	"NFR code" for reporting to the UNFCCC and CLRTAP, if different,	Title in EMIS
code for CLRTAP in brackets []		code for CLRTAP in brackets []	
1 A	Energiemodell***	2 D 3 a [2 D 3 g]	Feinchemikalien-Produktion**
1 A	Holzfeuerungen	2 D 3 a [2 D 3 g]	Gummi-Verarbeitung**
1 A	Non-Road	2 D 3 a [2 D 3 g]	Klebband-Produktion
1 A	Stationary engines and gas turbines	2 D 3 a [2 D 3 g]	Klebstoff-Produktion**
1 A 2	Sektorgliederung Industrie	2 D 3 a [2 D 3 g]	Lösungsmittel-Umschlag und -Lager
1 A 1 a	Kehrichtverbrennungsanlagen	2 D 3 a [2 D 3 g]	Pharmazeutische Produktion**
1A1a	Sondermüllverbrennungsanlagen	2 D 3 a [2 D 3 g]	Polyester-Verarbeitung**
1A1a&5A	Kehrichtdeponien	2 D 3 a [2 D 3 g]	Polystyrol-Verarbeitung**
1 A 1 b	Heizkessel Raffinerien* (ab 2015)	2 D 3 a [2 D 3 g]	Polyurethan-Verarbeitung
1 A 1 c 1 A 2 a & 2 C 1	Holzkohle Produktion	2 D 3 a [2 D 3 g]	PVC-Verarbeitung Gerben von Ledermaterialien
1A2a	Eisengiessereien Kupolöfen Stahl-Produktion Wärmeöfen**	2 D 3 a [2 D 3 g] 2 D 3 b	Strassenbelagsarbeiten**
1 A 2 b	Buntmetallgiessereien übriger Betrieb**	2 D 3 c	Dachpappe**
1 A 2 b & 2 C 3	Aluminium Produktion	2 D 3 d	Urea (AdBlue) Einsatz Strassenverkehr
1 A 2 c & 2 B 8 b [2 B 10 a]	Ethen-Produktion*	2 G 3 a	Lachgasanwendung Spitäler**
1 A 2 d & 2 A 4 d	Zellulose-Produktion Feuerung*	2 G 3 b	Lachgasanwendung Haushalt**
1 A 2 f	Kalkproduktion, Feuerung*	2G4 [2D3a]	Pharma-Produkte im Haushalt
1 A 2 f	Mischgut Produktion	2 G 4 [2 D 3 a]	Reinigungs- und Lösemittel; Haushalte
1 A 2 f	Zementwerke Feuerung	2 G 4 [2 D 3 h]	Verpackungsdruckereien**
1 A 2 f & 2 A 3	Glas übrige Produktion*	2 G 4 [2 D 3 h]	Druckereien uebrige**
1 A 2 f & 2 A 3	Glaswolle Produktion Rohprodukt**	2 G 4 [2 D 3 i]	Entfernung von Farben und Lacken**
1 A 2 f & 2 A 3 1 A 2 f & 2 A 4 a	Hohlglas Produktion* Feinkeramik Produktion*	2 G 4 [2 D 3 i] 2 G 4 [2 D 3 i]	Entwachsung von Fahrzeugen Kosmetika-Produktion**
1A21&2A4a 1A2f&2A4a	Ziegeleien**	2 G 4 [2 D 3 i]	Lösungsmittel-Emissionen IG nicht zugeordnet
1A2f&2A4d	Steinwolle Produktion*	2 G 4 [2 D 3 i]	Öl- und Fettgewinnung
1 A 2 g iv [1 A 2 g viii]	Faserplatten Produktion* (ab 2020)	2 G 4 [2 D 3 i]	Papier- und Karton-Produktion**
1 A 2 g viii & 5 B 2	Vergärung IG (industriell-gewerblich)	2 G 4 [2 D 3 i]	Parfum- und Aromen-Produktion**
1A3a&1A5	Flugverkehr	2 G 4 [2 D 3 i]	Tabakwaren Produktion**
1 A 3 b i-v [1 A 3 b i-vi]	Strassenverkehr	2 G 4 [2 D 3 i]	Textilien-Produktion**
1 A 3 c	Schienenverkehr	2 G 4 [2 D 3 i]	Wissenschaftliche Laboratorien
1 A 3 e	Gastransport Kompressorstation	2 G 4 [2 G]	Korrosionsschutz im Freien
1 A 4 b i	Holzkohle-Verbrauch	2 G 4 [2 G]	Betonzusatzmittel-Anwendung
1 A 4 b i	Lagerfeuer	2 G 4 [2 G]	Coiffeursalons Fahrzeug-Unterbodenschutz**
1 A 4 c i 1 A 4 c i	Gewächshäuser** Grastrocknung**	2 G 4 [2 G] 2 G 4 [2 G]	Feuerwerke
1 A 4 c i & 5 B 2	Vergärung LW (landwirtschaftlich)	2 G 4 [2 G]	Flaechenenteisung Flughaefen
1 B2aiii	Raffinerie, Pipelinetransport	2 G 4 [2 G]	Flugzeug-Enteisung
1 B 2 a iv	Raffinerie, Leckverluste*	2 G 4 [2 G]	Frostschutzmittel Automobil
1 B 2 a iv	H2-Produktion*	2 G 4 [2 G]	Gas-Anwendung
1 B 2 a iv	Raffinerie, Clausanlage*	2 G 4 [2 G]	Gesundheitswesen, übrige**
1 B 2 a v	Benzinumschlag Tanklager	2 G 4 [2 G]	Glaswolle Imprägnierung**
1B2av	Benzinumschlag Tankstellen	2 G 4 [2 G]	Holzschutzmittel-Anwendung
1 B 2 b ii & 1 B 2 c ii 2	Gasproduktion & Gasproduktion, Flaring	2 G 4 [2 G]	Klebstoff-Anwendung**
1 B 2 b iv-vi	Netzverluste Erdgas Raffinerie, Abfackelung	2 G 4 [2 G]	Kosmetik-Institute
1 B 2 c ii 1 2 A 1	Zementwerke Rohmaterial	2 G 4 [2 G] 2 G 4 [2 G]	Kühlschmiermittel-Verwendung Medizinische Praxen**
2 A 4 d [2 A 1]	Zementwerke übriger Betrieb	2 G 4 [2 G]	Pflanzenschutzmittel-Verwendung
2 A 2	Kalkproduktion, Rohmaterial*	2 G 4 [2 G]	Reinigung Gebäude IGD**
2 A 4 d [2 A 2]	Kalkproduktion, übriger Betrieb*	2 G 4 [2 G]	Schmierstoff-Verwendung
2 A 4 d	Kehrichtverbrennungsanlagen Karbonat**	2 G 4 [2 G]	Spraydosen IndustrieGewerbe
2 A 4 d	Karbonatanwendung weitere	2 G 4 [2 G]	Tabakwaren Konsum
2 A 4 d [2 A 5 a]	Gips-Produktion übriger Betrieb* (ab 2021)	2 G 4 [2 G]	Steinwolle-Imprägnierung*
2 A 5 a	Kieswerke	2 H 1	Faserplatten Produktion* (ab 2020)
2 B 1	Ammoniak-Produktion*	2 H 1	Zellulose Produktion übriger Betrieb*
2 B 10 b [2 B 10 a]	Ammoniumnitrat-Produktion*	2 H 1	Spanplatten Produktion*
2 B 10 b [2 B 10 a]	Chlorgas-Produktion*	2 H 2	Bierbrauereien Brooptwein Broduktion
2 B 10 b [2 B 10 a] 2 B 10 b [2 B 10 a]	Essigsäure-Produktion* (ab 2013) Formaldehyd-Produktion	2 H 2 2 H 2	Branntwein Produktion Brot Produktion
2 B 10 b [2 B 10 a]	PVC-Produktion	2 H 2	Fleischräuchereien
2 B 10 b [2 B 10 a]	Salzsäure-Produktion*	2 H 2	Kaffeeröstereien
2 B 10 b [2 B 10 a]	Schwefelsäure-Produktion*	2 H 2	Müllereien
2 B 10 b	Kalksteingrube*	2 H 2	Wein Produktion
2 B 10 b [2 B 10 a]	Niacin-Produktion*	2 H 2	Zucker Produktion
2 B 2	Salpetersäure Produktion*	2 H 3	Sprengen und Schiessen
2 B 5	Graphit und Siliziumkarbid Produktion*	[2]	Holzbearbeitung
2 C - 2 G	Synthetische Gase	[2K, 1A1a, 2C1, 5A, 5C1, 5E & 6A5]	Emissions due to former PCB usage
2 C 1	Eisengiessereien Elektroschmelzöfen	2 H 3 [2 L]	NH3 aus Kühlanlagen
2C1	Eisengiessereien übriger Betrieb	3	Landwirtschaft
2C1&1A2a	Stahl-Produktion Elektroschmelzöfen**	3 B	Tierhaltung
2 C 1 2 C 1	Stahl-Produktion übriger Betrieb** Stahl-Produktion Walzwerke**	3 C [3 D e]	Reisanbau Landwirtschaftsflächen
2C7a	Buntmetallgiessereien Elektroöfen**	4(IV) A 1 [11 B]	Waldbrände
2 C 7 c	Verzinkereien	5 B 1	Kompostierung
2 C 7 c	Batterie-Recycling*	5 B 2	Biogasaufbereitung (Methanverlust)
2 D 1	Schmiermittel-Anwendung	5 C 1 a i & 5 C 1 b i [5 C 1 a]	Abfallverbrennung illegal
2 D 1	Schmiermittel-Verbrauch B2T	5 C 1 b ii 1 [5 C 1 b i]	Kabelabbrand
2 D 2	Paraffinwachs-Anwendung	5 C 1 b ii 3 [5 C 1 b iii]	Spitalabfallverbrennung
2 D 3 a [2 D 3 d]	Farben-Anwendung Bau	5 C 1 a ii 4 [5 C 1 b iv]	Klärschlammverbrennung
2 D 3 a [2 D 3 d]	Farben-Anwendung andere	5 C 1 [5 C 1 b v]	Krematorien
2 D 3 a [2 D 3 d]	Farben-Anwendung Haushalte**	5 C 2 & 4(IV) A 1 (Forstwirtschaft)	Abfallverbrennung Land- und Forstwirtschaft und Private
2 D 3 a [2 D 3 d]	Farben-Anwendung Holz	5 D 1	Kläranlagen kommunal (Luftschadstoffe)
2 D 3 a [2 D 3 d]	Farben-Anwendung Autoreparatur**	5D2	Kläranlagen industriell (Luftschadstoffe)
2 D 3 a [2 D 3 e] 2 D 3 a [2 D 3 e]	Elektronik-Reinigung** Metallreinigung**	5 D 1 & 5 D 2 5 E	Abwasserbehandlung GHG Shredder Anlagen
2 D 3 a [2 D 3 e] 2 D 3 a [2 D 3 e]	Reinigung Industrie übrige**	5 E 6 A 1 [6 A 4]	Shredder Anlagen Brand- und Feuerschäden Immobilien
2 D 3 a [2 D 3 f]	Chemische Reinigung**	6 A 1 [6 A 4]	Brand- und Feuerschäden Motorfahrzeuge
2 D 3 a [2 D 3 g]	Druckfarben Produktion**	[11 C]	NMVOC Emissionen Wald
2 D 3 a [2 D 3 g]	Farben-Produktion**	1, 2, 5, 6 - indirect	Indirekte Emissionen

* confidential process

*** confidential EMIS comment *** work in progress Italic: process not relevant for the years after 1990. New model / comment for the current submission.

Annexes

Annex 1 Key category analysis (KCA)

A1.1 Overview

The following table provides an overview over the level (1990 and 2023) and trend (1990-2023) assessments based on approach 1 and approach 2 of the key category analysis. Note that the key category analysis is performed based on the approach "fuels used" (in contrast to "fuels sold"; for differentiation of the two approaches see chapter 3.1.6.1). Columns A to D in the following two tables are labelled according to Table 2-6 from the EMEP/EEA guidebook (EMEP/EEA 2023, part A, chp. 2, "Methodological choice and Key category analysis".

	SUMMARIES TO ID	ENTIFY KEY CAT	EGORIES				
Α	В				& D		
NFR Code	Source category	NOx	NMVOC	SOx	NH3	PM2.5	PM10
1A1a	Public electricity and heat production	L1, L2		L1, L2		T1, T2	T1, T2
1A2d	Stationary combustion in manufacturing industries and construction:			T1, T2			
1/120	pulp paper and print			. 1, . 2			
1A2f	Stationary combustion in manufacturing industries and construction: non	L1, L2, T1, T2		L1, L2, T1, T2			T1
IAZI	metallic minerals	11, 12, 11, 12		11, 12, 11, 12			11
1A2gvii	Mobile combustion in manufacturing industries and construction	T1				L1, L2, T1, T2	L1, L2, T1, T2
	Stationary combustion in manufacturing industries and construction:						
1A2gviii	other	L1, T1, T2		L1, L2		L1, L2	
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	L1, T1, T2		L1, T1, T2			
1A3bi(fu)	Road transportation: passenger cars (fuel used)		L1, L2, T1, T2	, <u>,</u>			
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	L1, L2, T1, T2					
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	L1, L2, T1, T2		T1, T2		T1	T1
. ,	Road transportation: mopeds and motorcycles (fuel used)		L2, T2	, í			
1A3bv(fu)	Road transportation: gasoline evaporation (fuel used)		L1, T1, T2				
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)					L1, L2, T1, T2	L1, L2, T1, T2
1A3c	Railways					L1, T1, T2	L1, L2, T1, T2
1A3dii	National navigation (shipping)	T1	İ	İ	İ	1	,
1A4ai	Commercial/institutional: stationary	L1, L2, T1, T2	l	T1, T2	İ	L1, L2, T1	L1, L2
1A4bi	Residential: stationary plants	L1, L2	L1, L2	L1, L2, T1, T2		L1, L2, T1, T2	,
1A4ci	Agriculture/forestry/fishing: stationary	,	,	L2		L1	,,,,
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	L1					
1A5b	Other mobile (including military land-based and recreational boats)						L1
1B2av	Distribution of oil products		L1, T1, T2				
1B2c	Venting and flaring (oil gas combined oil and gas)	T2					
2A1	Cement production					L2, T2	L2
2A5a	Quarrying and mining of minerals other than coal					L2, T2	L1, L2, T2
2B5	Carbide production			L1, L2, T1, T2			
2B10a	Chemical industry: other			L2, T2			
2C1	Iron and steel production					T1, T2	T1, T2
2D3a	Domestic solvent use including fungicides		L1, L2, T1, T2				
2D3b	Road paving with asphalt		L1, L2, T1, T2				
2D3d	Coating applications		L1, L2, T1				
2D3e	Degreasing		L1, T1, T2				
2D3g	Chemical products		L1, L2, T1, T2				
2D3h	Printing		L1, L2, T1				
2D3i	Other solvent use		L1, L2, T2				
2G	Other product use		L1, L2, T2			L1, L2, T1, T2	L1, L2
2H1	Pulp and paper industry					L1, L2, T2	
2H2	Food and beverages industry		L2, T1, T2			L1, L2, T1, T2	L1, L2, T2
21	Wood processing					L2	L2, T2
3B1a	Manure management - Dairy cattle		L1, L2, T1, T2		L1, L2, T1, T2		
3B1b	Manure management - Non-dairy cattle		L1, L2, T1, T2		L1, L2, T1, T2		
3B3	Manure management - Swine				L1, L2, T2		
3B4gi	Manure management - Laying hens		T2				L2
3B4gii	Manure management - Broilers		L2, T2		L2, T2		L2, T2
3Da1	Inorganic N-fertilizers (includes also urea application)	L2, T2			L1, L2, T1, T2		
3Da2a	Animal manure applied to soils	L2, T1, T2			L1, L2, T1, T2		
3Da2b	Sewage sludge applied to soils				T1		
3Da2c	Other organic fertilisers applied to soils (including compost)	T2			T1, T2		
3Da3	Urine and dung deposited by grazing animals	L2, T2			L2, T1, T2		
3De	Cultivated crops						L1, L2, T1, T2
5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities		T1				
5C1a	Municipal waste incineration					L1, L2	L1
6A	Other sources				L2, T2		

Table A - 2 Summary of Switzerland's key category analysis, for TSP, BC, CO, priority heavy metals, PCDD/PCDF, PAHs total, HCB and PCBs. L: level assessment (2023); T: trend assessment (1990-2023); 1: KCA approach 1. No approach 2 analysis was conducted. Note that categories which are key for the level assessment for the base year only are not reported in this table.

NFR Code	Source category	TSP	BC	CO	Pb	Cd	Hg	PCDD/P CDF	PAHs total	НСВ	PCB
1A1a	Public electricity and heat production				L1, T1	L1, T1	L1, T1	L1, T1		L1, T1	T1
1A2b	Stationary combustion in manufacturing industries and construction: non- ferrous metals									T1	
1A2f	Stationary combustion in manufacturing industries and construction: non- metallic minerals	T1		L1, T1		L1, T1	L1, T1				
1A2gvii	Mobile combustion in manufacturing industries and construction	L1, T1	T1			L1, T1					
1A2gviii	Stationary combustion in manufacturing industries and construction: other				L1		L1, T1				
1A3aii(i)	Civil aviation (domestic cruise)				L1, T1						
1A3bi(fu)	Road transportation: passenger cars (fuel used)			L1, T1	T1				L1, T1		
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)			T1							
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	T1	T1								
1A3biv(fu)	Road transportation: mopeds and motorcycles (fuel used)			L1							
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	L1, T1	L1, T1			L1, T1					
1A3c	Railways	L1, T1									
1A3dii	National navigation (shipping)			L1							
1A4ai	Commercial/institutional: stationary	L1	L1, T1	L1, T1			T1	L1, T1	L1, T1	L1	
1A4aii	Commercial/institutional: mobile			L1, T1							
1A4bi	Residential: stationary plants	L1, T1	L1, T1	L1, T1	L1	L1	L1, T1	L1, T1	L1, T1	L1, T1	
1A4bii	Residential: household and gardening (mobile)			T1							
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery		L1, T1	L1, T1							
2A5a	Quarrying and mining of minerals other than coal	L1									
2B10a	Chemical industry: other						T1				
2C1	Iron and steel production	T1			T1	T1	L1, T1				
2C3	Aluminium production								T1		
2G	Other product use					L1, T1					
21	Wood processing	T1									
2K	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)										L1, T1
3B3	Manure management - Swine	L1									
3B4gi	Manure management - Laying hens	L1									
3De	Cultivated crops	L1, T1		1							
5C1a	Municipal waste incineration				L1, T1			L1, T1			
5C2	Open burning of waste								L1, T1		
5E	Other waste										T1
6A	Other sources				L1, T1			L1, T1			

A1.2 Detailed results of approach 1 assessment

The following tables report the detailed results for the key category analysis, approach 1, level and trend assessments, for the reporting year 2023 and the base year 1990. Columns labelled A to F for the level assessments correspond exactly to columns A to F from Table 3-1 from the EMEP/EEA guidebook (EMEP/EEA 2023, part A, chp. 2, "Key category analysis and methodological choice 2019". For the table reporting the trend assessment, columns labelled A to H correspond exactly to columns A to H from Table 3-2 from the same guidelines. Equations referenced hereafter are also from the same guidelines.

Explanations of headers for tables in this Annex are:

- E_{x, t}: emission estimate for the reporting year.
- $E_{x, 0}$: emission estimate for the base year.
- L_{x, t}: level assessment for the reporting year (EMEP/EAA guidebook part A, chp. 2, equ. 1 for approach 1).
- L_{x, 0}: level assessment for the base year (EMEP/EAA guidebook part A, chp. 2, equ. 1 for approach 1).
- Trend assessment: computed according to EMEP/EAA guidebook part A, chp. 2, equ. 2 for approach 1.

for information only.

	-			_	_
A NFR code	B Source category	C Pollutant	D Ex, t (t)	E Lx, t (%)	F Cumu- lative Total (%)
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NOx	15'010	32.1	32.1
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	NOx	3'494	7.5	39.6
1A4bi	Residential: stationary plants	NOx	3'464	7.4	47.0
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	NOx	3'029	6.5	53.5
1A4ai	Commercial/institutional: stationary	NOx	2'832	6.1	59.5
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	NOx	2'825	6.0	65.6
1A1a	Public electricity and heat production	NOx	2'267	4.8	70.4
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	NOx	1'966	4.2	74.6
1A2gviii	Stationary combustion in manufacturing industries and construction: other	NOx	1'638	3.5	78.1
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	NOx	1'608	3.4	81.6
1A2gvii	Mobile combustion in manufacturing industries and construction	NOx	1'537	3.3	84.9
3Da2a	Animal manure applied to soils	NOx	1'449	3.1	88.0
2D3d	Coating applications	NMVOC	8'286	11.6	11.6
3B1b 3B1a	Manure management - Non-dairy cattle	NMVOC NMVOC	7'441 6'585	10.4 9.2	22.1
2D3a	Manure management - Dairy cattle Domestic solvent use including fungicides	NMVOC	6'507	9.2	40.4
203a 2G	Other product use	NMVOC	6'316	8.9	40.4
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NMVOC	3'635	5.1	54.4
2D3h	Printing	NMVOC	3'617	5.1	59.5
2D3g	Chemical products	NMVOC	3'185	4.5	63.9
2D3b	Road paving with asphalt	NMVOC	2'700	3.8	67.7
1A4bi	Residential: stationary plants	NMVOC	2'347	3.3	71.0
1B2av	Distribution of oil products	NMVOC	2'021	2.8	73.8
2D3i	Other solvent use	NMVOC	1'933	2.7	76.5
1A3bv(fu)	Road transportation: gasoline evaporation (fuel used)	NMVOC	1'773	2.5	79.0
2D3e	Degreasing	NMVOC	1'566	2.2	81.2
2H2	Food and beverages industry	NMVOC	1'417	2.0	83.2
5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities	NMVOC	1'147	1.6	84.8
3B4gii	Manure management - Broilers	NMVOC	1'144	1.6	86.4
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	SOx	1'300	45.9	45.9
1A2gviii	Stationary combustion in manufacturing industries and construction: other	SOx	260	9.2	55.1
1A1a	Public electricity and heat production	SOx	256	9.0	64.2
1A4bi	Residential: stationary plants	SOx	207	7.3	71.5
2B5	Carbide production	SOx	198	7.0	78.5
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	SOx	137	4.9	83.3
1A4ai 3Da2a	Commercial/institutional: stationary Animal manure applied to soils	SOx NH3	83 20'191	2.9 38.2	86.3
3Daza 3B1a	Manure management - Dairy cattle	NH3	10'144	19.2	38.2
3B1b	Manure management - Non-dairy cattle	NH3	7'241	13.7	71.0
3B3	Manure management - Swine	NH3	4'736	9.0	80.0
3Da1	Inorganic N-fertilizers (includes also urea application)	NH3	2'251	4.3	84.2
3Da3	Urine and dung deposited by grazing animals	NH3	1'413	2.7	86.9
1A4bi	Residential: stationary plants	PM2.5	1'852	29.8	29.8
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	PM2.5	958	15.4	45.1
1A4ai	Commercial/institutional: stationary	PM2.5	430	6.9	52.1
1A2gvii	Mobile combustion in manufacturing industries and construction	PM2.5	384	6.2	58.2
2G	Other product use	PM2.5	327	5.3	63.5
1A3c	Railways	PM2.5	233	3.7	67.2
5C1a	Municipal waste incineration	PM2.5	221	3.5	70.8
1A4ci	Agriculture/forestry/fishing: stationary	PM2.5	205	3.3	74.1
1A2gviii	Stationary combustion in manufacturing industries and construction: other	PM2.5	186	3.0	77.1
2H2	Food and beverages industry	PM2.5	166	2.7	79.7
2H1	Pulp and paper industry	PM2.5	151	2.4	82.1
2A1	Cement production	PM2.5	143	2.3	84.4
1A4cii 1A3bvi(fu)	Agriculture/forestry/fishing: off-road vehicles and other machinery Road transportation: automobile tyre and brake wear (fuel used)	PM2.5 PM10	128 2'610	2.1 18.5	86.5 18.5
1A3DVI(IU) 1A2gvii	Mobile combustion in manufacturing industries and construction	PM10 PM10	2'366	18.5	35.3
1A2gvii 1A4bi	Residential: stationary plants	PM10 PM10	1'948	13.8	49.2
1A3c	Railways	PM10	1'517	10.8	60.0
3De	Cultivated crops	PM10	1'000	7.1	67.1
1A4ai	Commercial/institutional: stationary	PM10	457	3.2	70.3
2G	Other product use	PM10	399	2.8	73.1
2A5a	Quarrying and mining of minerals other than coal	PM10	348	2.5	75.6
2H2	Food and beverages industry	PM10	308	2.2	77.8
1A5b	Other mobile (including military land-based and recreational boats)	PM10	261	1.9	79.7
1430		PM10	245	1.7	81.4
5C1a	Municipal waste incineration	1 10110	2.0		
5C1a 2A1	Cement production	PM10	222	1.6	83.0
5C1a					83.0 84.5

Annexes: Key category analysis (KCA)

	KCA APPROACH 1 LEVEL ASSESSMENT FOR 1990				
А	В	C	D	E	F
NFR code	Source category	Pollutant	Ex, 0 (t)	Lx, 0 (%)	Cumu- lative Total (%)
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NOx	43'748	31.1	31.1
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	NOx	29'631	21.1	52.1
1A4bi	Residential: stationary plants	NOx	11'636	8.3	60.4
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	NOx	10'535	7.5	67.9
1A2gvii	Mobile combustion in manufacturing industries and construction	NOx	6'334	4.5	72.4
1A1a	Public electricity and heat production	NOx	6'279	4.5	76.9
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	NOx	6'199	4.4	81.3
1A4ai	Commercial/institutional: stationary	NOx	5'139	3.7	84.9
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	NOx	4'358	3.1	88.0
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NMVOC	55'582	18.8	18.8
2D3d	Coating applications Chemical products	NMVOC NMVOC	40'731 27'504	13.8 9.3	32.7 42.0
2D3g 2G	Other products	NMVOC	27 504	9.3	42.0
20 2D3h	Printing	NMVOC	20'354	6.9	49.0 56.5
1B2av	Distribution of oil products	NMVOC	19'127	6.5	63.0
1A3bv(fu)	Road transportation: gasoline evaporation (fuel used)	NMVOC	17'166	5.8	68.8
2D3e	Degreasing	NMVOC	11'731	4.0	72.8
1A4bi	Residential: stationary plants	NMVOC	10'056	3.4	76.2
2D3a	Domestic solvent use including fungicides	NMVOC	8'867	3.0	79.2
3B1a	Manure management - Dairy cattle	NMVOC	6'413	2.2	81.4
	Road transportation: mopeds and motorcycles (fuel used)	NMVOC	5'737	1.9	83.3
2D3i	Other solvent use	NMVOC	5'470	1.9	85.2
1A4bi	Residential: stationary plants	SOx	10'355	26.4	26.4
1A4ai	Commercial/institutional: stationary	SOx	3'870	9.9 9.4	36.3
1A1a 1A2gviii	Public electricity and heat production Stationary combustion in manufacturing industries and construction: other	SOx SOx	3'679 3'534	9.4	45.7 54.7
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	SOx	3'530	9.0	63.7
1A2d	Stationary combustion in manufacturing industries and construction: pulp paper and print	SOx	3'238	8.3	72.0
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	SOx	1'843	4.7	76.7
1A3bi(fu)	Road transportation: passenger cars (fuel used)	SOx	1'619	4.1	80.8
1A2c	Stationary combustion in manufacturing industries and construction: chemicals	SOx	1'187	3.0	83.9
1A2e	Stationary combustion in manufacturing industries and construction: food processing beverages and tobacco	SOx	1'078	2.8	86.6
3Da2a	Animal manure applied to soils	NH3	34'567	50.5	50.5
3B1a	Manure management - Dairy cattle	NH3	9'337	13.6	64.1
3B3	Manure management - Swine	NH3	6'965	10.2	74.3
3B1b	Manure management - Non-dairy cattle	NH3	5'191	7.6	81.8
3Da1	Inorganic N-fertilizers (includes also urea application)	NH3	4'259	6.2	88.1
1A4bi	Residential: stationary plants	PM2.5	14'536	53.5	53.5
	Road transportation: heavy duty vehicles and buses (fuel used)	PM2.5	1'584	5.8	59.3
1A4ai 1A2miii	Commercial/institutional: stationary Stationary combustion in manufacturing industries and construction: other	PM2.5	1'354	5.0	64.3
1A2gviii 2C1	Iron and steel production	PM2.5 PM2.5	873 818	3.2 3.0	67.5 70.5
1A1a	Public electricity and heat production	PM2.5	782	2.9	70.3
1A2gvii	Mobile combustion in manufacturing industries and construction	PM2.5	702	2.7	76.1
1A4ci	Agriculture/forestry/fishing: stationary	PM2.5	697	2.6	78.7
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	PM2.5	690	2.5	81.2
1A3bi(fu)	Road transportation: passenger cars (fuel used)	PM2.5	579	2.1	83.3
2G	Other product use	PM2.5	513	1.9	85.2
1A4bi	Residential: stationary plants	PM10	15'326	42.0	42.0
1A2gvii	Mobile combustion in manufacturing industries and construction	PM10	2'173	6.0	48.0
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	PM10	2'046	5.6	53.6
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	PM10	1'584	4.3	57.9
2C1 1A4ai	Iron and steel production Commercial/institutional: stationary	PM10 PM10	1'485 1'428	4.1 3.9	62.0 65.9
3De	Commercial/Institutional: stationary Cultivated crops	PM10 PM10	1 428	3.9	68.8
3De 1A1a	Public electricity and heat production	PM10 PM10	1 054	2.9	71.7
1A1a 1A3c	Railways	PM10	970	2.3	74.3
1A2gviii	Stationary combustion in manufacturing industries and construction: other	PM10	913	2.5	76.8
21	Wood processing	PM10	864	2.4	79.2
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	PM10	833	2.3	81.5
1A4ci	Agriculture/forestry/fishing: stationary	PM10	710	1.9	83.4
2G	Other product use	PM10	588	1.6	85.0

Table A - 5 Switzerland's key categories according to approach 1 trend assessment for 1990-2023, sorted by decreasing contribution, for the main pollutants, PM2.5 and PM10. Categories in orange have increased emissions in 2023 compared to 1990. Categories in grey are not key and are given for information only.

NFR code Source category Pollutant Ex, 0 (t) Ex, t (t) As	F G Contribution to: trend Contribution to: trend 0.001 Sasses. (%) 0.010 A. 0.001 A. 0.002 A. 0.003 A. 0.004 A. 0.005 A. 0.006 A. 0.007 A. 0.008 A. 0.009 A. 0.004 A. 0.005 A. 0.006 A. 0.007 A. 0.008 A. 0.009 A. 0.012 A. 0.012 A. 0.012 A. 0.012 A. 0.012 A. 0.003 A. 0.004 A. 0.005 A. 0.005 A.	lative Total (%) 3 36.9 5 45.4 3 53.2 1 59.3 2 64.2 1 68.3 7 72.0 1 75.1 3 78.0 5 80.6 2 82.8 1 84.9 3 86.7 9 18.9 9 30.9 7 40.7
NFR codeSource categoryPollutantEx, 0 (t)Ex, t (t)An ICLA3bili(L)Road transportation: heavy duty vehicles and buses (fuel used)NOx29'6313'03LA3bili(L)Road transportation: light duty vehicles (fuel used)NOx12141'966LA3bili(L)Road transportation: light duty vehicles (fuel used)NOx1'2141'966LA3bili(L)Road transportation: light duty vehicles (fuel used)NOx5'1392'322LA2gviiMole combustion in manufacturing industries and construction: oner-metallicNOx2'0751'449LA2gviiMole combustion in manufacturing industries and construction: non-metallicNOx1'07552'825LA2gviiMole combustion in manufacturing industries and construction: non-metallicNOx1'0755988LA3bil(D)Road transportation: passenger cars (fuel used)NOx1'2623'1LA3bil(D)Road transportation: passenger cars (fuel used)NOx1'2623'1LA3bil(D)Road transportation: passenger cars (fuel used)NOX1'2623'1LA3bil(D)Road transportation: passenger cars (fuel used)NOV5'1527'441LA3bil(D)Road transportation: passenger cars (fuel used)NOV5'1227'441LA3bil(D)Road transportation: passenger cars (fuel used)NOVOC5'51227'441LA3bilMaarue management - Non-dairy cattleNMVOC5'51227'441LA3bil(D)Road transportation: pasoneger cars (fuel used)NMVOC5'5	button to trend sesssi 0.048 0.011 0.048 0.010 0.008 0.010 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.007 0.008 0.0012 0.002 0.003 0.004 0.005 0.005 0.006 0.005	lative Total (%) 3 36.9 5 45.4 3 53.2 1 59.3 2 64.2 1 68.3 7 72.0 1 75.1 3 78.0 5 80.6 2 82.8 1 84.9 3 86.7 9 18.9 9 30.9 7 40.7
Labilit[0]Road transportation: heavy duty vehicles and buses (fuel used)NOx296337029LA3bili(1)Road transportation: light duty vehicles (fuel used)NOx61993/44LA3bili(1)Road transportation: light duty vehicles (fuel used)NOx61993/44LA4aiCommercial/institutional: stationaryNOx51392/832LA2pitiStationary combustion in manufacturing industries and construction: otherNOx2/1521622Stationary combustion in manufacturing industries and construction: non-metallicNOx1075317449InterestsStationary combustion in manufacturing industries and construction: non-metallicNOx1075317421InterestsNOx105558981A3di(1)Road transportation: passenger cars (fuel used)NOx117683/46417441Stationary combustion in manufacturing industries and construction: pulp paper and printNOx1226311745Stationary combustion in manufacturing industries and construction: pulp paper and printNOx1226311745Stationary combustion in manufacturing industries and construction: pulp paper and printNOX2434171746Nadure management - Non-dairy cattleNMVOC55283/6351747Nadure management - Non-dairy cattleNMVOC6/1346/5851748Manure management - Non-dairy cattleNMVOC6/1346/5851748Manure management - Non-dairy cattleNMVOC6/1346/585 <td>(%) 0.048 36. 0.011 8. 0.010 7. 0.008 6. 0.006 4. 0.005 3. 0.004 3. 0.005 3. 0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.004 3. 0.005 3. 0.004 3. 0.005 3. 0.002 1. 0.017 9. 0.012 6. 0.005 3. 0.005 3. 0.005 3. 0.005 3.</td> <td>36.9 36.9 45.4 45.4 3 53.2 9 64.2 1 68.3 7 72.0 1 75.1 0 78.0 5 80.6 2 82.8 4 84.9 3 86.7 9 18.9 9 30.9 7 40.7</td>	(%) 0.048 36. 0.011 8. 0.010 7. 0.008 6. 0.006 4. 0.005 3. 0.004 3. 0.005 3. 0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.004 3. 0.005 3. 0.004 3. 0.005 3. 0.002 1. 0.017 9. 0.012 6. 0.005 3. 0.005 3. 0.005 3. 0.005 3.	36.9 36.9 45.4 45.4 3 53.2 9 64.2 1 68.3 7 72.0 1 75.1 0 78.0 5 80.6 2 82.8 4 84.9 3 86.7 9 18.9 9 30.9 7 40.7
IA3aii(i) Oval I23.4 1956 IA3bii(i) Road transportation: light duty vehicles (fuel used) NOx 6*199 3*494 IA4ai Commercial/institutional: stationary NOx 5*139 2*832 IA2gvii Stationary combustion in manufacturing industries and construction: non-metallic minerals NOx 2075 1*449 IA2gvii Mobile combustion in manufacturing industries and construction: non-metallic minerals NOx 10535 2*825 IA2gvii Mobile combustion in manufacturing industries and construction: non-metallic minerals NOx 10535 8988 IA3bi(fu) Road transportation: passenger cars fuel used) NOx 437443 15010 IA4bi Residential: stationary plants NOx 11636 3464 124d print Stationary combustion in manufacturing industries and construction: pulp paper and print NOx 1262 31 124d Stationary combustion in manufacturing industries and construction: pulp paper and print NOx 12762 31 124d Bita Manure management - Non-dairy cattle NMVOC 5552 3635	0.048 36. 0.011 8. 0.010 7. 0.008 6. 0.0005 3. 0.005 4. 0.005 3. 0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 12. 0.003 18. 0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.008 4. 0.005 3. 0.005 3. 0.005 3. 0.005 2.	45.4 45.4 3 53.2 59.3 64.2 4 68.3 7 72.0 1 68.3 7 72.0 0 78.0 0 78.0 0 78.0 5 80.6 2 82.8 1 84.9 3 86.7 9 18.9 9 30.9 9 30.9 7 40.7
IA3aii(i) Oval I23.4 1956 IA3bii(i) Road transportation: light duty vehicles (fuel used) NOx 6*199 3*494 IA4ai Commercial/institutional: stationary NOx 5*139 2*832 IA2gvii Stationary combustion in manufacturing industries and construction: non-metallic minerals NOx 2075 1*449 IA2gvii Mobile combustion in manufacturing industries and construction: non-metallic minerals NOx 10535 2*825 IA2gvii Mobile combustion in manufacturing industries and construction: non-metallic minerals NOx 10535 8988 IA3bi(fu) Road transportation: passenger cars fuel used) NOx 437443 15010 IA4bi Residential: stationary plants NOx 11636 3464 124d print Stationary combustion in manufacturing industries and construction: pulp paper and print NOx 1262 31 124d Stationary combustion in manufacturing industries and construction: pulp paper and print NOx 12762 31 124d Bita Manure management - Non-dairy cattle NMVOC 5552 3635	0.011 8. 0.010 7. 0.008 6. 0.006 4. 0.005 3. 0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 18. 0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.008 4. 0.005 3. 0.005 3. 0.005 3.	45.4 45.4 3 53.2 59.3 64.2 4 68.3 7 72.0 1 68.3 7 72.0 0 78.0 0 78.0 0 78.0 5 80.6 2 82.8 1 84.9 3 86.7 9 18.9 9 30.9 9 30.9 7 40.7
1A4ai Commercial/institutional: stationary Nox 5139 2'832 1A2gviii Stationary combustion in manufacturing industries and construction: other NOx 2'182 1'638 1A2r Stationary combustion in manufacturing industries and construction: non-metallic minerals NOx 10'535 2'825 1A2ri Stationary combustion in manufacturing industries and construction NOx 6'334 1'537 1A3dii National navigation (shipping) NOx 10'535 898 1A3dii Nationary combustion in manufacturing industries and construction: pulp paper and print NOx 11'363 3'464 15'010 1A4bi(fu) Residential: stationary plants NOx 11'363 3'464 15'010 1A4bi(fu) Residential: stationary combustion in manufacturing industries and construction: pulp paper and print NOX 11'363 3'464 1A2d Stationary combustion in manufacturing industries and construction: pulp paper and print NOX 11'363 3Da3 Urine and dung deposited by grazing animals NOX 14'37 1A3bi(fu) Roda transportation: passenger cars(1(elu sed) NMVO	0.008 6. 0.006 4. 0.005 4. 0.005 3. 0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 1. 0.003 1. 0.002 1. 0.013 18. 0.011 2. 0.012 6. 0.009 5. 0.008 4. 0.005 2. 0.005 2.	1 59.3 2 64.2 4 68.3 7 72.0 1 75.1 2 78.0 5 80.6 2 82.8 4 84.9 3 86.7.7 9 18.9 9 30.9 7 40.7
1A2gviii Stationary combustion in manufacturing industries and construction: other NOx 2742 11638 3Da2a Animal manure applied to solis NOX 2075 11449 1A21 Stationary combustion in manufacturing industries and construction: non-metallic minerals NOX 10°535 2825 1A2gvii Mobile combustion in manufacturing industries and construction: NOX 1055 898 1A3bi(IV) Road transportation: passenger cars (fuel used) NOX 43748 15016 1A4bi Residential: stationary plants NOX 11262 31 3Da3 Urine and dung deposited by grazing animals NOX 1262 31 3Da3 Urine and dung deposited by grazing animals NOX 1262 31 3Da4 Manure management - Non-dairy cattle NMVOC 55522 37635 2Da5 Domestic solvent use incluing fungicides NMVOC 6567 2036 2Da6 Coating applications NMVOC 19122 2020 2D3d Coating applications NMVOC 49738 2726 </td <td>0.006 4. 0.005 4. 0.005 3. 0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 18. 0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.008 4. 0.008 4. 0.005 3. 0.005 2.</td> <td>9 64.2 1 68.3 7 72.0 1 75.1 0 78.0 5 80.6 2 82.8 4 84.9 3 86.7 9 18.9 9 30.9 7 40.7</td>	0.006 4. 0.005 4. 0.005 3. 0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 18. 0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.008 4. 0.008 4. 0.005 3. 0.005 2.	9 64.2 1 68.3 7 72.0 1 75.1 0 78.0 5 80.6 2 82.8 4 84.9 3 86.7 9 18.9 9 30.9 7 40.7
3Da2aAnmal manure applied to solisNOX20751'4491A2f mineralsStationary combustion in manufacturing industries and construction: non-metallic mineralsNOX10'5352'8251A2gviMobile combustion in manufacturing industries and constructionNOX10'5352'8251A3diiNational navigation (shipping)NOX10'5362'8251A3bil(Vu)Road transportation: passenger cars (fuel used)NOX4'3'4815'0101A4biResidential: stationary plantsNOX11'6363'4641A2dStationary combustion in manufacturing industries and construction: pulp paper and printNOX2'8253'4641A3bil(Vu)Road transportation: passenger cars (fuel used)NMVC2'8253'4641A3bil(Vu)Road transportation: passenger cars (fuel used)NMVCC5'55823'6353B1aManure management - Nori-qatiteNMVOC5'55823'6351B3aManure management - Nori-qatiteNMVOC8'8676'507203gChemical productsNMVOC8'8676'5071B3aManure management - Dairy cattleNMVOC1'17312'826203gChemical productsNMVOC4'37481'17471A3bi(Vu)Road transportation: gasoline evaporation (fuel used)NMVOC1'17311'566203hRoid paying with asphaltNMVOC1'17311'566203hRoid transportation: gasoline evaporation (fuel used)NMVOC1'17311'566203hR	0.005 4. 0.005 3. 0.004 3. 0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 12. 0.002 1. 0.013 18. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	1 68.3 7 72.0 1 75.1 0 78.0 5 80.6 2 82.8 1 84.9 3 86.7 9 18.9 3 30.9 7 40.7
1.2/f Stationary combustion in manufacturing industries and construction: non-metallic minerals NOx 10'535 2'825 1.2/gvii Mobile combustion in manufacturing industries and construction NOx 6'334 1'337 1.3/abil(n) Road transportation: passenger cars (fuel used) NOx 1'05'35 2'825 1.A/bil Residential: stationary plants NOx 1'15'6 3'464 1.A/bil Residential: stationary plants NOx 1'16'6 3'464 1.A/bil Residential: stationary plants NOx 1'16'6 3'464 1.A/bil Residential: stationary combustion in manufacturing industries and construction: pulp paper and print NOX 2'43 3'1'2' 3.Da3 Urine and dung deposited by grazing animals NOX 2'43 417 1.A/bil Nanure management - Non-dairy cattle NMVOC 5'5'12 3'1'431 3.Da3 Manure management - Non-dairy cattle NMVOC 6'313 6'585 2.D3a Domestic solvent use including fungicides NMVOC 1'1'16 1'7'73 2.D34 Coating applications	0.005 3. 0.004 3. 0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 18. 0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	7 72.0 1 75.1 0 78.0 5 80.6 2 82.8 1 84.9 8 86.7 9 18.9 1 30.9 7 40.7
1A2rNOX10 5352 242IA2gviiMobile combustion in manufacturing industries and constructionNOX673341533IA3bi(IV)Road transportation: passenger cars (fuel used)NOX4374815 010IA4biResidential: stationary plantsNOX11 63634 64IA2dStationary combustion in manufacturing industries and construction: pulp paper and printNOX12 6231IA3bi(IV)Road transportation: passenger cars (fuel used)NOX12 63417IA3bi(IV)Road transportation: passenger cars (fuel used)NMVOC55 58236 53IB1aManure management - Non-dairy cattleNMVOC55 58236 55203aDomestic solvent use including fungicidesNMVOC87 66 507203gChemical productsNMVOC87 66 507203gChemical productsNMVOC19 127203dCoating applicationsNMVOC47 66 17 73203dCoating applicationsNMVOC47 68 27 60203bRoad paving with asphaltNMVOC47 85 27 00203hPrintingNMVOC47 85 27 00203bRoad paving with asphaltNMVOC47 85 27 00203cDegreasingNMVOC17 13 16 66203eBiological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC47 85 36 17 142141Abai (Residential: stationary plantsSox17 33 61 14 14 17 14 14 14 14 14 14 14 14 14 14 14 14 14	0.004 3. 0.004 3. 0.003 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 18. 0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	1 75.1 2 80.6 2 82.8 4 84.9 8 86.7 9 18.9 0 30.9 7 40.7
NA3dii National navigation (shipping) NOx 11055 898 1A3bi(fu) Road transportation: passenger cars (fuel used) NOx 43748 15'010 1A4bi Residential: stationary plants NOX 11'636 33'66 1A2d Stationary combustion in manufacturing industries and construction: pulp paper and print NOX 12'62 33 3Da3 Urine and dung deposited by grazing animals NOX 23'8' 41'7 1A3bi(fu) Road transportation: passenger cars (fuel used) NMVOC 55'82 3'3'65' 3B1b Manure management - Non-dairy cattle NMVOC 5'122 7'441 3B1a Manure management - Dairy cattle NMVOC 5'122 7'441 3B1a Manure management - Dairy cattle NMVOC 5'122 7'441 2D3g Chemical products NMVOC 5'122 7'441 1B2av Distribution of ol products NMVOC 19'127 2'021 1A3br(fu) Road transportation: gasoline evaporation (fuel used) NMVOC 17'13'1 1766	0.004 3. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 1. 0.012 1. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.) 78.0 5 80.6 2 82.8 1 84.9 3 86.7 9 18.9 0 30.9 7 40.7
1A3bil(fu) Read transportation: passenger cars (fuel used) NOx 443748 15'010 1A4bi Residential: stationary plants NOx 11'636 3'464 1A2d Stationary combustion in manufacturing industries and construction: pulp paper and print NOx 12'62 31 3Da3 Urine and dung deposited by grazing animals NOx 243 411 1A3bil(fu) Read transportation: passenger cars (fuel used) NMVOC 55'522 3'635 3B1b Manure management - Non-dairy cattle NMVOC 6'123 6'585 2D3a Domestic solvent use including fungicides NMVOC 8'867 6'507 2D3g Chemical products NMVOC 17'166 17'73 1A3bv(fu) Road transportation: gasoline evaporation (fuel used) NMVOC 17'166 17'73 1B3b Road paving with asphalt NMVOC 17'161 17'763 5'82 2D3b Road paving with asphalt NMVOC 17'161 17'763 2D3b Road paving with asphalt NMVOC 17'171 15'566 <td>0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.002 1. 0.003 18. 0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.</td> <td>5 80.6 2 82.8 1 84.9 3 86.7 9 18.9 0 30.9 7 40.7</td>	0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.003 2. 0.002 1. 0.003 18. 0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	5 80.6 2 82.8 1 84.9 3 86.7 9 18.9 0 30.9 7 40.7
Stationary combustion in manufacturing industries and construction: pulp paper and print NOx 1'262 31 1A2d print NOx 243 417 1A3bil(fu) Road transportation: passenger cars (fuel used) NMVC 55'582 3'635 3B1b Manure management - Non-dairy cattle NMVOC 5'122 7'441 B1a Manure management - Dairy cattle NMVOC 6'585 2D3a Domestic solvent use including fungicides NMVOC 8'867 6'507 2D3g Chemical products NMVOC 12'12 2'021 1'3bit(fu) Road paving with asphalt NMVOC 12'12 2'021 1A3bv(fu) Road paving with asphalt NMVOC 40'731 8'286 2D3b Road paving with asphalt NMVOC 40'731 8'286 2D3b Road paving with asphalt NMVOC 11'142 1'147 2D4 Food and beverages industry NMVOC 1'143 1'147 2B4 Food and beverages industry NMVOC 1'143 1'147 2	0.003 2. 0.002 1. 0.033 18. 0.021 12. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	84.9 8 86.7 9 18.9 9 30.9 7 40.7
1A2d printNOX12b2313Da3Urine and dung deposited by grazing animalsNOX2434173Da3Urine and dung deposited by grazing animalsNMVOC55'8236353BibManure management - Non-dairy cattleNMVOC55'1227'4413B1aManure management - Non-dairy cattleNMVOC6'4136'5852D3aDomestic solvent use including fungicidesNMVOC6'4136'5852D3gChemical productsNMVOC19'1272'0211A3buf(U)Road transportation: gasoline evaporation (fuel used)NMVOC19'1272'0211A3buf(U)Road transportation: gasoline evaporation (fuel used)NMVOC19'1272'0211A3buf(U)Road paning with asphaltNMVOC4'9352'7002D3hPrintingNMVOC4'9352'7002D3hPrintingNMVOC11'1311'5665B2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC11'1311'1665B2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC11'1311'1712H2Food and beverages industryNMVOC3'8591'3001'3212GOther product useNMVOC3'6351'3001'3212GOther product useNMVOC4'8691'321'3001A4bif(U)Road transportation: inmanufacturing industries and construction: non-metallic mineralsSOX3'3301'3001A4d <t< td=""><td>0.002 1. 0.033 18. 0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.</td><td>8 86.7 9 18.9 0 30.9 7 40.7</td></t<>	0.002 1. 0.033 18. 0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	8 86.7 9 18.9 0 30.9 7 40.7
1A3bi(fu)Road transportation: passenger cars (fuel used)NMVOC55'5823'6353B1bManure management - Non-dairy cattleNMVOC5'1227'4412B1aManure management - Dairy cattleNMVOC6'1366'5852D3aDomestic solvent use including fungicidesNMVOC8'8676'5072D3gChemical productsNMVOC27'5043'1851B2avDistribution of oil productsNMVOC19'1272'0211A3bv(fu)Road transportation: gasoline evaporation (fuel used)NMVOC19'1272'02012D3bRoad paving with asphaltNMVOC4'7318'2862D3bRoad paving with asphaltNMVOC4'7318'2862D3bPegreasingNMVOC20'3543'6172D3eDegreasingNMVOC11'7311'5665B2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC11'7312D3bFood and beverages industryNMVOC14'13114'172B4giiManure management - BroilersNMVOC2'4326'3161A26Other product useNMVOC2'4326'3161A27Stationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A440Residential: stationary plantsSOx3'50810'3552071A241Residential: stationary plantsSOx16'133'4'56720'1911A441Residential: stationary plantsSOx <td< td=""><td>0.033 18. 0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.</td><td>9 18.9 0 30.9 7 40.7</td></td<>	0.033 18. 0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	9 18.9 0 30.9 7 40.7
BB1bManure management - Non-dairy cattleNMVOC5'1227'441BB1aManure management - Dairy cattleNMVOC6'4136'5852D3aDomestic solvent use including fungicidesNMVOC8'8676'5072D3gChemical productsNMVOC27'5043'185182avDistribution of oil productsNMVOC19'1272'0211A3bv(fu)Road transportation: gasoline evaporation (fuel used)NMVOC19'1272'0222D3dCoating applicationsNMVOC4'7318'2862D3bRoad paving with asphaltNMVOC4'8952'7002D3tDegreasingNMVOC20'3543'6172D3eDegreasingNMVOC20'3543'6172D3eDegreasingNMVOC1'1311'4665B2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC1'1311'4172H2Food and beverages industryNMVOC3'662B4Manure management - BroilersNMVOC3'661'1441A3bil(fu)Road transportation: light duty vehicles (fuel used)NMVOC2'24326'3161A4biResidential: stationary plantsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'870832B5Carbide productionSOx6'251981Aabil(fu)Road transportati	0.021 12. 0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	0 30.9 7 40.7
3B1aManure management - Dairy cattleNMVOC6'4136'5852D3aDomestic solvent use including fungicidesNMVOC8'8676'5072D3gChemical productsNMVOC27'5043'1851B2avDistribution of oil productsNMVOC19'1272'0211A3bv(fu)Road transportation: gasoline evaporation (fuel used)NMVOC19'1272'0212D3dCoating applicationsNMVOC40'7318'2862D3bRoad paving with asphaltNMVOC40'7318'2862D3hPrintingNMVOC20'3543'6172D3eDegreasingNMVOC12'1311'566582Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC1'1412H2Food and beverages industryNMVOC1'4131'4172H2Food and beverages industryNMVOC3'661'1441A3bil(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC2'24326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx13'2811A4aiCommercial/institutional: stationarySOx6'3552071A3bil(fu)Road transportation: leavy duty vehicles and buses (fuel used)SOx13'83325Carbide	0.017 9. 0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	7 40.7
2D3aDomestic solvent use including fungicidesNMVOC8'8676'5072D3gChemical productsNMVOC27'5043'1851B2avDistribution of oil productsNMVOC19'1272'0211A3bv(fu)Road transportation: gasoline evaporation (fuel used)NMVOC19'1272'0212D3dCoating applicationsNMVOC40'7318'2862D3bRoad paving with asphaltNMVOC40'7318'2862D3hPrintingNMVOC20'3543'6172D3aDegreasingNMVOC11'7311'5665B2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC14'1312H2Food and beverages industryNMVOC14'1311'4173B4giiManure management - BroilersNMVOC4'8691322GOther product useNMVOC2'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'870832B5Carbide productionSOx16'19351A3bii(fu)Road transportation: landing/take-off (LTO))SOx1'84391A3bii(fu)Road transportation: pasenger cars (fuel used)SOx1'84391A3bii(fu)Road transportation: hasy duty vehicles and bus	0.015 8. 0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	
2D3gChemical productsNMVOC27'5043'185182avDistribution of oil productsNMVOC19'1272'0211A3bv(fu)Road transportation: gasoline evaporation (fuel used)NMVOC19'1272'0211A3bv(fu)Road transportation: gasoline evaporation (fuel used)NMVOC19'1272'0212D3dCoating applicationsNMVOC40'7318'2862D3bRoad paving with asphaltNMVOC40'7318'2862D3bDegreasingNMVOC20'3543'6172D3eDegreasingNMVOC11'1311'566582Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC501'1472H2Food and beverages industryNMVOC14'131'4173B4giiManure management - BroilersNMVOC3'661'1441A3bil(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC2'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx10'3552071A2dCommercial/institutional: stationarySOx1001371A3bil(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'639353Da2aAnimal manure applied to soilsNH334'56720'191 <td>0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.</td> <td>+ 49.1</td>	0.012 6. 0.009 5. 0.008 4. 0.005 3. 0.005 2.	+ 49.1
1B2avDistribution of oil productsNMVOC19'1272'0211A3bv(fu)Road transportation: gasoline evaporation (fuel used)NMVOC17'16617'732D3dCoating applicationsNMVOC40'7318'2862D3bRoad paving with asphaltNMVOC4'8952'7002D3hPrintingNMVOC2'0'3543'6172D3cDegreasingNMVOC11'7311'5665B2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC11'1472H2Food and beverages industryNMVOC1'4131'4173B4giiManure management - BroilersNMVOC4'8691'1441A3bil(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC2'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'870831A3ai(i)Civil aviation (domestic landing/take-off (LTO))SOx1001371A3bil(fu)Road transportation: pasenger cars (fuel used)SOx1'84391A3bil(fu)Road transportation: pasenger cars (fuel used)SOx1'619353Da2aAnimal manure applied to solisNH33'4'5672'1'141 <t< td=""><td>0.009 5. 0.008 4. 0.005 3. 0.005 2.</td><td>7 55.8</td></t<>	0.009 5. 0.008 4. 0.005 3. 0.005 2.	7 55.8
1A3bv(fu)Road transportation: gasoline evaporation (fuel used)NMVOC17'1661'7732D3dCoating applicationsNMVOC40'7318'2862D3bRoad paving with asphaltNMVOC4'8952'7002D3hPrintingNMVOC2'3543'6172D3eDegreasingNMVOC11'7311'5665B2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC10'1312H2Food and beverages industryNMVOC1'4131'4172B4giiManure management - BroilersNMVOC3'6661'1441A3bii(fu)Road transportation: light duty vehicles (fuel used)NMVOC2'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'23811A4aiCommercial/institutional: stationarySOx6251981A3ali(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84391A3biil(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84391A3biil(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84391A3biil(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84391A3biil	0.008 4. 0.005 3. 0.005 2.	
2D3dCoating applicationsNMVOC40'7318'2862D3bRoad paving with asphaltNMVOC4'8952'7002D3hPrintingNMVOC20'3543'6172D3eDegreasingNMVOC11'7311'566SB2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC11'1472H2Food and beverages industryNMVOC14'131'4172H42Food and beverages industryNMVOC14'131'4172H3Manure management - BroilersNMVOC3'661'1441A3bii(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC2'2'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'23811A4aiCommercial/institutional: stationarySOx6251981A3ai(i)Civil aviation (domestic landing/take-off (LTO))SOx1'619353Da2aAnimal manure applied to soilsNH3S'1917'2413B1aManure management - Non-dairy cattleNH35'1917'2413B1aManure management - Dairy cattleNH39'33710'1443Da2aAnimal manure applied to soils (including compost)	0.005 2.	
2D3hPrintingNMVOC20'3543'6172D3eDegreasingNMVOC11'7311'566SB2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC501'1472H2Food and beverages industryNMVOC14'131'4173B4giiManure management - BroilersNMVOC3661'1441A3bii(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC22'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'23811A4aiCommercial/institutional: stationarySOx3'87083285Carbide productionSOx10'35720711A3bil(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx10'357131A3bil(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84391A3bil(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'619353Da2aAnimal manure applied to soilsNH334'56720'1913B1bManure management - Non-dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (including compost) <td></td> <td>68.5</td>		68.5
2D3eDegreasingNMVOC11'7311'566SB2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC501'1472H2Food and beverages industryNMVOC1'4131'4173B4giiManure management - BroilersNMVOC3661'1441A3bii(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC2'2'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'23811A4aiCommercial/institutional: stationarySOx3'870832B5Carbide productionSOx1001371A3bii(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'6191A3bi(fu)Road transportation: passenger cars (fuel used)SOx1'6191A3bi(fu)Road transportation: passenger cars (fuel used)SOx1'6193B1aManure management - Non-dairy cattleNH33'4'5673Da2cOther organic fertilisers applied to soils (including compost)NH31'1493Da2bSewage sludge applied to soilsNH31'16903Da2bUrine and dung deposited by grazing animalsNH37'611'413 <td>0.004 2.</td> <td></td>	0.004 2.	
SB2Biological treatment of waste - Anaerobic digestion at biogas facilitiesNMVOC501'1472H2Food and beverages industryNMVOC1'4131'4173B4giiManure management - BroilersNMVOC3661'1441A3bii(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC2'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'23811A4aiCommercial/institutional: stationarySOx3'870832B5Carbide productionSOx10'01371A3bii(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'619353502aAnimal manure applied to soilsNH33'4'5673B1bManure management - Non-dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'1023Da2cOther ganic fertilisers applied to soilsNH31'16903Da2Urine and dung deposited to soils (including compost)NH31'143		
2H2Food and beverages industryNMVOC1'4131'4173B4giiManure management - BroilersNMVOC3661'1441A3bil(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC22'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'23811A4aiCommercial/institutional: stationarySOx6251981A3ai(i)Civil aviation (domestic landing/take-off (LTO))SOx184391A3bil(fu)Road transportation: pasy duty vehicles and buses (fuel used)SOx1'84391A3bil(fu)Road transportation: past duty cattleNH334'56720'1913B1bManure management - Non-dairy cattleNH39'33710'1443Da2aOther organic fertilisers onlice also urea application)NH34'16903Da2bSewage abglied to soilsNH31'1690	0.004 2.	
3B4giiManure management - BroilersNMVOC3661'1441A3bii(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC22'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'5301'3001A4aiCommercial/institutional: stationarySOx3'23811A4aiCommercial/institutional: stationarySOx6251981A3ai(i)Civil aviation (domestic landing/take-off (LTO))SOx1001371A3biii(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84391A3bii(fu)Road transportation: passenger cars (fuel used)SOx1'619353Da2aAnimal manure applied to soilsNH33'1'917'2413B1aManure management - Non-dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2513Da2cOther organic fertilisers applied to soils (including compost)NH31'4023Da2bSewage applied to soilsNH37'611'413	0.004 2.	1
1A3bii(fu)Road transportation: light duty vehicles (fuel used)NMVOC4'8691322GOther product useNMVOC22'4326'3161A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx10'3552071A4aiCommercial/institutional: stationarySOx3'23811A4aiCommercial/institutional: stationarySOx3'870832B5Carbide productionSOx6251981A3bii(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1001371A3bii(fu)Road transportation: passenger cars (fuel used)SOx1'84391A3bii(fu)Road transportation: passenger cars (fuel used)SOx1'619353Da2aAnimal manure applied to soilsNH334'56720'1913B1bManure management - Non-dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2513Da2aSther organic fertilisers applied to soilsNH31'16903Da3Urine and dung deposited by grazing animalsNH37611'413	0.004 2.	_
1A2fStationary combustion in manufacturing industries and construction: non-metallic mineralsSOx3'5301'3001A4biResidential: stationary plantsSOx10'3552071A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'23811A4aiCommercial/institutional: stationarySOx3'870832B5Carbide productionSOx6251981A3ai(i)Civil aviation (domestic landing/take-off (LTO))SOx1001371A3bilifu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'619353Da2aAnimal manure applied to soilsNH33'16720'1913B1bManure management - Non-dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2513Da2cOther organic fertilisers applied to soilsNH33'1'6003Da2Lyrine and dung deposited to soilsNH37'611'413	0.004 2.	_
IAATSOX3 5301 3001A4biResidential: stationary plantsSOX3 5301 3001A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOX3 '23811A4aiCommercial/institutional: stationarySOX3 '23811A4aiCommercial/institutional: stationarySOX3 '23811A3ai(i)Civil aviation (domestic landing/take-off (LTO))SOX6251981A3ai(ii)Civil aviation (domestic landing/take-off (LTO))SOX1001371A3bilif(u)Road transportation: passenger cars (fuel used)SOX1 '619353Da2aAnimal manure applied to soilsNH33 4'56720'1913B1bManure management - Non-dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2513Da2cOther organic fertilisers applied to soilsNH31'16903Da2Sewage sludge applied to soilsNH31'16903Da2Sewage applied to soilsNH31'16903Da2Urine and dung deposited by grazing animalsNH37611'413	0.003 1.	7 86.4
1A2dStationary combustion in manufacturing industries and construction: pulp paper and printSOx3'23811A4aiCommercial/institutional: stationarySOx3'870832B5Carbide productionSOx6251981A3ai(i)Civil aviation (domestic landing/take-off (LTO))SOx1001371A3biii(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84393Da2aAnimal manure applied to soilsNH334'56720'1913B1bManure management - Non-dairy cattleNH35'1917'2413B1aManure management - Dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2'513Da2cOther organic fertilizers applied to soilsNH31'16903Da2Sewage sludge applied to soilsNH31'16903Da3Urine and dung deposited by grazing animalsNH37611'413	0.027 35.	7 35.7
IA20 printSUX3.23811A4aiCommercial/institutional: stationarySOX3.23811A4aiCommercial/institutional: stationarySOX3.870832B5Carbide productionSOX625198IA3ai(i)Civil aviation (domestic landing/take-off (LTO))SOX100137IA3biii(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOX1.8439IA3bii(fu)Road transportation: passenger cars (fuel used)SOX1.619353Da2aAnimal manure applied to soilsNH33.415672.011913B1bManure management - Non-dairy cattleNH35.1917/2413B1aManure management - Dairy cattleNH39'33710'1443Da1Inorganic N-fertilisers applied to soils (including compost)NH34'2592'2513Da2bSewage sludge applied to soilsNH31'16903Da3Urine and dung deposited by grazing animalsNH37.611'413	0.014 18.	5 54.1
2B5Carbide productionSOx6251981A3ai(i)Civil aviation (domestic landing/take-off (LTO))SOx1001371A3bii(ifu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84391A3bii(fu)Road transportation: passenger cars (fuel used)SOx1'619353Da2aAnimal manure applied to soilsNH334'56720'1913B1bManure management - Non-dairy cattleNH35'1917'2413B1aManure management - Dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2513Da2cOther organic fertilisers applied to soils (including compost)NH3341'0423Da2bSewage sludge applied to soilsNH31'16903Da3Urine and dung deposited by grazing animalsNH37611'413	0.006 8.	62.1
1A3ai(i)Civil aviation (domestic landing/take-off (LTO))SOx1001371A3bii(ifu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84391A3bii(fu)Road transportation: passenger cars (fuel used)SOx1'84393Da2aAnimal manure applied to soilsNH334'56720'1913B1bManure management - Non-dairy cattleNH35'1917'2413B1aManure management - Dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2513Da2cOther organic fertilisers applied to soilsNH31'4023Da2bSewage sludge applied to soilsNH31'16903Da3Urine and dung deposited by grazing animalsNH37611'413	0.005 6.	-
1A3bili(fu)Road transportation: heavy duty vehicles and buses (fuel used)SOx1'84391A3bil(fu)Road transportation: passenger cars (fuel used)SOx1'619353Da2aAnimal manure applied to soilsNH334'56720'1913B1bManure management - Non-dairy cattleNH35'1917'2413B1aManure management - Dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2513Da2cOther organic fertilizers applied to soils (including compost)NH3341'0423Da2bSewage sludge applied to soilsNH31'16903Da3Urine and dung deposited by grazing animalsNH37611'413	0.004 5.	
1A3bi(fu)Road transportation: passenger cars (fuel used)SOx1'619353Da2aAnimal manure applied to soilsNH334'56720'1913B1bManure management - Non-dairy cattleNH35'1917'2413B1aManure management - Dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2513Da2cOther organic fertilizers applied to soils (including compost)NH3341'0423Da2bSewage sludge applied to soilsNH31'16903Da3Urine and dung deposited by grazing animalsNH37611'413	0.003 4. 0.003 4.	
3Da2aAnimal manure applied to soilsNH334'56720'1913B1bManure management - Non-dairy cattleNH35'1917'2413B1aManure management - Dairy cattleNH39'33710'1443Da1Inorganic N-fertilizers (includes also urea application)NH34'2592'2513Da2cOther organic fertilizers applied to soils (including compost)NH3341'0423Da2bSewage sludge applied to soilsNH31'16903Da3Urine and dung deposited by grazing animalsNH37611'413	0.003 4.	
3B1b Manure management - Non-dairy cattle NH3 5'191 7'241 3B1a Manure management - Dairy cattle NH3 9'337 10'144 3Da1 Inorganic N-fertilizers (includes also urea application) NH3 4'259 2'251 3Da2c Other organic fertilizers applied to soils (including compost) NH3 34 1'042 3Da2b Sewage sludge applied to soils NH3 1'169 0 3Da3 Urine and dung deposited by grazing animals NH3 761 1'413	0.095 32.	
3Da1Inorganic N-Fertilizers (includes also urea application)NH34'2592'2513Da2cOther organic fertilisers applied to soils (including compost)NH3341'0423Da2bSewage sludge applied to soilsNH31'16903Da3Urine and dung deposited by grazing animalsNH37611'413	0.047 16.	49.2
3Da2c Other organic fertilisers applied to soils (including compost) NH3 34 1'042 3Da2b Sewage sludge applied to soils NH3 1'169 0 3Da3 Urine and dung deposited by grazing animals NH3 761 1'413	0.043 14.	
3Da2b Sewage sludge applied to soils NH3 1'169 0 3Da3 Urine and dung deposited by grazing animals NH3 761 1'413	0.015 5.	
3Da3 Urine and dung deposited by grazing animals NH3 761 1'413	0.015 5. 0.013 4.	
	0.013 4.	-
	0.009 3.	
1A4bi Residential: stationary plants PM2.5 14'536 1'852	0.054 31.	4 31.4
1A3bvi(fu) Road transportation: automobile tyre and brake wear (fuel used) PM2.5 690 958	0.029 17.	
1A3biii(fu) Road transportation: heavy duty vehicles and buses (fuel used) PM2.5 1'584 36	0.012 6.	-
1A2gvii Mobile combustion in manufacturing industries and construction PM2.5 729 384 2G Other product use PM2.5 513 327	0.008 4. 0.008 4.	
2G Other product use PM2.5 513 327 1A3c Railways PM2.5 173 233	0.008 4. 0.007 4.	
IASC Prize 173 253 2C1 Iron and steel production PM2.5 818 7	0.007 4.	
Information PM2.5 782 46	0.005 2.	
2H2 Food and beverages industry PM2.5 188 166	0.005 2.	
1A4ai Commercial/institutional: stationary PM2.5 1'354 430	0.004 2.	_
SC1a Municipal waste incineration PM2.5 465 221 204 Pole and expected with the set of expected withe set of expected withe set of expected with the set	0.004 2.	
2H1 Pulp and paper industry PM2.5 236 151 2A1 Cement production PM2.5 240 143	0.004 2.	
ZA1 Centent production PM2.5 Z40 143 1A4bi Residential: stationary plants PM10 15'326 1'948	0.109 29.	
Interference Interference<	0.050 13.	-
1A2gvii Mobile combustion in manufacturing industries and construction PM10 2'173 2'366	0.042 11.	
1A3c Railways PM10 970 1'517	0.031 8.	-
3De Cultivated crops PM10 1'054 1'000	0.016 4.	
1A3biii(fu) Road transportation: heavy duty vehicles and buses (fuel used) PM10 1'584 36	0.016 4.	
2C1 Iron and steel production PM10 1'485 10 1A1a Public electricity and heat production PM10 1'045 46		
Stationary combustion in manufacturing industries and construction: non-metallic	0.015 4.	
1A2t PM10 833 68	0.010 2.	
2A5a Quarrying and mining of minerals other than coal PM10 302 348 2H2 Food and beverages industry PM10 310 308	0.010 2. 0.007 1.	7 83.0
2H2 Flood and beverages industry PM10 310 308 3B4gii Manure management - Broilers PM10 68 212	0.010 2.	1 84.4

Table A - 6 Switzerland's key categories according to approach 1 level assessment for the year 2023, sorted by decreasing contribution, for TSP, BC, CO, priority heavy metals, PCDD/PCDF, PAHs total, HCB and PCBs. Categories in grey are not key and are given for information only.

	KCA APPROACH 1 LEVEL ASSESSMENT FOR	2023			
А	В	С	D	E	F
NFR code	Source category	Pollutant (unit)	Ex, t	Lx, t (%)	Cumu- lative Total (%)
3De	Cultivated crops	TSP (t)	9'995	35.6	35.6
1A2gvii	Mobile combustion in manufacturing industries and construction	TSP (t)	3'532	12.6	48.2
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	TSP (t)	2'610	9.3	57.5
1A4bi	Residential: stationary plants	TSP (t)	2'040	7.3	64.8
1A3c	Railways	TSP (t)	2'014	7.2	72.0
2A5a	Quarrying and mining of minerals other than coal	TSP (t)	828	3.0	74.9
3B4gi	Manure management - Laying hens	TSP (t)	730	2.6	77.5
3B3	Manure management - Swine	TSP (t)	618	2.2	79.7
1A4ai	Commercial/institutional: stationary	TSP (t)	475	1.7	81.4
21	Wood processing	TSP (t)	469	1.7	83.1
2H2 2R4gii	Food and beverages industry Manua management Broilers	TSP (t) TSP (t)	425 424	1.5 1.5	84.6 86.1
3B4gii 1A4bi	Manure management - Broilers Residential: stationary plants	BC (t)	424	50.0	50.0
	Road transportation: automobile tyre and brake wear (fuel used)	BC (t)	96	11.5	61.6
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	BC (t)	78	9.3	70.9
1A4ai	Commercial/institutional: stationary	BC (t)	76	9.1	80.0
	Road transportation: passenger cars (fuel used)	BC (t)	29	3.5	83.5
. ,	Road transportation: light duty vehicles (fuel used)	BC (t)	23	2.7	86.3
	Road transportation: passenger cars (fuel used)	CO (t)	45'779	33.0	33.0
1A4bi	Residential: stationary plants	CO (t)	23'878	17.2	50.2
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	CO (t)	12'216	8.8	59.0
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	CO (t)	8'146	5.9	64.9
1A4aii	Commercial/institutional: mobile	CO (t)	6'484	4.7	69.6
1A4ai	Commercial/institutional: stationary	CO (t)	6'179	4.5	74.0
1A3dii	National navigation (shipping)	CO (t)	4'996	3.6	77.6
1A3biv(fu)	Road transportation: mopeds and motorcycles (fuel used)	CO (t)	4'911	3.5	81.1
1A2gvii	Mobile combustion in manufacturing industries and construction	CO (t)	4'087	2.9	84.1
1A4bii	Residential: household and gardening (mobile)	CO (t)	3'886	2.8	86.9
1A1a	Public electricity and heat production	Pb (kg)	1'721	22.0	22.0
6A	Other sources	Pb (kg)	1'701	21.8	43.8
5C1a	Municipal waste incineration	Pb (kg)	1'532	19.6	63.5
1A3aii(i)	Civil aviation (domestic cruise)	Pb (kg)	661	8.5	71.9
-	Stationary combustion in manufacturing industries and construction: other	Pb (kg)	584 341	7.5 4.4	79.4 83.8
1A4bi 2G	Residential: stationary plants Other product use	Pb (kg) Pb (kg)	341	4.4	87.8
1A1a	Public electricity and heat production	Cd (kg)	152	37.5	37.5
	Road transportation: automobile tyre and brake wear (fuel used)	Cd (kg)	92	22.5	60.0
2G	Other product use	Cd (kg)	27	6.5	66.5
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	Cd (kg)	25	6.2	72.7
1A4bi	Residential: stationary plants	Cd (kg)	25	6.2	78.9
	Mobile combustion in manufacturing industries and construction	Cd (kg)	19	4.7	83.6
-	Stationary combustion in manufacturing industries and construction: other	Cd (kg)	17	4.3	87.8
	Public electricity and heat production	Hg (kg)	293	52.2	52.2
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	Hg (kg)	56	10.0	62.3
1A4bi	Residential: stationary plants	Hg (kg)	47	8.3	70.6
2C1	Iron and steel production	Hg (kg)	37	6.7	70.6
			28	5.0	82.2
1A2gviii	Stationary combustion in manufacturing industries and construction: other		/~		02.2
1A2gviii 1A4ai	Stationary combustion in manufacturing industries and construction: other Commercial/institutional: stationary	Hg (kg) Hg (kg)		4.9	87.1
1A2gviii 1A4ai 1A4bi	Commercial/institutional: stationary	Hg (kg)	28 28 4'176		87.1 34.4
1A4ai			28	4.9	
1A4ai 1A4bi 5C1a	Commercial/institutional: stationary Residential: stationary plants	Hg (kg) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ)	28 4'176	4.9 34.4	34.4
1A4ai 1A4bi	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration	Hg (kg) PCDD/PCDF (mg I-TEQ)	28 4'176 2'451	4.9 34.4 20.2	34.4 54.5
1A4ai 1A4bi 5C1a 1A4ai	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration Commercial/institutional: stationary	Hg (kg) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ)	28 4'176 2'451 1'157	4.9 34.4 20.2 9.5	34.4 54.5 64.1
1A4ai 1A4bi 5C1a 1A4ai 6A	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration Commercial/institutional: stationary Other sources	Hg (kg) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ)	28 4'176 2'451 1'157 986	4.9 34.4 20.2 9.5 8.1	34.4 54.5 64.1 72.2
1A4ai 1A4bi 5C1a 1A4ai 6A 1A1a 1A2gviii	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration Commercial/institutional: stationary Other sources Public electricity and heat production	Hg (kg) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ)	28 4'176 2'451 1'157 986 985	4.9 34.4 20.2 9.5 8.1 8.1	34.4 54.5 64.1 72.2 80.3
1A4ai 1A4bi 5C1a 1A4ai 6A 1A1a 1A2gviii	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration Commercial/institutional: stationary Other sources Public electricity and heat production Stationary combustion in manufacturing industries and construction: other	Hg (kg) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ)	28 4'176 2'451 1'157 986 985 680	4.9 34.4 20.2 9.5 8.1 8.1 5.6	34.4 54.5 64.1 72.2 80.3 85.9
1A4ai 1A4bi 5C1a 1A4ai 6A 1A1a 1A2gviii 1A4bi 1A4bi	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration Commercial/institutional: stationary Other sources Public electricity and heat production Stationary combustion in manufacturing industries and construction: other Residential: stationary plants	Hg (kg) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PAHs total (kg)	28 4'176 2'451 1'157 986 985 680 1'342	4.9 34.4 20.2 9.5 8.1 8.1 5.6 57.3	34.4 54.5 64.1 72.2 80.3 85.9 57.3
1A4ai 1A4bi 5C1a 1A4ai 6A 1A1a 1A2gviii 1A4bi 1A4ai	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration Commercial/institutional: stationary Other sources Public electricity and heat production Stationary combustion in manufacturing industries and construction: other Residential: stationary plants Commercial/institutional: stationary	Hg (kg) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PAHs total (kg) PAHs total (kg)	28 4'176 2'451 1'157 986 985 680 1'342 257	4.9 34.4 20.2 9.5 8.1 8.1 5.6 57.3 11.0	34.4 54.5 64.1 72.2 80.3 85.9 57.3 68.2
1A4ai 1A4bi 5C1a 1A4ai 6A 1A1a 1A2gviii 1A4bi 1A4bi 1A4ai 1A3bi(fu) 5C2	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration Commercial/institutional: stationary Other sources Public electricity and heat production Stationary combustion in manufacturing industries and construction: other Residential: stationary plants Commercial/institutional: stationary Road transportation: passenger cars (fuel used)	Hg (kg) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PAHs total (kg) PAHs total (kg)	28 4'176 2'451 1'157 986 985 680 1'342 257 209	4.9 34.4 20.2 9.5 8.1 8.1 5.6 57.3 11.0 8.9	34.4 54.5 64.1 72.2 80.3 85.9 57.3 68.2 77.2
1A4ai 1A4bi 5C1a 1A4ai 6A 1A1a 1A2gviii 1A4bi 1A4bi 1A4bi 1A3bi(fu) 5C2 1A1a	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration Commercial/institutional: stationary Other sources Public electricity and heat production Stationary combustion in manufacturing industries and construction: other Residential: stationary plants Commercial/institutional: stationary Road transportation: passenger cars (fuel used) Open burning of waste	Hg (kg) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ) PAHs total (kg) PAHs total (kg) PAHs total (kg)	28 4'176 2'451 1'157 986 985 680 1'342 257 209 189	4.9 34.4 20.2 9.5 8.1 8.1 5.6 57.3 11.0 8.9 8.1	34.4 54.5 64.1 72.2 80.3 85.9 57.3 68.2 77.2 85.2 54.0
1A4ai 1A4bi 5C1a 1A4ai 6A 1A1a 1A2gviii 1A4bi 1A4bi 1A4ai 1A3bi(fu) 5C2 1A1a	Commercial/institutional: stationary Residential: stationary plants Municipal waste incineration Commercial/institutional: stationary Other sources Public electricity and heat production Stationary combustion in manufacturing industries and construction: other Residential: stationary plants Commercial/institutional: stationary Road transportation: passenger cars (fuel used) Open burning of waste Public electricity and heat production	Hg (kg) PCDD/PCDF (mg I-TEQ) PAIs total (kg) PAHs total (kg) PAHs total (kg) PAHs total (kg) PAHs total (kg) PAHs total (kg) PAHs total (kg) PAHs total (kg) PAHs total (kg)	28 4'176 2'451 1'157 986 985 680 1'342 257 209 189 184	4.9 34.4 20.2 9.5 8.1 8.1 5.6 57.3 11.0 8.9 8.1 54.0	34.4 54.5 64.1 72.2 80.3 85.9 57.3 68.2 77.2 85.2

Table A - 7 Switzerland's key categories according to approach 1 level assessment for the year 1990, sorted by decreasing contribution, for TSP, BC, CO, priority heavy metals, PCDD/PCDF, PAHs total, HCB and PCBs. Categories in grey are not key and are given for information only.

	KCA APPROACH 1 LEVEL ASSESSMENT FOR 19				
А	В	С	D	E	F
					Cumu-
NFR code	Source category	Pollutant (unit)	Ex, 0	Lx, 0 (%)	lative
					Total (%)
1A4bi	Residential: stationary plants	TSP (t)	16'162	28.8	28.8
3De	Cultivated crops	TSP (t)	10'536	18.8	47.6
21	Wood processing	TSP (t)	4'322	7.7	55.3
1A2gvii	Mobile combustion in manufacturing industries and construction	TSP (t)	3'023	5.4	60.7
2C1	Iron and steel production	TSP (t)	2'686	4.8	65.5
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	TSP (t)	2'046	3.6	69.1
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	TSP (t)	1'584	2.8	71.9
1A4ai	Commercial/institutional: stationary	TSP (t)	1'501	2.7	74.6
1A3c	Railways	TSP (t)	1'280	2.3	76.9
	Stationary combustion in manufacturing industries and construction: non-metallic				
1A2f	minerals	TSP (t)	1'227	2.2	79.1
1A1a	Public electricity and heat production	TSP (t)	1'059	1.9	81.0
1A2gviii	Stationary combustion in manufacturing industries and construction: other	TSP (t)	972	1.7	82.7
3B3	Manure management - Swine	TSP (t)	915	1.6	84.3
1A4ci	Agriculture/forestry/fishing: stationary	TSP (t)	724	1.3	85.6
1A4bi	Residential: stationary plants	BC (t)	3'220	56.2	56.2
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	BC (t)	792	13.8	70.0
1A4ai	Commercial/institutional: stationary	BC (t)	301	5.2	75.3
1A4a1 1A2gvii	Mobile combustion in manufacturing industries and construction	BC (t)	256	4.5	79.7
5			230	4.5	84.0
1A3bi(fu)	Road transportation: passenger cars (fuel used)	BC (t)	242	4.2	88.0
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	BC (t)	421'663	4.1	56.1
1A3bi(fu) 1A4bi	Road transportation: passenger cars (fuel used)	CO (t)	421 663	14.9	71.0
-	Residential: stationary plants	CO (t)		14.9 9.6	71.0
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	CO (t)	71'839		
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	CO (t)	28'368	3.8	84.3
1A3biv(fu)	Road transportation: mopeds and motorcycles (fuel used)	CO (t)	24'679	3.3	87.6
1A3bi(fu)	Road transportation: passenger cars (fuel used)	Pb (kg)	211'660	59.7	59.7
2C1	Iron and steel production	Pb (kg)	59'858	16.9	76.6
1A1a	Public electricity and heat production	Pb (kg)	29'818	8.4	85.0
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	Pb (kg)	11'971	3.4	88.4
1A1a	Public electricity and heat production	Cd (kg)	1'754	55.1	55.1
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	Cd (kg)	665	20.9	76.0
2C1	Iron and steel production	Cd (kg)	443	13.9	90.0
1A1a	Public electricity and heat production	Hg (kg)	3'915	62.1	62.1
2C1	Iron and steel production	Hg (kg)	1'108	17.6	79.7
2B10a	Chemical industry: other	Hg (kg)	384	6.1	85.7
1A1a	Public electricity and heat production	PCDD/PCDF (mg I-TEQ)	130'484	67.8	67.8
1A4bi	Residential: stationary plants	PCDD/PCDF (mg I-TEQ)	17'674	9.2	77.0
2C1	Iron and steel production	PCDD/PCDF (mg I-TEQ)	12'419	6.5	83.5
5C1biii	Clinical waste incineration	PCDD/PCDF (mg I-TEQ)	6'900	3.6	87.0
1A4bi	Residential: stationary plants	PAHs total (kg)	5'698	70.9	70.9
2C3	Aluminium production	PAHs total (kg)	940	11.7	82.5
1A4ai	Commercial/institutional: stationary	PAHs total (kg)	516	6.4	82.
1A4ai 1A2b	Commercial/institutional: stationary Stationary combustion in manufacturing industries and construction: non-ferrous metals	HCB (g)	172'000	99.7	99.0
2K	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)	PCB (g)	1'525'788	65.4	65.4
6A	Other sources	PCB (g)	281'955	12.1	77.5
5E	Other waste	PCB (g)	215'511	9.2	86.8

Table A - 8 Switzerland's key categories according to approach 1 trend assessment for 1990-2023, sorted by decreasing contribution, for TSP, BC, CO, priority heavy metals, PCDD/PCDF, PAHs total, HCB and PCBs. Categories in orange have increased emissions in 2023 compared to 1990. Categories in grey are not key and are given for information only.

	KCA APPROACH 1 TREND ASSES	SMENT 1990 - 2023					
A	В	С	D	E	F	G	Н
NFR code	Source category	Pollutant (unit)	Ex, 0	Ex, t	Trend Assess- ment	Contri- bution to trend assess. (%)	Cumu- lative Total (%)
1A4bi	Residential: stationary plants	TSP (t)	16'162	2'040	0.108	24.4	24.4
3De	Cultivated crops	TSP (t)	10'536	9'995	0.084	19.1	43.5
1A2gvii	Mobile combustion in manufacturing industries and construction	TSP (t)	3'023	3'532	0.036	8.2	51.7
21	Wood processing	TSP (t)	4'322	469	0.030	6.8	58.5
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	TSP (t)	2'046	2'610	0.028	6.4	65.0
1A3c	Railways	TSP (t)	1'280	2'014	0.024	5.6	70.5
2C1	Iron and steel production	TSP (t)	2'686	12	0.024	5.4	75.9
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	TSP (t)	1'584	36	0.013	3.1	78.9
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	TSP (t)	1'227	78	0.010	2.2	81.1
2A5a	Quarrying and mining of minerals other than coal	TSP (t)	651	828	0.009	2.0	83.1
1A1a	Public electricity and heat production	TSP (t)	1'059	46	0.009	2.0	85.1
	Road transportation: heavy duty vehicles and buses (fuel used)	BC (t)	792	13	0.018	25.4	25.4
	Road transportation: automobile tyre and brake wear (fuel used)	BC (t)	69	96	0.015	21.4	46.8
1A4bi	Residential: stationary plants	BC (t)	3'220 232	416	0.009	12.8 10.9	59.6 70.5
1A4cii 1A4ai	Agriculture/forestry/fishing: off-road vehicles and other machinery	BC (t) BC (t)	301	78 76	0.008	8.1	70.5
1A4ai 1A2gvii	Commercial/institutional: stationary Mobile combustion in manufacturing industries and construction	BC (t)	256	17	0.008	5.1	83.6
5C1a	Municipal waste incineration	BC (t)	33	17	0.004	2.7	86.3
	Road transportation: passenger cars (fuel used)	CO (t)	421'663	45'779	0.043	37.2	37.2
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	CO (t)	71'839	3'592	0.013	11.2	48.5
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	CO (t)	28'368	12'216	0.009	8.1	56.6
1A4aii	Commercial/institutional: mobile	CO (t)	4'117	6'484	0.008	6.6	63.2
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	CO (t)	13'126	8'146	0.008	6.6	69.9
1A4ai	Commercial/institutional: stationary	CO (t)	11'356	6'179	0.005	4.7	74.6
1A4bii	Residential: household and gardening (mobile)	CO (t)	3'271	3'886	0.004	3.8	78.4
1A4bi	Residential: stationary plants	CO (t)	111'881	23'878	0.004	3.7	82.2
1A2gvii	Mobile combustion in manufacturing industries and construction	CO (t)	7'253	4'087	0.004	3.2	85.4
1A3bi(fu)	Road transportation: passenger cars (fuel used)	Pb (kg)	211'660	104	0.013	36.7	36.7
6A	Other sources	Pb (kg)	7'612	1'701	0.004	12.3	49.0
5C1a	Municipal waste incineration	Pb (kg)	3'230	1'532	0.004	11.7	60.7
2C1	Iron and steel production	Pb (kg)	59'858	192	0.003	9.1	69.8
1A1a	Public electricity and heat production	Pb (kg)	29'818 2'027	1'721	0.003	8.6 5.0	78.4 83.3
1A3aii(i) 1A2gviii	Civil aviation (domestic cruise) Stationary combustion in manufacturing industries and construction: other	Pb (kg) Pb (kg)	975	661 584	0.002	4.5	87.8
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	Cd (kg)	65	92	0.002	21.8	21.8
1A1a	Public electricity and heat production	Cd (kg)	1'754	152	0.023	18.8	40.6
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	Cd (kg)	665	25	0.019	15.6	56.2
2C1	Iron and steel production	Cd (kg)	443	4	0.017	13.8	70.0
2G	Other product use	Cd (kg)	30	27	0.007	5.9	75.9
1A2gvii	Mobile combustion in manufacturing industries and construction	Cd (kg)	12	19	0.006	4.6	80.6
1A4bi	Residential: stationary plants	Cd (kg)	62	25	0.005	4.5	85.0
2C1	Iron and steel production	Hg (kg)	1'108	37	0.010	17.7	17.7
1A1a	Public electricity and heat production	Hg (kg)	3'915	293	0.009	16.0	33.8
1A4bi	Residential: stationary plants	Hg (kg)	72	47	0.006	11.7	45.5
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	Hg (kg)	226	56	0.006	10.5	56.0
2B10a	Chemical industry: other	Hg (kg)	384	0	0.005	9.9	65.9
1A2gviii	Stationary combustion in manufacturing industries and construction: other	Hg (kg)	13	28	0.004	7.7	73.6
1A4ai	Commercial/institutional: stationary	Hg (kg)	14	28	0.004	7.7	81.3
5C1biii	Clinical waste incineration	Hg (kg)	240	0	0.003	6.2	87.5
1A1a	Public electricity and heat production	PCDD/PCDF (mg I-TEQ)	130'484	985	0.038	41.2	41.2
1A4bi	Residential: stationary plants	PCDD/PCDF (mg I-TEQ)	17'674	4'176	0.016	17.4	58.5
5C1a 1A4ai	Municipal waste incineration	PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ)	5'168 2'112	2'451 1'157	0.011	12.1 5.8	70.6 76.4
1A4ai 6A	Commercial/institutional: stationary Other sources	PCDD/PCDF (mg I-TEQ) PCDD/PCDF (mg I-TEQ)	1'633	986	0.005	5.8	76.4
2C1	Iron and steel production	PCDD/PCDF (mg I-TEQ)	12'419	133	0.003	3.7	81.4
1A4bi	Residential: stationary plants	PAHs total (kg)	5'698	1'342	0.040	26.4	26.4
2C3	Aluminium production	PAHs total (kg)	940	0	0.034	22.7	49.0
1A3bi(fu)	Road transportation: passenger cars (fuel used)	PAHs total (kg)	103	209	0.022	14.8	63.8
5C2	Open burning of waste	PAHs total (kg)	282	189	0.013	8.8	72.7
1A4ai	Commercial/institutional: stationary	PAHs total (kg)	516	257	0.013	8.8	81.5
6A	Other sources	PAHs total (kg)	65	111	0.011	7.6	89.1
1A2b	Stationary combustion in manufacturing industries and construction: non-ferrous metals	HCB (g)	172'000	0	0.002	50.0	50.0
1A1a	Public electricity and heat production	HCB (g)	114	184	0.001	27.1	77.1
1A4bi	Residential: stationary plants	HCB (g)	322	84	0.000	12.3	89.4
2K	Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)	PCB (g)	1'525'788	277'566	0.032	49.6	49.6
5E	Other waste	PCB (g)	215'511	2'128	0.011	17.6	67.3
1A1a 5C1bii	Public electricity and heat production Hazardous waste incineration	PCB (g) PCB (g)	164'493 111'813	61 0	0.009	14.5 9.9	81.8 91.7

A1.3 Detailed results of approach 2 assessment

The following tables report the detailed results for the key category analysis, approach 2, level and trend assessments, for the reporting year 2023 and the base year 1990. Columns labelled A to F for the level assessments correspond exactly to columns A to F from Table 3-1 from the EMEP/EEA guidebook (EMEP/EEA 2023, part A, chp. 2, "Methodological choice and Key category analysis". For the table reporting the trend assessment, columns labelled A to H correspond exactly to columns A to H from Table 3-2 from the same guidelines. Equations referenced hereafter are also from the same guidelines.

Explanations of headers for tables in this Annex are:

- E_{x, t}: emission estimate for the reporting year.
- $E_{x, 0}$: emission estimate for the base year.
- L_{x, t}: level assessment for the reporting year (EMEP/EAA guidebook part A, chp. 2, equ. 3 for approach 2).
- L_{x, 0}: level assessment for the base year (EMEP/EAA guidebook part A, chp. 2, equ. 3 for approach 2).
- Trend assessment: computed according to the EMEP/EAA guidebook part A, chp. 2, equ. 4 for approach 2.

A	KCA APPROACH 2, UNCERTAINTY APPROACH 2, LEVEL ASSESSM B	IENT FOR 2023	D	E	F
					Cumu-
NFR code	Source category	Pollutant	Ex, t (t)	Lx, t (%)	lative Total (%)
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NOx	15'010	42.3	42.3
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	NOx	3'494	8.3	50.6
3Da2a	Animal manure applied to soils	NOx	1'449	5.4	56.0
3Da1 1A3biii(fu)	Inorganic N-fertilizers (includes also urea application) Road transportation: heavy duty vehicles and buses (fuel used)	NOx NOx	609 3'029	4.5	60.5 64.5
1A3biii(iu) 1A1a	Public electricity and heat production	NOx	2'267	4.0	68.1
	Stationary combustion in manufacturing industries and construction: non-metallic				
1A2f	minerals	NOx	2'825	3.6	71.6
1A4bi	Residential: stationary plants	NOx	3'464	3.4	75.1
1A4ai 3Da3	Commercial/institutional: stationary Urine and dung deposited by grazing animals	NOx NOx	2'832 417	3.3	78.4 81.5
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	NOx	1'966	2.9	81.3
1A2gviii	Stationary combustion in manufacturing industries and construction: other	NOx	1'638	2.1	86.5
2G	Other product use	NMVOC	6'316	17.6	17.6
3B1b	Manure management - Non-dairy cattle	NMVOC	7'441	9.5	27.1
3B1a 2D3d	Manure management - Dairy cattle Coating applications	NMVOC NMVOC	6'585 8'286	7.2	34.3 41.1
2D3a	Domestic solvent use including fungicides	NMVOC	6'507	5.9	47.0
2D3g	Chemical products	NMVOC	3'185	5.5	52.5
2D3i	Other solvent use	NMVOC	1'933	5.0	57.6
2D3b	Road paving with asphalt	NMVOC	2'700	4.5	62.1
1A3biv(fu) 1A3bi(fu)	Road transportation: mopeds and motorcycles (fuel used) Road transportation: passenger cars (fuel used)	NMVOC NMVOC	827 3'635	3.7	65.7 69.2
3B4gii	Manure management - Broilers	NMVOC	1'144	3.4	72.4
2D3h	Printing	NMVOC	3'617	2.9	75.3
1A4bi	Residential: stationary plants	NMVOC	2'347	2.9	78.2
2H2	Food and beverages industry	NMVOC	1'417	2.4	80.6
3B3 2D3e	Manure management - Swine Degreasing	NMVOC NMVOC	770 1'566	2.1	82.7 84.5
3B4gi	Manure management - Laying hens	NMVOC	634	1.8	86.3
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	SOx	1'300	45.3	
1A1a	Public electricity and heat production	SOx	256	11.3	56.6
1A2gviii	Stationary combustion in manufacturing industries and construction: other	SOx	260	9.1	65.6
2B5	Carbide production	SOx	198	7.3	72.9
1A4bi	Residential: stationary plants	SOx	207	4.0	76.9
2B10a 1A4ci	Chemical industry: other Agriculture/forestry/fishing: stationary	SOx SOx	40	2.9	79.9 82.5
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	SOx	137	2.5	85.0
2C1	Iron and steel production	SOx	13	2.2	87.2
3Da2a	Animal manure applied to soils	NH3	20'191	24.1	24.1
3B1a 3B1b	Manure management - Dairy cattle Manure management - Non-dairy cattle	NH3 NH3	10'144 7'241	16.4 10.9	40.5 51.4
3B15 3B3	Manure management - Swine	NH3	4'736	10.5	61.9
3Da1	Inorganic N-fertilizers (includes also urea application)		4/30	10.4	
		NH3	2'251	10.4 6.1	68.0
6A	Other sources	NH3	2'251 970	6.1 5.6	73.6
3Da3	Urine and dung deposited by grazing animals	NH3 NH3	2'251 970 1'413	6.1 5.6 4.8	73.6 78.4
3Da3 3B4gii	Urine and dung deposited by grazing animals Manure management - Broilers	NH3 NH3 NH3	2'251 970 1'413 680	6.1 5.6 4.8 3.2	73.6 78.4 81.6
3Da3	Urine and dung deposited by grazing animals	NH3 NH3	2'251 970 1'413	6.1 5.6 4.8	73.6 78.4 81.6 84.6
3Da3 3B4gii 3Da2c 3B4gi	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost)	NH3 NH3 NH3 NH3	2'251 970 1'413 680 1'042	6.1 5.6 4.8 3.2 3.1	73.6 78.4 81.6 84.6 87.6
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu)	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used)	NH3 NH3 NH3 NH3 NH3 PM2.5 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2	73.6 78.4 81.6 84.6 87.6 27.0 36.2
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry	NH3 NH3 NH3 NH3 PM2.5 PM2.5 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7	73.6 78.4 81.6 84.6 87.6 27.0 36.2 44.9
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu)	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary	NH3 NH3 NH3 NH3 PM2.5 PM2.5 PM2.5 PM2.5 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166 430	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2	73.6 78.4 81.6 84.6 87.6 27.0 36.2
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry	NH3 NH3 NH3 NH3 PM2.5 PM2.5 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4	73.6 78.4 81.6 84.6 87.6 27.0 36.2 44.9 51.3
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry	NH3 NH3 NH3 NH3 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166 430 327 98 151	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 4.4	73.6 78.4 81.6 84.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A1	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production	NH3 NH3 NH3 NH3 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166 430 327 98 151 143	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 4.4 4.4	73.6 78.4 81.6 84.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 2A5a 2H1 2A1 1A2gvii	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction	NH3 NH3 NH3 NH3 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166 430 327 98 151 143 384	6.1 5.6 4.8 3.2 3.1 3.0 9.2 8.7 6.4 5.9 5.1 5.1 4.4 4.4 4.4 2 3.7	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 2A4 2A5a 2H1 2A1 1A2gvii 2I	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing	NH3 NH3 NH3 NH3 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166 430 327 98 151 143 384 47	6.1 5.6 4.8 3.2 3.1 3.0 9.2 8.7 6.4 5.9 5.1 4.4 4.2 3.7 2.5	73.6 78.4 81.6 84.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 2A5a 2H1 2A1 1A2gvii	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction	NH3 NH3 NH3 NH3 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166 430 327 98 151 143 384	6.1 5.6 4.8 3.2 3.1 3.0 9.2 8.7 6.4 5.9 5.1 5.1 4.4 4.4 4.4 2 3.7	73.6 78.4 81.6 84.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A1 1A2gvii 2I 5C1a 1A2gviii 1A3c	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways	NH3 NH3 NH3 NH3 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166 430 327 98 151 143 384 47 221 1866 233	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 5.1 4.4 4 4.2 3.7 2.5 2.3 2.2 2.3 2.2	73.6 78.4 81.6 84.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 81.9 84.1
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A5a 2H1 1A2gvii 1A2gvii 1A2gviii 1A3c 1A4cii	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery	NH3 NH3 NH3 NH3 PM2.5	2'251 970 1'413 680 1'042 958 166 430 327 98 151 151 143 384 477 221 166 233 384 477	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 4.4 4.2 3.7 2.5 2.3 2.2 2.0	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 86.1
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A5a 2H1 1A2gvii 2I 5C1a 1A2gviii 1A3c 1A3c 1A4ci 3De	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery Cultivated crops	NH3 NH3 NH3 NH3 PM2.5	2'251 970 1'413 680 1'042 674 1'852 958 166 4300 327 98 151 143 384 477 2211 186 233 233 128	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 4 5.9 5.1 4.4 4.2 2.5 2.5 2.5 2.3 2.2 2.0 0 12.1	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 86.1 12.1
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A5a 2H1 1A2gvii 1A2gvii 1A2gviii 1A3c 1A4cii	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery	NH3 NH3 NH3 NH3 PM2.5	2'251 970 1'413 680 1'042 958 166 430 327 98 151 151 143 384 477 221 166 233 384 477	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 4.4 4.2 3.7 2.5 2.3 2.2 2.0	73.6 78.4 81.6 87.6 27.0 36.2 36.2 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 86.1
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2H1 2H1 2H1 2H1 2H1 2H1 2H1	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery Cultivated crops Residential: stationary plants	NH3 NH3 NH3 NH3 NH3 PM2.5 PM10	2'251 970 1'413 680 1'042 674 1'852 958 166 430 327 98 151 143 384 477 221 186 233 128 128 1'000 1'948	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 4.4 4.2 3.7 2.5 2.5 2.3 2.2 2.0 12.1 118	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1.1 79.6 81.9 84.1 86.1 12.1.1 86.1
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 1A2gvii 2I 5C1a 1A2gvii 1A3c 1A4cii 3De 1A4bi 1A3bvi(fu) 1A4zgvii 2L	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery Cultivated crops Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Quarrying and mining of minerals other than coal	NH3 NH3 NH3 NH3 PM2.5 PM10 PM10 PM10 PM10 PM10	2'251 970 1'413 680 1'042 958 166 4300 327 98 151 151 151 151 163 384 477 2211 186 2333 128 1'000 1'948 2'610 2'366 348	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 4.4 4.2 3.7 2.5 2.5 2.5 2.5 2.2 2.0 12.1 11.8 10.4 7.5	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 86.1 12.1 23.8 86.1 12.1 12.1 86.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1 1
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A5a 2H2 2H2 2A5a 2H2 2A5a 2H2 2A5a 2A5a 2H2 2A5a 2H2 2A5a 2H2 2H2	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery Cultivated crops Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction: other Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Eveloped transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Guarrying and mining of minerals other than coal Food and beverages industry	NH3 NH3 NH3 NH3 PM2.5 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	2'251 970 1'413 680 1'042 958 166 4300 327 98 151 143 384 477 2211 186 233 1288 1'000 1'948 2'610 2'660 3488 308	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 4 5.9 5.1 4.4 4.2 3.7 2.5 2.5 2.5 2.3 2.2 2.0 0 12.1 11.8 10.4 9.4 7.5 5.6,7	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 86.1 12.1 12.1 12.1 12.3 8 34.2 34.2 55.8
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A5a 2H1 1A2gvii 1A2gvii 1A3c 1A4bi 1A3bvi(fu)	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction: other Railways Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Eveloped transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Quarrying and mining of minerals other than coal Food and beverages industry Railways	NH3 NH3 NH3 NH3 NH3 PM2.5 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	2'251 970 1'413 6800 1'042 674 1'852 958 166 430 327 98 151 143 384 477 2211 186 6 233 128 128 129 1200 1'900 1'948 2'610 2'366 348 308 308 1'517	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 4.4 4 4.2 3.7 2.5 2.3 2.2 2.0 12.1 11.8 10.4 9.4 9.4 9.4 6.7,5 6.7 5.0 2.3 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 3.1 2.2 2.2 2.0 2.2 3.1 2.2 3.1 3.0 2.7 0.2 3.1 3.0 2.7 0.2 3.1 3.0 2.7 0.2 3.1 3.0 2.7 0.2 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 86.1 12.1 12.3 84.2 34.2 43.6 55.1 12.5 8 8 34.2 43.6 55.2 8 34.2 63.8 8 63.8 8 63.8
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A1 1A2gvii 2I 5C1a 1A4cii 3De 1A4bi 1A3c 1A4bi 1A2gviii 1A4bi 1A3bvi(fu) 1A2gvii 2A5a 2H2 1A4bi 1A2gvii 2A5a 2H2 1A3c 2H2	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery Cultivated crops Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction: other Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Eveloped transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Guarrying and mining of minerals other than coal Food and beverages industry	NH3 NH3 NH3 NH3 PM2.5 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	2'251 970 1'413 680 1'042 958 166 4300 327 98 151 143 384 477 2211 186 233 1288 1'000 1'948 2'610 2'660 3488 308	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 4 5.9 5.1 4.4 4.2 3.7 2.5 2.5 2.5 2.3 2.2 2.0 0 12.1 11.8 10.4 9.4 7.5 5.6,7	73.6 78.4 81.6 87.6 27.0 36.2 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 12.1 12.1 86.1 12.3 8 34.2 2 3.8 34.2 2 3.8 34.2 6 3.8 34.2 57.8 8 34.2 57.8 8 34.2 57.8 8 34.2 57.8 34.2 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A5a 2H1 1A2gvii 1A2gvii 1A3c 1A4bi 1A3bvi(fu)	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery Cultivated crops Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Guitivated crops Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Quarrying and mining of minerals other than coal Food and beverages industry Railways Wood processing	NH3 NH3 NH3 NH3 PM2.5 PM1.5 PM1.5 PM1.0 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	2'251 970 1'413 680 1'042 958 166 430 327 98 151 143 384 47 221 143 384 47 221 143 384 47 223 128 128 233 233 233 233 233 233 233 233 233 2	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 4.4 4.4 2.3 7.7 2.5 2.3 2.2 2.0 12.1 11.8 10.4 9.4 7.5 6.7 6.0 0 0 0 4.1	73.6 78.4 81.6 87.6 27.0 36.2 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 12.1 12.1 86.1 12.3 8 34.2 2 3.8 34.2 2 3.8 34.2 6 3.8 34.2 57.8 8 34.2 57.8 8 34.2 57.8 8 34.2 57.8 34.2 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A5a 2H1 2A5a 2H1 2A5a 2H1 2A5a 2H1 2A5a 2H1 2A5a 2H1 2A5a 2H2 1A2gvii 1A3c 1A4bi 1A3bvi(fu) 1A2gvii 2A5a 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A4bi 3B4gii 2A5a 2H2 1A4bi 1A4bi 1A4bi 1A4bi 1A4bi 1A4bi 1A5vi(fu) 1A2gvii 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 3B4gii 2A5a 2H2 3D2 3D2 3D2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2A5a 2H2 2A5a 2H2 2A5a 2A5a 2H2 2A5a 2A5a 2H2 2A5a 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2A5a 2H2 2A5a 2A5a 2H2 2A5a 2A5	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery Cultivated crops Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Mobile combustion in manufacturing industries and construction: other Railways Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Quarrying and mining of minerals other than coal Food and beverages industry Railways Wood processing Manure management - Broilers Other product use Commercial/institutional: stationary	NH3 NH3 NH3 NH3 PM2.5 PM10	2'251 970 1'413 680 1'042 674 1'852 958 166 430 327 98 151 143 384 470 221 186 233 128 128 233 128 233 235 2450 1'517 188 308 2'610 2'366 2'367 2'37 2'367 2'367 2'367 2'367 2'367 2'367 2'367 2'367 2'367 2'37 2'367 2'	6.1 5.6 4.8 3.2 3.1 3.0 9.2 8.7 6.4 5.9 5.1 6.4 4.4 4.2 3.7 2.5 2.5 2.3 2.2 2.0 12.1 11.8 10.4 9.4 9.4 9.4 9.4 9.4 9.4 11.6 6.7 6.0 6.0 4.1 13.4 13.4 13.4 13.4 13.4 13.4 13.4	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 86.1 12.1 12.1 12.3 8 84.1 57.8 86.3 8 66.8 34.2 77.8 86.1 67.9 77.3 77.2
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A5a 2H1 2A5a 2H1 2A2gvii 1A2gvii 1A3c 1A4bi 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3c 1A4bi 2A5a 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A4bi 1A4bi 2A5a 2H2 1A4bi 1A2gvii 2A5a 2H2 1A4bi 1A3bvi(fu) 1A2gvii 2A5a 2H2 1A4bi 1A3bvi(fu) 1A4bi 1A3bvi(fu) 1A2gvii 2A5a 2H2 1A4bi 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 1A3bvi(fu) 2A5a 2H2 1A3bvi(fu) 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a 2H2 2A5a	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery Cultivated crops Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction: other Railways Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Quarrying and mining of minerals other than coal Food and beverages industry Railways Wood processing Manure management - Broilers Other product use Commercial/institutional: stationary Cement production	NH3 NH3 NH3 NH3 PM2.5 PM10 PM10	2'251 970 1'413 6800 1'042 674 1'852 958 166 430 327 98 151 143 384 430 327 98 151 143 384 470 221 186 62 233 128 1'000 1'948 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 308 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 2'610 2'366 348 348 2'610 2'366 348 348 368 368 377 377 376 377 376 377 377 376 377 377	6.1 5.6 4.8 3.2 3.1 3.0 27.0 9.2 8.7 6.4 5.9 5.1 4.4 4 4.4 2.3 7.7 2.5 2.3 2.2 2.0 12.1 11.8 10.4 9.4 7.5 6.7 6.0 4.1 13.4 3.0 2.8 2.2 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.0 2.2 2.2	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 86.1 12.1 12.1 13.8 34.2 43.6 51.1 157.8 63.8 86,7 9 71.3 77.2 79.8
3Da3 3B4gii 3Da2c 3B4gi 1A4bi 1A3bvi(fu) 2H2 1A4ai 2G 2A5a 2H1 2A5a 2H1 2A5a 2H1 2A52 2H1 2A52 2H1 2A52 2H1 2A52 2H1 2A52 2H2 1A4bi 1A3cvi(fu) 1A2gvii 2A5a 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A3c 2H2 1A4bi 1A4bi 1A2gvii 2A5a 2H5 2A5a 2H1 2H1 2H1 2H1 2H1 2H1 2H1 2H1	Urine and dung deposited by grazing animals Manure management - Broilers Other organic fertilisers applied to soils (including compost) Manure management - Laying hens Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Commercial/institutional: stationary Other product use Quarrying and mining of minerals other than coal Pulp and paper industry Cement production Mobile combustion in manufacturing industries and construction Wood processing Municipal waste incineration Stationary combustion in manufacturing industries and construction: other Railways Agriculture/forestry/fishing: off-road vehicles and other machinery Cultivated crops Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Mobile combustion in manufacturing industries and construction: other Railways Residential: stationary plants Road transportation: automobile tyre and brake wear (fuel used) Mobile combustion in manufacturing industries and construction Quarrying and mining of minerals other than coal Food and beverages industry Railways Wood processing Manure management - Broilers Other product use Commercial/institutional: stationary	NH3 NH3 NH3 NH3 PM2.5 PM10	2'251 970 1'413 680 1'042 674 1'852 958 166 430 327 98 151 143 384 470 221 186 233 128 128 233 128 233 235 2450 1'517 188 308 2'610 2'366 2'367 2'37 2'367 2'367 2'367 2'367 2'367 2'367 2'367 2'367 2'367 2'37 2'367 2'	6.1 5.6 4.8 3.2 3.1 3.0 9.2 8.7 6.4 5.9 5.1 6.4 4.4 4.2 3.7 2.5 2.5 2.3 2.2 2.0 12.1 11.8 10.4 9.4 9.4 9.4 9.4 9.4 9.4 11.6 6.7 6.0 6.0 4.1 13.4 13.4 13.4 13.4 13.4 13.4 13.4	73.6 78.4 81.6 87.6 27.0 36.2 44.9 51.3 57.2 62.3 66.8 70.9 74.6 77.1 79.6 81.9 84.1 86.1 12.1 12.1 12.3 86.5 51.1 57.8 86.3 8 67.9 71.3 3 74.3

Table A - 10 Switzerland's key categories according to approach 2 level assessment for the year 1990, sorted by
decreasing contribution, for the main pollutants, PM2.5 and PM10. Categories in grey are not key and are given
for information only.

	KCA APPROACH 2, UNCERTAINTY APPROACH 2, LEVEL ASSESSMEN	NT FOR 1990			
A	В	С	D	E	F
NFR code	Source category	Pollutant	Ex, 0 (t)	Lx, 0 (%)	Cumu- lative Total (%)
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NOx	43'748	45.3	45.3
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	NOx	29'631	14.5	59.8
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	NOx	6'199	5.4	65.2
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	NOx	10'535	4.9	70.0
1A4bi	Residential: stationary plants	NOx	11'636	4.2	74.3
1A1a	Public electricity and heat production	NOx	6'279	3.7	77.9
3Da1	Inorganic N-fertilizers (includes also urea application)	NOx	1'205	3.3	81.2
3Da2a 1A2gvii	Animal manure applied to soils	NOx NOx	2'075 6'334	2.8	84.0 86.3
2G	Mobile combustion in manufacturing industries and construction Other product use	NMVOC	22'432	16.6	16.6
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NMVOC	55'582	14.0	30.7
2D3g	Chemical products	NMVOC	27'504	12.7	43.4
2D3d	Coating applications	NMVOC	40'731	8.8	52.2
1A3biv(fu)	Road transportation: mopeds and motorcycles (fuel used)	NMVOC	5'737	6.8	59.0
2D3h	Printing	NMVOC	20'354	4.4	63.4
2D3i 1B2av	Other solvent use Distribution of oil products	NMVOC NMVOC	5'470 19'127	3.8 3.7	67.2 70.9
2D3e	Degreasing	NMVOC	19 127	3.6	70.9
1A3bv(fu)	Road transportation: gasoline evaporation (fuel used)	NMVOC	17'166	3.3	77.8
1A4bi	Residential: stationary plants	NMVOC	10'056	3.3	81.1
2D3b	Road paving with asphalt	NMVOC	4'895	2.2	83.3
2D3a	Domestic solvent use including fungicides	NMVOC	8'867	2.1	85.4
1A4bi	Residential: stationary plants	SOx	10'355	15.7	15.7
2C3	Aluminium production	SOx	696	15.1	30.8
1A1a 1A2gviii	Public electricity and heat production Stationary combustion in manufacturing industries and construction: other	SOx SOx	3'679 3'534	12.6 9.6	43.4 53.0
1A2gvill 1A2f	Stationary combustion in manufacturing industries and construction: other Stationary combustion in manufacturing industries and construction: non-metallic	SOx	3'530	9.6	62.6
	minerals				
1A2d 1A4ai	Stationary combustion in manufacturing industries and construction: pulp paper and print Commercial/institutional: stationary	SOx SOx	3'238 3'870	6.5 5.6	69.1 74.7
184ai 1B2aiv	Fugitive emissions oil: refining / storage	SOx	419	3.3	74.7
1A3biii(fu)	Road transportation: heavy duty vehicles and buses (fuel used)	SOx	1'843	2.6	80.6
1A3bi(fu)	Road transportation: passenger cars (fuel used)	SOx	1'619	2.3	82.9
1A2c	Stationary combustion in manufacturing industries and construction: chemicals	SOx	1'187	1.9	84.8
2C1	Iron and steel production	SOx	144	1.9	86.7
3Da2a	Animal manure applied to soils	NH3	34'567	33.9	33.9
3B3 3B1a	Manure management - Swine Manure management - Dairy cattle	NH3 NH3	6'965 9'337	12.6 12.4	46.5 58.8
3Da1	Inorganic N-fertilizers (includes also urea application)	NH3	4'259	9.5	68.4
3B1b	Manure management - Non-dairy cattle	NH3	5'191	6.4	74.8
6A	Other sources	NH3	846	4.0	78.8
3B4gi	Manure management - Laying hens	NH3	979	3.6	82.4
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NH3	1'325	3.0	85.3
1A4bi	Residential: stationary plants	PM2.5	14'536 1'354	53.8 5.1	53.8
1A4ai 2C1	Commercial/institutional: stationary Iron and steel production	PM2.5 PM2.5	1 354	4.4	58.9 63.3
201	Wood processing	PM2.5	216	2.9	66.1
1A2gviii	Stationary combustion in manufacturing industries and construction: other	PM2.5	873	2.8	68.9
1A1a	Public electricity and heat production	PM2.5	782	2.7	71.6
2H2	Food and beverages industry	PM2.5	188	2.5	74.1
2G	Other product use	PM2.5	513	2.4	76.5
1A3biii(fu) 2A1	Road transportation: heavy duty vehicles and buses (fuel used) Cement production	PM2.5 PM2.5	1'584 240	2.1	78.6 80.4
1A2gvii	Mobile combustion in manufacturing industries and construction	PM2.5	729	1.8	80.4
2H1	Pulp and paper industry	PM2.5	236	1.8	83.9
1A4cii	Agriculture/forestry/fishing: off-road vehicles and other machinery	PM2.5	435	1.7	85.6
1A4bi	Residential: stationary plants	PM10	15'326	38.4	38.4
21	Wood processing	PM10	864	7.8	46.2
	Iron and steel production	PM10	1'485	5.4	51.5
2C1		PM10	1'054	5.3 3.7	56.8 60.5
2C1 3De	Cultivated crops		11400		
2C1 3De 1A4ai	Commercial/institutional: stationary	PM10	1'428 2'173		
2C1 3De 1A4ai 1A2gvii	Commercial/institutional: stationary Mobile combustion in manufacturing industries and construction	PM10 PM10	2'173	3.6	64.1
2C1 3De 1A4ai	Commercial/institutional: stationary	PM10			64.1 67.4
2C1 3De 1A4ai 1A2gvii 1A3bvi(fu)	Commercial/institutional: stationary Mobile combustion in manufacturing industries and construction Road transportation: automobile tyre and brake wear (fuel used)	PM10 PM10 PM10	2'173 2'046	3.6 3.4	64.1 67.4 70.2
2C1 3De 1A4ai 1A2gvii 1A3bvi(fu) 2H2 2A5a 1A1a	Commercial/institutional: stationary Mobile combustion in manufacturing industries and construction Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Quarrying and mining of minerals other than coal Public electricity and heat production	PM10 PM10 PM10 PM10 PM10 PM10 PM10	2'173 2'046 310 302 1'045	3.6 3.4 2.8 2.7 2.5	64.1 67.4 70.2 72.9 75.4
2C1 3De 1A4ai 1A2gvii 1A3bvi(fu) 2H2 2A5a 1A1a 1A2gviii	Commercial/institutional: stationary Mobile combustion in manufacturing industries and construction Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Quarrying and mining of minerals other than coal Public electricity and heat production Stationary combustion in manufacturing industries and construction: other	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	2'173 2'046 310 302 1'045 913	3.6 3.4 2.8 2.7 2.5 2.0	64.1 67.4 70.2 72.9 75.4 77.4
2C1 3De 1A4ai 1A2gvii 1A3bvi(fu) 2H2 2A5a 1A1a 1A2gviii 2A1	Commercial/institutional: stationary Mobile combustion in manufacturing industries and construction Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Quarrying and mining of minerals other than coal Public electricity and heat production Stationary combustion in manufacturing industries and construction: other Cement production	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	2'173 2'046 310 302 1'045 913 374	3.6 3.4 2.8 2.7 2.5 2.0 1.9	64.1 67.4 70.2 72.9 75.4 77.4 79.2
2C1 3De 1A4ai 1A2gvii 1A3bvi(fu) 2H2 2A5a 1A1a 1A2gviii 2A1 2G	Commercial/institutional: stationary Mobile combustion in manufacturing industries and construction Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Quarrying and mining of minerals other than coal Public electricity and heat production Stationary combustion in manufacturing industries and construction: other Cement production Other product use Stationary combustion in manufacturing industries and construction: non-metallic	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	2'173 2'046 310 302 1'045 913 374 588	3.6 3.4 2.8 2.7 2.5 2.0 1.9 1.8	64.1 67.4 70.2 72.9 75.4 77.4 79.2 81.1
2C1 3De 1A4ai 1A2gvii 1A3bvi(fu) 2H2 2A5a 1A1a 1A2gviii 2A1	Commercial/institutional: stationary Mobile combustion in manufacturing industries and construction Road transportation: automobile tyre and brake wear (fuel used) Food and beverages industry Quarrying and mining of minerals other than coal Public electricity and heat production Stationary combustion in manufacturing industries and construction: other Cement production Other product use	PM10 PM10 PM10 PM10 PM10 PM10 PM10 PM10	2'173 2'046 310 302 1'045 913 374	3.6 3.4 2.8 2.7 2.5 2.0 1.9	64.1 67.4 70.2 72.9 75.4 77.4 79.2

Table A - 11 Switzerland's key categories according to approach 2 trend assessment for 1990-2023, sorted by decreasing contribution, for the main pollutants, PM2.5 and PM10. Categories in orange have increased emissions in 2023 compared to 1990. Categories in grey are not key and are given for information only.

	KCA APPROACH 2, UNCERTAINTY APPROACH 2, TREN	D ASSESSMENT 199	90 - 2023				
A	В	С	D	E	F	G	Н
NFR code	Source category	Pollutant	Ex, 0 (t)	Ex, t (t)	Trend Assess- ment	Contri- bution to trend assess. (%)	Cumu- lative Total (%)
	Road transportation: heavy duty vehicles and buses (fuel used)	NOx	29'631	3'029	6.666	26.4	26.4
1A3bii(fu)	Road transportation: light duty vehicles (fuel used)	NOx	6'199	3'494	2.506	9.9	36.3
3Da2a 3Da3	Animal manure applied to soils Urine and dung deposited by grazing animals	NOx NOx	2'075 243	1'449 417	2.077	8.2	44.5 51.8
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	NOx	1'214	1'966	1.696	6.7	58.5
3Da1	Inorganic N-fertilizers (includes also urea application)	NOx	1'205	609	1.132	4.5	63.0
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NOx	43'748	15'010	0.989	3.9	66.9
1A4ai	Commercial/institutional: stationary	NOx	5'139	2'832	0.978	3.9	70.8
1A2gviii 3Da2c	Stationary combustion in manufacturing industries and construction: other Other organic fertilisers applied to soils (including compost)	NOx NOx	2'182 15	1'638 122	0.848	3.4	74.1
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	NOx	10'535	2'825	0.625	2.5	79.2
1B2c	Venting and flaring (oil gas combined oil and gas)	NOx	211	1	0.576	2.3	81.5
1A4ci	Agriculture/forestry/fishing: stationary	NOx	389	379	0.497	2.0	83.4
3B1b	Manure management - Non-dairy cattle	NOx	344	282	0.458	1.8	85.2
1A3bi(fu)	Road transportation: passenger cars (fuel used)	NMVOC	55'582	3'635	9.881	14.4	14.4
3B1b	Manure management - Non-dairy cattle	NMVOC	5'122	7'441	8.436	12.3	26.6
2D3g 3B1a	Chemical products	NMVOC NMVOC	27'504 6'413	3'185 6'585	6.402 5.873	9.3 8.5	35.9 44.5
2D3a	Manure management - Dairy cattle Domestic solvent use including fungicides	NMVOC	8'867	6'507	4.217	6.1	50.6
3B4gii	Manure management - Broilers	NMVOC	366	1'144	3.102	4.5	55.1
2D3b	Road paving with asphalt	NMVOC	4'895	2'700	2.696	3.9	59.0
1A3biv(fu)	Road transportation: mopeds and motorcycles (fuel used)	NMVOC	5'737	827	2.650	3.9	62.9
2G	Other product use	NMVOC	22'432	6'316	2.648	3.9	66.7
1B2av	Distribution of oil products	NMVOC	19'127	2'021	1.984	2.9	69.6
2H2	Food and beverages industry	NMVOC	1'413	1'417	1.924	2.8	72.4
1A3bv(fu) 2D3i	Road transportation: gasoline evaporation (fuel used)	NMVOC NMVOC	17'166 5'470	1'773 1'933	1.833 1.693	2.7	75.1 77.6
2D3i 2D3e	Other solvent use Degreasing	NMVOC	11'731	1 933	1.593	2.5	77.6
3B4gi	Manure management - Laying hens	NMVOC	509	634	1.506	2.2	82.0
3B3	Manure management - Swine	NMVOC	1'126	770	1.461	2.1	84.1
2D3d	Coating applications	NMVOC	40'731	8'286	1.349	2.0	86.1
1A2f	Stationary combustion in manufacturing industries and construction: non-metallic minerals	SOx	3'530	1'300	6.811	43.2	43.2
1A4bi	Residential: stationary plants	SOx	10'355	207	1.969	12.5	55.6
1A2d	Stationary combustion in manufacturing industries and construction: pulp paper and print	SOx	3'238	1	1.128	7.1	62.8
2B5	Carbide production	SOx	625	198	1.048	6.6	69.4
1A4ai	Commercial/institutional: stationary	SOx	3'870	83	0.677	4.3	73.7
1A3ai(i)	Civil aviation (domestic landing/take-off (LTO))	SOx	100	137	0.447	2.8	76.5
1A3biii(fu) 2B10a	Road transportation: heavy duty vehicles and buses (fuel used)	SOx SOx	1'843 168	9 40	0.428	2.7	79.3 81.7
1A2e	Chemical industry: other Stationary combustion in manufacturing industries and construction: food processing beverages and tobacco	SOx	1'078	40	0.307	1.9	83.6
1B2aiv	Fugitive emissions oil: refining / storage	SOx	419	14	0.303	1.9	85.5
3Da2a	Animal manure applied to soils	NH3	34'567	20'191	7.225	20.4	20.4
3B1b	Manure management - Non-dairy cattle	NH3	5'191	7'241	4.546	12.8	33.2
3B1a	Manure management - Dairy cattle	NH3	9'337	10'144	4.405	12.4	45.6
3Da2c	Other organic fertilisers applied to soils (including compost)	NH3	34	1'042	2.775	7.8	53.5
3Da1	Inorganic N-fertilizers (includes also urea application)	NH3	4'259	2'251	2.638	7.4	60.9
3Da3	Urine and dung deposited by grazing animals	NH3	761	1'413	2.606	7.4	68.3
3B4gii	Manure management - Broilers	NH3	305	680 970	1.939	5.5	73.7
6A 3B3	Other sources Manure management - Swine	NH3 NH3	846 6'965	4'736	1.693 1.320	4.8	78.5
5B3	Biological treatment of waste - Anaerobic digestion at biogas facilities	NH3	10	245	0.938	2.6	84.9
5B1	Biological treatment of waste - Composting	NH3	175	292	0.812	2.3	87.2
1A4bi	Residential: stationary plants	PM2.5	14'536	1'852	23.900	29.8	29.8
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	PM2.5	690	958	8.525	10.6	40.4
2H2	Food and beverages industry	PM2.5	188	166	7.139	8.9	49.3
2A5a 2C1	Quarrying and mining of minerals other than coal Iron and steel production	PM2.5 PM2.5	102 818	98	4.336	5.4 5.2	54.7 60.0
2C1 2G	Other product use	PM2.5	513	327	4.209	5.2	60.0
2G 2H1	Pulp and paper industry	PM2.5	236	151	4.205	3.9	69.2
2A1	Cement production	PM2.5	240	143	2.833	3.5	72.7
1A2gvii	Mobile combustion in manufacturing industries and construction	PM2.5	729	384	2.305	2.9	75.6
1A3c	Railways	PM2.5	173	233	2.055	2.6	78.1
1A1a	Public electricity and heat production	PM2.5	782	46	2.033	2.5	80.7
1A4ai 1A2biii(fu)	Commercial/institutional: stationary Road transportation: heavy duty vehicles and buses (fuel used)	PM2.5 PM2.5	1'354 1'584	430 36	1.988 1.879	2.5	83.1 85.5
1A3biii(fu) 1A4bi	Road transportation: heavy duty vehicles and buses (fuel used) Residential: stationary plants	PM2.5 PM10	1'584	36 1'948	1.879	2.3	85.5 27.5
1A3bvi(fu)	Road transportation: automobile tyre and brake wear (fuel used)	PM10	2'046	2'610	6.845	8.3	35.8
	Cultivated crops	PM10	1'054	1'000	6.785	8.2	44.0
3De	Mobile combustion in manufacturing industries and construction	PM10	2'173	2'366	5.733	7.0	51.0
3De 1A2gvii		DN 410	302	348	4.741	5.7	56.7
1A2gvii 2A5a	Quarrying and mining of minerals other than coal	PM10				5.0	62.4
1A2gvii 2A5a 2C1	Quarrying and mining of minerals other than coal Iron and steel production	PM10	1'485	10	4.649	5.6	
1A2gvii 2A5a 2C1 1A3c	Quarrying and mining of minerals other than coal Iron and steel production Railways	PM10 PM10	970	1'517	4.303	5.2	67.6
1A2gvii 2A5a 2C1 1A3c 2H2	Quarrying and mining of minerals other than coal Iron and steel production Railways Food and beverages industry	PM10 PM10 PM10	970 310	1'517 308	4.303 3.880	5.2 4.7	67.6 72.3
1A2gvii 2A5a 2C1 1A3c 2H2 2I	Quarrying and mining of minerals other than coal Iron and steel production Railways Food and beverages industry Wood processing	PM10 PM10 PM10 PM10	970 310 864	1'517 308 188	4.303 3.880 3.001	5.2 4.7 3.6	67.6 72.3 75.9
1A2gvii 2A5a 2C1 1A3c 2H2 2I 3B4gii	Quarrying and mining of minerals other than coal Iron and steel production Railways Food and beverages industry Wood processing Manure management - Broilers	PM10 PM10 PM10 PM10 PM10 PM10	970 310 864 68	1'517 308 188 212	4.303 3.880 3.001 2.845	5.2 4.7 3.6 3.5	67.6 72.3 75.9 79.4
1A2gvii 2A5a 2C1 1A3c 2H2 2I	Quarrying and mining of minerals other than coal Iron and steel production Railways Food and beverages industry Wood processing	PM10 PM10 PM10 PM10	970 310 864	1'517 308 188	4.303 3.880 3.001	5.2 4.7 3.6	67.6 72.3 75.9

Annex 2 Other detailed methodological descriptions for individual source categories

A2.1 Sector Energy: non-road vehicles

A2.1.1 Emission and fuel consumption factors for non-road vehicles

As mentioned in chp. 3.2.1.1.1 (non-road transportation model), emission factors and activity data can be downloaded by query from the non-road database INFRAS (2015a⁶), which is the data pool of FOEN (2015j). They can be queried by year, non-road family (see categories in Table A - 13), machine type, engine type (diesel, gasoline/2-/4-stroke, liquefied petroleum gas, gas oil), engine capacity (power class) and emission concept (standard), pollutant either at aggregated or disaggregated levels. The following table illustrates a query for the family 'construction machinery'.

Construction machinery, 2010								
Machine type	Engine type	Engine capacity	Emission concept	Poll.	Op. hrs.	EF	EF [w/o PF]	EF [100% PF]
					(h/a)	(kg/h)	(kg/h)	(kg/h)
Road finishing machines	diesel	18-37 kW	Nonr D PreEUB	PM	112.7	0.0074	0.0074	0.0007
Road finishing machines	diesel	18-37 kW	Nonr D EU2	PM	259.9	0.0045	0.0045	0.0005
Road finishing machines	diesel	18-37 kW	Nonr D EU3A	PM	305.8	0.0006	0.0046	0.0005
Road finishing machines	diesel	37-75 kW	Nonr D PreEUB	PM	130.1	0.0133	0.0133	0.0013
Road finishing machines	diesel	37-75 kW	Nonr D EU1	PM	248.6	0.0073	0.0073	0.0007
Road finishing machines	diesel	37-75 kW	Nonr D EU2	PM	327.8	0.0014	0.0047	0.0005
Road finishing machines	diesel	37-75 kW	Nonr D EU3A	PM	357.7	0.0005	0.0053	0.0005
Road finishing machines	diesel	75-130 kW	Nonr D PreEUB	PM	138.8	0.0129	0.0129	0.0013
Road finishing machines	diesel	75-130 kW	Nonr D EU1	PM	239.4	0.0096	0.0096	0.001
Road finishing machines	diesel	75-130 kW	Nonr D EU2	PM	332.7	0.0031	0.0062	0.0006
Road finishing machines	diesel	75-130 kW	Nonr D EU3A	PM	376.4	0.0007	0.007	0.0007
Hydraulic rammers of all types	diesel	75-130 kW	Nonr D PreEUB	PM	131.7	0.0104	0.0104	0.001
Hydraulic rammers of all types	diesel	75-130 kW	Nonr D EU1	PM	227.2	0.0077	0.0077	0.0008
Hydraulic rammers of all types	diesel	75-130 kW	Nonr D EU2	PM	315.7	0.0025	0.005	0.0005
Hydraulic rammers of all types	diesel	75-130 kW	Nonr D EU3A	PM	357.2	0.0005	0.0048	0.0005
Rolling mill engines of all types	diesel	<18 kW	Nonr D PreEUB	PM	130.9	0.005	0.005	0.0005
Rolling mill engines of all types	diesel	<18 kW	Nonr D EU1	PM	250.1	0.0042	0.0042	0.0004
Rolling mill engines of all types	diesel	<18 kW	Nonr D EU2	PM	329.7	0.0032	0.0032	0.0003
Rolling mill engines of all types	diesel	<18 kW	Nonr D EU3A	PM	359.8	0.0029	0.0032	0.0003
Rolling mill engines of all types	diesel	18-37 kW	Nonr D PreEUB	PM	148.3	0.0077	0.0077	0.0008
Rolling mill engines of all types	diesel	18-37 kW	Nonr D EU2	PM	341.8	0.0046	0.0046	0.0005
Rolling mill engines of all types	diesel	18-37 kW	Nonr D EU3A	PM	402.3	0.0006	0.0047	0.0005
Rolling mill engines of all types	diesel	37-75 kW	Nonr D PreEUB	PM	168.8	0.0138	0.0138	0.0014
Rolling mill engines of all types	diesel	37-75 kW	Nonr D EU1	PM	322.6	0.0076	0.0076	0.0008
Rolling mill engines of all types	diesel	37-75 kW	Nonr D EU2	PM	425.3	0.0014	0.0048	0.0005
Rolling mill engines of all types	diesel	37-75 kW	Nonr D EU3A	PM	464.1	0.0005	0.0054	0.0005
Rolling mill engines of all types	diesel	75-130 kW	Nonr D PreEUB	PM	174.5	0.0133	0.0133	0.0013
Rolling mill engines of all types	diesel	75-130 kW	Nonr D EU1	PM	301	0.0099	0.0099	0.001
Rolling mill engines of all types	diesel	75-130 kW	Nonr D EU2	PM	418.3	0.0032	0.0064	0.0006
Rolling mill engines of all types	diesel	75-130 kW	Nonr D EU3A	PM	473.2	0.0007	0.0071	0.0007
Rolling mill engines of all types	diesel	130-300 kW	Nonr D PreEUB	PM	174.5	0.0279	0.0279	0.0028
Rolling mill engines of all types	diesel	130-300 kW	Nonr D EU2	PM	387.1	0.0068	0.0094	0.0009
Rolling mill engines of all types	diesel	130-300 kW	Nonr D EU3A	PM	467.7	0.001	0.0104	0.001
Mechanical vibrators	diesel	18-37 kW	Nonr D PreEUB	PM	100.6	0.0059	0.0059	0.0006
Mechanical vibrators	diesel	18-37 kW	Nonr D EU2	PM	232	0.0036	0.0036	0.0004
Mechanical vibrators	diesel	18-37 kW	Nonr D EU3A	РМ	273	0.0004	0.0031	0.0003
Mechanical vibrators	diesel	37-75 kW	Nonr D PreEUB	PM	131.3	0.0108	0.0108	0.0011
Mechanical vibrators	diesel	37-75 kW	Nonr D EU1	РМ	250.9	0.0059	0.0059	0.0006
Mechanical vibrators	diesel	37-75 kW	Nonr D EU2	РМ	330.7	0.0011	0.0038	0.0004
Mechanical vibrators	diesel	37-75 kW	Nonr D EU3A	PM	361	0.0004	0.0036	0.0004
Mechanical vibrators	diesel	75-130 kW	Nonr D PreEUB	РМ	140	0.0105	0.0105	0.0011
Mechanical vibrators	diesel	75-130 kW	Nonr D EU1	PM	241.6	0.0078	0.0078	0.0008
Mechanical vibrators	diesel	75-130 kW	Nonr D EU2	РМ	335.8	0.0025	0.0051	0.0005
Mechanical vibrators	diesel	75-130 kW	Nonr D EU3A	РМ	379.8	0.0005	0.0048	0.0005

Table A - 12 Excerpt of the non-road database INFRAS (2015a).

⁶ <u>https://www.bafu.admin.ch/bafu/en/home/topics/air/state/non-road-datenbank.html</u> [06.02.2025]

A2.1.2 Activity data non-road vehicles

The following table gives an overview on the stock and the operating hours of non-road vehicles (FOEN 2015j).

Table A - 13 Number of vehicles, specific operating hours per year and total operating hours per year for all non-road families/categories (FOEN 2015j).

Category	1980	1990	2000	2010	2020	2030		
	number of vehicles							
Construction machinery	63'364	58'816	52'729	57'102	60'384	62'726		
Industrial machinery	26'714	43'244	70'671	69'786	69'757	70'083		
Agricultural machinery	292'773	324'567	337'869	318'876	309'825	305'235		
Forestry machinery	11'815	13'844	13'055	11'857	10'831	10'170		
Garden-care / hobby appliances	1'198'841	1'539'624	1'944'373	2'322'737	2'464'323	2'499'627		
Navigation machinery	94'866	103'383	93'912	95'055	97'522	99'104		
Railway machinery	529	1'300	1'255	697	640	640		
Military machinery	13'092	13'373	14'272	13'083	12'853	12'856		
Total	1'701'994	2'098'151	2'528'136	2'889'193	3'026'135	3'060'441		

Category	1980	1990	2000	2010	2020	2030	
	Specific operating hours per year						
Construction machinery	247	322	406	417	424	429	
Industrial machinery	666	670	684	680	675	671	
Agricultural machinery	136	119	112	103	99	95	
Forestry machinery	203	199	203	193	188	182	
Garden-care / hobby appliances	12	17	20	64	77	81	
Navigation machinery	39	38	38	36	35	35	
Railway machinery	877	613	617	783	719	719	
Military machinery	64	64	63	73	74	74	

Category	1980	1990	2000	2010	2020	2030		
	million operating hours per year							
Construction machinery	16	19	21	24	26	27		
Industrial machinery	18	29	48	48	47	47		
Agricultural machinery	40	39	38	33	31	29		
Forestry machinery	2.4	2.8	2.6	2.3	2.0	1.9		
Garden-care / hobby appliances	15	26	39	150	191	201		
Navigation machinery	3.7	3.9	3.5	3.4	3.4	3.4		
Railway machinery	0.50	0.80	0.80	0.50	0.50	0.50		
Military machinery	0.80	0.90	0.90	0.90	0.90	0.90		
Total	95	121	155	261	301	311		

A2.2 Emissions due to former usage (2K) and subsequent disposal of polychlorinated biphenyls (1A1a, 2C1, 5A, 5C1, 5E, 6A)

A2.2.1 Mass flow and emission model of former use and disposal of PCBs

Polychlorinated biphenyls (PCBs) were used in Switzerland between 1946 and 1986. In 1986, a total ban was placed on any form of PCB use. The use in so-called 'open applications' was allowed until 1972. Open applications include joint (elastic) sealants, anticorrosion coatings, paints and varnishes. All other uses were allowed until 1986.

An emission inventory based on a dynamic mass flow model was developed for PCBs for Switzerland for the time period 1930 to 2100. The model takes into account the import, usage, export, treatment, disposal and accidental release of PCBs, see Figure A - 1. PCB emissions to the environment occur from all stages of their lifecycle. A detailed documentation of the emission inventory is available in Glüge et al. 2017. Additionally, the underlying model is available in Microsoft Excel/VBA and can be downloaded.

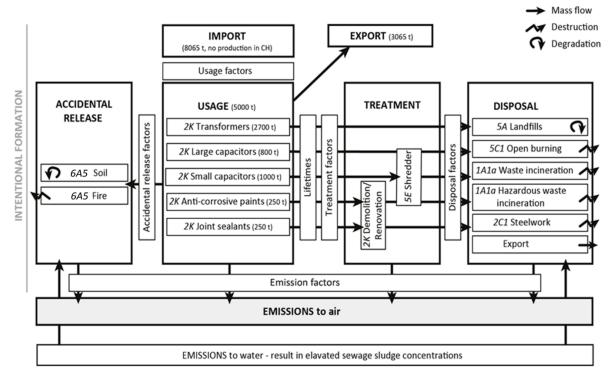


Figure A - 1 Model setup for the dynamic mass flow and emissions of PCBs taking into account the import, usage, export, treatment, disposal and accidental release. Emissions to air occur from usage, treatment, disposal, and accidental release. (Waste and hazardous waste incineration correspond to municipal solid waste and special waste incineration, respectively.)

Besides this intentional usage of PCBs, PCBs can also be emitted by unintentional formation, e.g. in combustion processes. Emissions from unintentional formation are not part of this mass flow model but are included in the air pollutant emission inventory for stationary combustion of solid and liquid fossil fuels as well as of wood and wood waste, see chapters 3.2.2 - 3.2.4.

Import and usage

PCBs have not been produced in Switzerland. Therefore, the chemicals enter the system solely through import (Figure A - 1, top part). The imported amounts are then distributed to the usage categories according to usage factors (Figure A - 1, middle part). The imported amounts, as well as the usage factors, vary over time. In this study, five usage categories that were identified to be important for Switzerland are included: transformers, large capacitors (> 1 kg), small capacitors (< 1 kg), anti-corrosive paints on steel and joint sealants. Other uses, such as PCBs in hydraulic oils (used in mining), plastics, or insecticides are considered as being of minor importance in Switzerland and are thus, not included in the model. For the time being, anti-corrosive paints and joint sealants are the predominant PCB emission sources (see Figure A - 2). The emissions from the five usage categories are reported in source category 2K Consumption of POPs and heavy metals.

Export

The exported amounts to other countries could have been estimated only roughly. PCBs were mainly exported in disposed PCB-containing transformers and capacitors and electronic waste, but also in old installations, such as for example hydraulic turbines with PCB-containing paints.

Disposal

When a PCB-containing product reaches its end of life it is disposed of. In the model, six disposal categories that have been relevant in Switzerland are included: landfills (5A), open burning (5C1), municipal waste incineration (1A1a), special waste incineration (1A1a), steelworks (2C1), and export (Figure A - 1, right part). For all usage categories, specific disposal factors, which vary over time, are applied to the six disposal categories and export. Here, open burning refers to combustion of PCB contaminated waste oil in outdoor fires (i.e. outside of a container). Open burning was ceased in 1999. Steelworks represent scrap metal that is melted in electric arc furnaces of secondary steel production plants. Thereby PCB-containing paint residues are combusted at temperatures of around 1600°C. Landfills are disposal sites where the waste is dumped. Since 2000, the incineration of combustible waste is mandatory in Switzerland, therefore, disposing of to landfills stopped. In landfills, PCBs are partly stored and partly degraded. When waste is exported, its emissions abroad are not included in the Swiss emission inventory. When combusted, PCBs are partly destroyed by high temperatures and partly emitted to the environment.

Treatment

Before disposal, some usage categories undergo specific treatment processes (Figure A - 1, right part). Two treatment categories are included in the model: Demolition/renovation of steel constructions and buildings containing PCBs in anti-corrosive paints and joint sealants, respectively (2K), as well as Shredding of electronic waste containing PCBs in small capacitors (5E).

Demolition/renovation can induce elevated emissions to the environment, as has been observed for buildings. Shredding of electronic waste occurs at fast rotation velocity that leads to increased temperature and dust production. As a consequence of the legal ban of disposal of combustible waste in landfills, a sharp increase in shredding of small capacitors occurred in 1999 although they should have been treated as special waste from 1998 onwards (see Figure A - 2). Shearing of steel constructions (heavy scrap), otherwise, is supposed to produce little dust and yield no evaporation of the substances in the coating. Therefore, no emissions to air from the shearing of steel constructions were assumed.

Accidental release

From each usage category, PCBs can be accidentally released (Figure A - 1, left part). The model includes two release categories: soil and fire (6A5). When released to soil, PCBs are partly stored and partly degraded. In the case of fire, PCBs are partly destroyed by high temperatures and partly emitted to the environment.

Release to water

The release of PCBs to water bodies is only partly included in this model. Release to water bodies is important for anti-corrosive paints and to a smaller degree also for leachate from landfills. The measured PCB concentrations in sewage sludge and the total amount of produced sewage sludge per year was used to determine the mass of PCBs released to water. This approach overlooks emissions to natural water bodies, but it captures emissions to wastewater.

A2.2.2 Emission methodology

Emissions to air occur from the entire system: usage, treatment, disposal and accidental release. The emissions are calculated by multiplying the annual mass of PCBs involved in a source category (e.g. tonnes of PCBs in use in joint sealants) with a source-specific emission factor (e.g. tonnes of PCBs emitted/tonnes of PCBs in use). This country-specific approach corresponds to a Tier 2 method according to EMEP/EEA (2023).

The five usage categories as well as landfills and soils are PCB stocks, which means that PCBs are stored in these categories and passed on through the system with a temporal delay according to their lifetime or residence time. In these cases, the activity data are the amounts of PCBs stored in the stock. The treatment categories of renovation and shredder and all incineration categories (including fire) are instantaneous categories, where PCBs are not stored. In these cases, the activity data correspond to the amount of PCBs treated or incinerated in the respective year.

PCB emissions are sometimes reported as sum of the so-called indicator PCBs (iPCBs, i.e. PCB congeners 28, 52, 101, 138, 153, and 180), sometimes as sum of the dioxin-like PCBs (dl-PCBs, i.e. PCB congeners 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, and 189) and sometimes as sum of all 209 congeners. The emission model is run for all congeners, so emission numbers are available for all three sums. Where data such as typically emission factors are not available for all congeners, estimates are derived from the iPCBs using the chlorination degrees of the congeners. Please note that the PCB emissions reported in Switzerland's air pollutant emission inventory comprise the sum of all 209 congeners.

Figure A - 2 shows the resulting PCB emissions from all stages of the life cycle of PCB applications, i.e. usage, treatment, disposal and accidental release. Anti-corrosive paints and joint sealants are the predominant PCB emission sources for most of the time. Between 1975 and 1985 and around 2000, open burning and the above-mentioned shredding of small capacitors, respectively, were the dominant PCB sources. Only after 2040, emissions from soil due to former accidental releases to soil become the most important emission source. Mainly in the seventies and eighties, accidental release by fire, small and large capacitors and waste incineration were important emission sources as well.

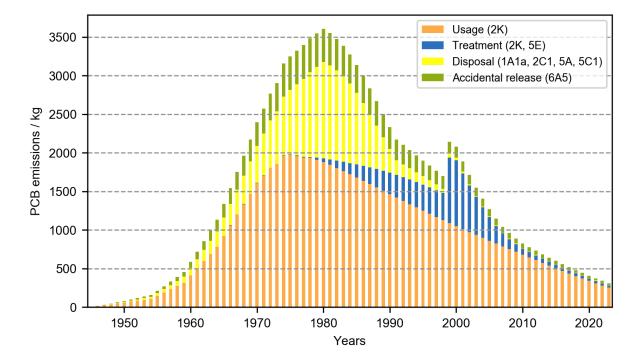


Figure A - 2 PCB emissions from usage (2K Transformers, large and small condensators, anti-corrosive paints and joint sealants), treatment (2K Demolition and renovation, 5E Shredder), disposal (1A1a Municipal solid waste and special waste incineration, 2C1 Secondary steel production, 5A Landfills, 5C1 Open burning (until 1999)) and accidental release (6A5 Accidental release by fire and to soil).

A2.3 Comparison of the country-specifically calculated Tier 3 results for N flows and NH₃ emissions from animal husbandry with the results of the Tier 2 calculations using the TFEIP N-flow tool (3B, 3Da2a, 3Da3)

In the report of the Stage 3 in-depth review in summer 2020 it was recommended "To present more details regarding the country-specific emission factors as well as a comparison of the national emission factors and the Guidebook emission factors with a rationale of the discrepancies." Because it is not only the emission factors that have a strong influence on the emission inventory calculations but also other assumptions like N excretions, length of housed period or percentage of TAN in the manure, it was decided to not only compare the emission factors but rather the total N flows and NH₃ emissions resulting from the calculations with the model AGRAMMON (see chp. 5.2.2) and the TFEIP N flow tool (downloaded from https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/4-agriculture/manure-management-n-flow-tool/view, version Jan 2021). The comparison was made for the year 2015, which at the time was the last year with data from a representative survey on farm and manure management, using the previous version of the AGRAMMON model (Kupper et al. 2018). The procedure and the results are summarised in an internal memo (Menzi 2022). An overview of the results is shown in Tables A-14 to A-16. The main results can be summarised as follows:

N excretions

- Total N excretions from livestock production shown for the livestock categories used in the N flow tool were 4 % lower in the N flow tool than according to the Swiss AGRAMMON tool (Swiss reporting). The lower total N excretion was mainly due to cattle and swine which contributed over 75 % and over 10 %, respectively, of the N excretions from agricultural livestock.
- For dairy cows the value used in the N flow tool is 6 % lower than in the Swiss reporting. This can be explained by the average weight assumed. In the N flow tool, it is 600 kg while it is 660 kg in Switzerland (according to Swiss Fertiliser Guidelines). With a correction to 660 kg N the N flow tool shows excretions of 113.9 kg N per dairy cow place and year, which is 1.8 % more than the Swiss value.
- For all main livestock categories except small ruminants and equids the difference of N excretion between the two approaches was less than 10 %.

NH₃ emissions livestock

• Total NH₃ emissions from livestock and manure management differ less than 10 % between the two approaches, the N flow tool being a bit lower than the Swiss reporting. This holds for both 3B (housing and manure storage) and 3D (manure application and grazing) emission categories and is also true for cattle, which contribute about three fourths of the NH₃ emissions from livestock and manure management. For the cattle categories the relative difference is in the same proportion as the difference for N excretion. Total emissions from pig production were well comparable between the two approaches (N flow tool 4 % lower than Swiss reporting). Pig production in 2015 was responsible for around 15 % of the emissions from livestock and manure management. According to the N flow tool the values for the category 3B were nearly 20 % lower than according to the Swiss reporting and those for the category 3D about 25 % higher. This can mainly be explained by the high importance of animal friendly housing system in Switzerland, which cannot be considered in the N flow tool.

Distribution of NH₃ emissions to the stages of the manure management chain

- The distribution of NH₃ emissions to housing, storage, application and grazing the N-flow tool has a lower share for housing and a higher share for grazing as compared to the Swiss reporting. Housing emissions (including yards) were 22 % lower in the N flow tool compared to the Swiss reporting because of the assumptions on grazing and housing and the high importance of special animal friendly housing systems which cannot be considered in the N flow tool.
- In spite of the lower N flow through the manure cascade (because of assumption about grazing) emissions from manure storage were 21 % higher in the N flow tool than in the Swiss reporting (slurry +37 %, solid manure -12 %), probably mainly because of the high share of covered slurry stores (89 %; not considered in the N flow tool) and the importance of liquid and solid manure (Switzerland 2015 share N flow going to storage: 74 % slurry, 26 % solid manure).
- Emissions from manure application were 19 % lower in the N flow tool than in the Swiss reporting, probably mainly because of the lower N flow through the manure cascade and the importance of low emission spreading technique in Switzerland (2015 38 % of the slurry) which cannot be considered in the N flow tool.
- Emissions from grazing were nearly fourfold as high in the N low tool as compared to the Swiss reporting because of the assumptions about housing and grazing.
- The distribution of emissions from livestock and manure management to the Guidebook categories 3B (housing, manure storage) and 3D (Manure application, grazing) agreed well between the two approaches (share 3B: N flow tool 54 %, Swiss reporting 55 %). However, within the category 3B the distribution to housing and manure storage differed quite a bit (N flow tool 58 %/42 %, Swiss reporting 68 %/32 %). For the category 3D the distribution to manure application and grazing was 77 %/23 % for the N flow tool and 94 %/6 % for the Swiss reporting. Looking at the distribution of total emissions to housing/manure storage/manure application/grazing the distribution was 31 %/23 %/36 %/10 % for the N flow tool and 37 %/17 %/43 %/3 % for the Swiss reporting.

A direct comparison of N flows or emission factors is impeded in various places by the differences between the models in the allocation of N flows. Important examples are:

- a) The N-flow tool differentiates between emission factors for liquid and solid manure in the housing area while AGRAMMON has only one emission factor for housing because a clear allocation of excreta and soiled surfaces to liquid and solid manure is not possible.
- b) For slurry storage, the emission factors are in percent of TAN in the N flow model and in g per m² slurry surface and day in AGRAMMON.
- c) AGRAMMON takes into account a different allocation of TAN excretions to liquid and solid manure. As urine (containing soluble N, which is potentially emitted) is primarily collected in the liquid manure, the emissions are higher than for a comparable N flow in the form of faeces, which primarily contain organic N and mostly go into solid manure.
- AGRAMMON takes into account the immobilisation of TAN and the release of TAN from the degradation of organic N in housing and during manure storage, which is not considered in the N flow tool.

The comparison of the two approaches shows that the Tier 2 approach can hardly cope with farm management conditions that differ strongly from the assumption in the N-flow tool and can only be transferred to the input variables with difficulty. If such detailed farm management data is available, it is more reliable and maybe even easier to use a country-specific Tier 3 approach.

79.02 47.46 126.48 100.0% 21.96 131.21 100% 17% 38% 109.24 total total 5.74 4.4% 0.17 %6 5.83 4.6% 5.57 5.83 poultry poultry total otal 0.1% 3% 0.1% turkeys 0.002 0.07 turkeys 0.09 0.07 0.09 2.4% 3.10 2.2% 3.09 0.2% 2.77 broilers 0.01 broilers 2.77 . 2.0% 0.16 2.57 2.3% %9 2.97 2.41 2.97 laying laying nens hens 2.1% 3.29 2.6% 51% 2.16 0.59 21% 2.75 1.62 equids equids 0.5% 51% 0.2% 0.33 0.65 0.07 0.31 22% mules+a 0.32 mules+a 0.24 sses sses 2.1% 1.9% 21% 51% 0.52 2.43 1.30 2.63 1.91 orses lorses 2.94 1.34 4.29 3.3% 7.05 5.6% 31% %06 0.68 ruminants ruminants small small 1.3% 0.7% 0.11 0.95 12% 1.53 92% 0.14 goats 0.84 goats 2.5% 4.3% 2.10 1.23 3.33 37% 0.54 4.84 5.38 %06 sheep sheep total 11.5% 10.8% 0.02% 0.003 15.02 pigs total 15.02 13.67 13.67 pigs 2.7% 3.3% 0.002 0.05% 3.59 3.59 4.23 4.23 SOWS SOWS 8.7% 11.43 0.002 11.44 0.02% 7.5% 9.44 9.44 finishing finishing pigs pigs 96.65 76.4% 78.8% 39.43 19.86 103.41 41% 83.55 19% 23 cattle total cattle 57. total 27.9% 38.29 29.2% 16.12 9.49 35.33 46% 28.80 25% 19.22 exc DC exc DC catttle cattle 2.9% 1.90 3.50 2.8% 3.85 3.18 0.67 17% 46% calves calves 26.2% 25.2% 34.44 14.52 31.83 26% 46% 25.63 non-d. cattle 17.31 8.81 non-d. cattle 48.5% 65.12 49.6% 54.74 10.38 16% 38.01 23.31 61.31 38% dairy dairy COWS cows kt N N X Kt V kt Z kt N N excretion housing & yard N excretion housing & yard Swiss reporting (Tier AGRAMMON Model 3 grazing N excretion grazing % category of total % category of total N flow tool (Tier % during grazing % during grazing N excretion total N excretion total N excretion

Table A - 14 N excretions of livestock in Switzerland according to the Swiss reporting (AGRAMMON model, Tier 3 methodology) and the N flow tool (Tier 2 methodology) for the year 2015.

Table A - 15 NH ₃ emissions from livestock and manure management in Switzerland according to the Swiss
reporting (AGRAMMON model) for the different livestock categories and steps of the manure cascade for the year
2015.

Swiss reporting (Tier 3)		dairy cows non-d.		calves	cattle exc cattle total		finishing	SWOS	pigs total	sheep	goats s	small	horses	mules+	equids	laying I	broilers turkeys		poultry total	tal
AGRAMMON Model			cattle		В		pigs					ruminants		asses		hens		Ţ	total	
N excretion housing & yard	kt N	54.74	25.63	3.18	28.80	83.55	11.43	3.59	15.02	2.10	0.84	2.94	1.91	0.24	2.16	2.41	3.09	0.07	5.57	109.24
N excretion grazing	z t	10.38	8.81	0.67	9.49	19.86	0.00	0.00	0.00	1.23	0.11	1.34	0.52	0.07	0.59	0.16	0.01	0.00	0.17	21.96
N excretion total	kt Kt	65.12	34.44	3.85	38.29	103.41	11.44	3.59	15.02	3.33	0.95	4.29	2.43	0.31	2.75	2.57	3.10	0.07	5.74	131.21
% category of total		49.6%	26.2%	2.9%	29.2%	78.8%	8.7%	2.7%	11.5%	2.5%	0.7%	3.3%	1.9%	0.2%	2.1%	2.0%	2.4%	0.1%	4.4%	100%
% during grazing		16%	26%	17%	25%	19%	0.02%	0.05%	0.02%	37%	12%	31%	21%	22%	21%	6%	0%0	3%	6%	17%
emissions housing	kt N	4.34	2.14	0.31	2.45	6.79	2.78	0.93	3.72	0.25	0.10	0.35	0.14	0.01	0.15	0.37	0.38	0.01	0.76	11.77
emissions yard	kt Kt	1.55	1.33	0.10	1.43	2.98	•						0.11	0.02	0.13		•			3.11
emissions housing & yard	kt N	5.89	3.47	0.41	3.88	9.77	2.78	0.93	3.72	0.25	0.10	0.35	0.25	0.03	0.28	0.37	0.38	0.01	0.76	14.88
emissions storage liq.	kt N	2.72	1.19	0.08	1.28	4.00	0.47	0.16	0.63											4.63
storage solid	z Ł	0.80	0.70	0.19	0.89	1.69	•			0.17	0.06	0.22	0.14	0.02	0.16	0.12	0.065	0.00	0.19	2.27
storage total	kt N	3.53	1.89	0.27	2.16	5.69	0.47	0.16	0.63	0.17	0.06	0.22	0.14	0.02	0.16	0.12	0.06	0.00	0.19	6.89
application liquid	kt N	8.58	3.14	0.23	3.36	11.95	1.44	0.42	1.86				•			•				13.80
application solid	kt N	1.16	1.02	0.25	1.27	2.44	•	•		0.07	0.04	0.11	0.08	0.01	0.08	0.26	0.34	0.01	0.61	3.24
application total	z Ł	9.75	4.16	0.48	4.64	14.38	1.44	0.42	1.86	0.07	0.04	0.11	0.08	0.01	0.08	0.26	0.34	0.01	0.61	17.05
emissions grazing	kt N	0.48	0.40	0.03	0.43	0.91	0.0002	0.0002	0.001	0.06	0.01	0.07	0.03	00.00	0.03	0.07	0.003	0.001	0.07	1.08
% of grazing emissions		44.2%	37.4%	2.9%	40.3%	84.5%	0.02%	0.02%	0.05%	5.7%	0.5%	6.2%	2.4%	0.3%	2.7%	6.1%	0.3%	0.1%	6.5%	100%
% of total emissions		1.2%	1.0%	0.1%	1.1%	2.3%	0.001%	0.001%	0.001%	0.2%	0.0%	0.2%	0.06%	0.01%	0.1%	0.2%	0.01%	0.002%	0.2%	2.7%
3B total	kt N	9.41	5.37	0.68	6.05	15.46	3.25	1.09	4.34	0.42	0.16	0.58	0.39	0.05	0.44	0.49	0.45	0.01	0.95	21.77
% category of total		43.2%	24.6%	3.1%	27.8%	71.0%	14.9%	5.0%	20.0%	1.9%	0.7%	2.7%	1.8%	0.2%	2.0%	2.3%	2.0%	0.1%	4.4%	100%
3D total (manure)	kt N	10.22	4.56	0.51	5.07	15.29	1.44	0.42	1.86	0.14	0.04	0.18	0.10	0.01	0.11	0.33	0.35	0.01	0.68	18.12
% category of total		56.4%	25.2%	2.8%	28.0%	84.4%	7.9%	2.3%	10.3%	0.7%	0.2%	1.0%	0.6%	0.1%	0.6%	1.8%	1.9%	0.0%	3.8%	100%
Emissions manure tot.	kt N	19.64	9.93	1.19	11.11	30.75	4.69	1.51	6.20	0.55	0.20	0.75	0.49	0.06	0.56	0.82	0.79	0.02	1.63	39.90
% category of total		49.2%	24.9%	3.0%	27.9%	77.1%	11.8%	3.8%	15.5%	1.4%	0.5%	1.9%	1.2%	0.2%	1.4%	2.0%	2.0%	0.1%	4.1%	100%
% of N excretion		30.2%	28.8%	30.8%	29.0%	29.7%	41.0%	42.1%	41.3%	16.6%	21.0%	17.6%	20.3%	20.1%	20.2%	31.8%	25.6%	29.5%	28.4%	30.4%

13.13 79.02 47.46 17.08 100% 36.99 100% 29.2% 126.48 1.76 3.95 100% 100% 100% 38% 7.65 3.92 6.34 2.00 10.7% 19.92 11.57 8.34 11.37 total poultry total 0.85 0.69 .45 0.69 36.7% 5.83 5.83 4.6% %0 0.85 0.60 0.60 0.69 7.3% 4.0% 2.14 5.8% 0.1% 0.02 0.09 %0 0.02 0.03 0.2% 0.1% 0.1% 16.4% 0.09 0.01 0.01 0.01 turkeys 0.04 2.2% %0 0.46 0.23 0.23 4.4% 0.23 1.09 broilers 2.77 0.41 0.41 0.46 .3% 3.0% 39 4% 0.87 2.3% %0 0.42 0.42 0.13 0.13 0.46 0.46 0.55 0.46 1.00 2.97 8% 70/ 2.7% 33.8% laying 0.18 0.15 1.62 1.67 3.29 2.6% 51% 0.21 0.15 8.9% 0.50 2.4% 27.0% 0.21 0.18 0.35 0.9% 0.39 2.0% 2.9% 0.89 equids 0.32 0.33 0.65 0.5% 1.8% 0.2% 51% 0.04 0.04 0.03 0.02 0.02 0.4% 0.09 0.6% 0.4% 25.4% 0.03 0.07 0.07 0.17 mules+ 27.4% 51% 7.1% 1.30 1.33 2.63 2.1% 0.17 0.17 0.15 0.15 0.12 0.12 0.28 0.8% 0.32 1.6% 0.40 2.4% 0.72 1.9% horses 0.68 6.37 7.05 5.6% 90% 0.06 7.3% 0.8% 0.10 0.05 0.05 0.05 0.29 0.15 2.0% 0.50 1.3% °.0% 0.05 0.8% 0.34 small 0.14 1.53 1.66 1.3% 0.08 0.5% 0.02 0.02 0.02 0.02 1.7% 0.2% 0.03 0.1% 0.11 0.3% 6.7% 92% 0.01 0.01 0.07 goats 5.5% 0.26 1.5% 5.38 4.3% 0.05 0.04 0.09 0.04 0.04 0.04 0.22 0.6% 0.13 0.6% 0.38 1.0% 7.1% %06 0.04 0.54 4.84 sheep 0.79 total 3.67 0.8% %0 2.82 2.82 0.79 8.1% 2.34 3.7% 5.95 16.1% 43.5% 3.67 2.34 3.61 2.34 . pigs 4.23 4.23 3.3% %0 .04 1.04 0.23 0.23 0.53 0.53 1.26 6.3% 0.53 3.1% .79 4.8% 12.3% . SMOS 10.6% %0 finishing 4.6 9.44 .5% .78 .78 0.56 0.56 1.81 δ 2.35 1.8% 1.81 4.16 11.2% 44.0% . 27.53 74.4% 76.4% 41% 83.9% 57.22 39.43 9.03 0.87 9.90 77.4% 28.5% 96.65 3.71 3.88 7.59 5.55 1.17 6.72 00% 14.32 71.9% 13.21 3.31 cattle total catttle exc o 9.05 24.5% 34.3% 25.6% 27.9% 19.22 16.12 46% 24.5% 4.18 24.5% 35.33 1.63 2.75 1.41 0.71 2.12 2.29 0.53 83 1.35 3 7% 4.87 2.8% 21.4% 0.03 0.21 0.13 3.4% 2.0% 0.75 2.0% 0.14 0.18 0.35 46% 0.11 0.25 0.15 0.4% 0.40 2.0% 1.90 1.60 3.50 0.11 0.04 calves 17.31 14.52 31.83 25.2% 30.9% 22.4% 1.49 1.01 2.61 22.4% 22.4% 26.1% 46% 2.50 1.30 0.67 0.50 3.3% 3.83 8.30 non-d cattle 1.97 4.47 2.11 COWS 18.48 49.9% 38.01 23.31 61.31 48.5% 2.08 0.46 30.1% 38% 2.76 4.84 4.14 4.60 6.73 0.34 7.08 49.6% 5.3% 9.4 47.4% 9.03 52.9% dairy z z ¥ ¥ kt N Z Z Z z t Z Z Z ¥ ¥ ¥ Z ¥ z ¥ vard vard % of grazing emission: Emissions manure tot emissions housing & N excretion housing N flow tool (Tier 2) N excretion grazing % of total emission category of total % category of total % category of total emissions housing % category of total 3D total (manure) % during grazing N excretion total emissions yards application liquid application solid % of N excretion application total storage liquid storage solid storage total 3B total grazıng %

Table A - 16 NH_3 emissions from livestock and manure management in Switzerland according to the N flow tool for the different livestock categories and steps of the manure cascade for the year 2015.

Annex 3 Additional information and explanations concerning the NFR tables

NFR code	Substance(s)	Reason for notation key NE
all	As, Cr, Cu, Ni, Se, Zn	Lack of data
1A (Nonroad)	HCB, PCBs	Lack of data
1A (mobile)	HCB, PCBs	Lack of data (for the years 1980-1989)
1A1c	SO _x , NH ₃ , Pb, Cd, Hg, POPs	Lack of data
1A3b	НСВ	no EF available
1A3di(i)	TSP, PM ₁₀ , PM _{2.5} , BC, Pb, Cd, Hg, PCDD/PCDF, PAHs, PCBs	no EF available
1A3dii	PCBs	no EF available
2A5a	BC	no EF available
2B5	BC	no EF available
2C3	Pb, Hg, PCDD/PCDF, HCB, PCBs	no EF available (production only from 1980 to 2006)
2C7c	BC	no EF available
2D3b	PM _{2.5} , PM ₁₀ , TSP, BC	Lack of data
2H1	NO _x , SO _x , BC, CO	no EF available
2H2	BC	no EF available
2H3	BC	no EF available
3Df	НСВ	Lack of data
11B	BC, PCBs	no EF available

Table A - 17 Explanation of the NE notation key in the NFR tables from the latest submission.

Table A - 18 Explanation of the IE Notation key in the NFR tables from the latest submission.

NFR code	Substance(s)	Included in NFR code
1A1b	Activity Data "Gaseous Fuels"	1A1b - Activity Data "Liquid Fuels" (for the years 2017 onwards)
1A3bvii	TSP, PM ₁₀ , PM _{2.5} , BC, Cd, Activity Data "Other activity"	1A3bvi
1A4ciii	NO _x , NMVOC, SO _x , NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, Hg, PCDD/PCDF, PAHs, Activity Data "Liquid Fuels", "Biomass", "Other activity"	1A3dii
2A3	NO _x , SO _x , PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, Hg	1A2f
2A5b	PM _{2.5} , PM ₁₀ , TSP	1A2gvii
2B1	NMVOC	2B10a
2D3c	NMVOC	2D3i (for the years 1980-1989)
2D3e	NMVOC	2D3i (for the years 1980-1989)
2D3f	NMVOC	2D3i (for the years 1980-1989)
2D3g	NMVOC	2D3i (for the years 1980-1989)
2D3h	NMVOC	2D3i (for the years 1980-1989)
3B4a	NO _x , NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP, Activity Data "Other activity"	3B1a
5D2	NO _x , NMVOC, SO _x , NH ₃ , CO, Activity Data "Other activity"	5D1 (for the years 1980-1989)

NFR code	Substance(s) reported	Sub-source description
1A2gviii	NO _x , NMVOC, SO _x , NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, Hg, PCDD/PCDF, PAHs, HCB, PCB	Industrial combustion of wood and wood waste, other boilers and engines in industry, fibreboard production
1A3eii	-	NO
1A5a	-	NO
1A5b	NO _x , NMVOC, SO _x , NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, Hg, PCDD/PCDF, PAHs	Military mobile only (aviation and nonroad)
1B1c	-	NO
1B2d	-	NO
2A6	-	NO
2B10a	NO _x , NMVOC, SO _x , CO, Hg (until 2016)	Acetic acid, ammonium nitrate (until 2018), chlorine gas, ehtylene, formaldehyde (until 1989), PVC (until 1996), niacin and sulphuric acid
2C7c	NO _x , NMVOC, SO _x , NH ₃ , PM _{2.5} , PM ₁₀ , TSP, CO, Pb, Cd, Hg, PCDD/PCDF	Battery recycling, galvanizing plants, silicium production (until 1988)
2D3i	NMVOC	Removal of paint and lacquer, vehicles dewaxing (until 2001), production of perfume/arome, cosmetics, paper/paper board, tobacco products and textiles, extraction of oil and fat (until 2000) and scientific laboratories, unspecified commercial and industrial solvent emissions
2G	NO _x , NMVOC, SO _x , NH ₃ , PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, Hg, PCDD/PCDF, PAHs	Application of glues and adhesives, commercial and industrial use of cleaning agents, cosmetic institutions, de-icing of airplanes and air-port surfaces (until 2011), glass wool enduction, hairdressers, health care other, medical practices, preservation of wood, renovation of anti-corrosive coatings, rock wool enduction, underseal treatment and conservation of vehicles and use of concrete additives, cooling lubricants, fireworks, lubricants and pesticides
2H3	NO, NMVOC, SO _x , NH ₃ , PM _{2.5} , PM ₁₀ , TSP, CO, Pb	Blasting and shooting
2L	NH ₃	Use of NH ₃ as refrigerant
3B4h	NO _x , NMVOC, NH ₃ , PM _{2.5} , PM ₁₀ , TSP	Bisons, camels and llamas, deer, rabbits
31	-	NO
5C1bvi	-	NO
5D3	-	NO
5E	NMVOC, PM _{2.5} , PM ₁₀ , TSP, CO, Pb, Cd, PCDD/F, PCBs	Car shredding
6A	NO _x , NMVOC, SO _x , NH3, PM _{2.5} , PM ₁₀ , TSP, BC, CO, Pb, Cd, Hg, PCDD/PCDF, PAHs, PCB	Human ammonia emissions (breath, transpiration, nappies), pet ammonia emissions, pet PM emissions (keeping of horses, sheep, goats and donkeys outside agriculture), domestic use of fertilisers, fire damages estates and motor vehicles, accidental release of PCB
6B	-	NO
11C	NMVOC	Natural NMVOC emissions from forest and grassland.

Table A - 19 List of sub-sources accounted for in reporting codes "other" in the NFR tables from the latest submission.

Table A - 20 Basis for estimating emissions from mobile sources in the NFR tables from the latest submission.

NFR code	Description	Fuel sold	Fuel used	Comment
1 A 3 a i (i)	International Aviation (LTO)	Х		
1 A 3 a i (ii)	International Aviation (Cruise)	Х		
1 A 3 a ii (i)	1 A 3 a ii Civil Aviation (Domestic, LTO)	Х		
1 A 3 a ii (ii)	1 A 3 a ii Civil Aviation (Domestic, Cruise)	Х		
1A3b	Road transport	(X)	х	"NATIONAL TOTAL" reported as "fuel sold", "COMPLIANCE TOTAL (CLRTAP)" as "fuel used"
1A3c	Railways		Х	
1A3di (i)	International maritime Navigation	Х		
1A3di (ii)	International inland waterways			NO
1A3dii	National Navigation	Х		
1A4ci	Agriculture; stationary		Х	
1A4cii	Off-road Vehicles and Other Machinery		Х	
1A4ciii	National Fishing		IE	Included in 1A3dii
1 A 5 b	Other, Mobile (Including military)		Х	

Annex 4 National energy balance

Swiss energy flow

The diagrams show a summary of the Swiss energy flow 2023 and 1990 in TJ as published by the Swiss Federal Office of Energy (SFOE 2024, SFOE 1991) in German and French.

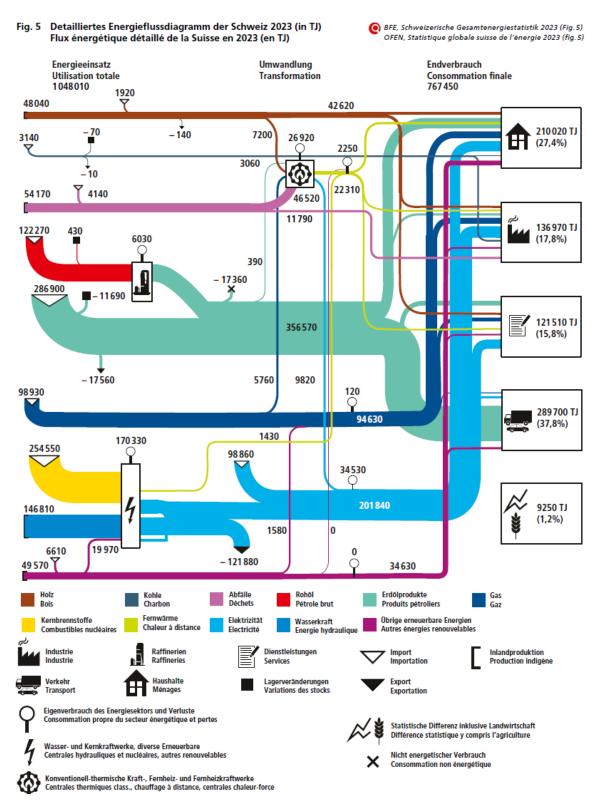


Figure A - 3 Energy flow in Switzerland 2023 (SFOE 2024, figure 5). Depicted values are in TJ.

Figure A - 4 Energy flow in Switzerland 1990 (SFOE 1991). Depicted values are in TJ.

Tab.4 Energiebilanz der Schweiz für das Jahr 2022 (in TJ) Bilan énergétique de la Suisse pour 2022 (en TJ)	der S ique d	chweiz fü e la Suisse	r das Jahr e pour 20	2022 (in T 22 (en TJ)	ſ									
		Holzenergie	Kohle	Müll und Industrie- abfälle	Rohöl	Erdöl- produkte	Gas	Wasseekraft	Kernbrenn- stoffe	Übrige erneuerbare Energien	Bektrizitát	Ferrwärme	Total	
		Energie du bois	Charbon	Ord. mén. et déchets ind.	Pétrole brut	Produits pétroliers	Gaz	Energie hydraulique	Combus tibles nucléaires	Autres énergies renouvelables	Bectricité	Chaleur à distance		
		(1)	(2)	(8)	(4)	(2)	(9)	(1)	(8)	(6)	(10)	(11)	(12)	
Inlandproduktion	(e)	45430	I	58 540	0	I	1	120600	1	44 65 0	1	1	269 220	Production indigène
+ Import	9	2 390	3 870	1	133310	246440	106720	1	252140	6270	119220	1	870360	+ Importation
+ Export	() ()	-110	I	I	0	-25170	I	I	I	I	-107 040	I	-132 320	+ Exportation
+ Lagenverändenung ¹	Ð	ł	-20	1	-600	18740	1	1	1	1	1	1	18 120	+ Variation de stock ¹
= Bruttoverbrauch	(e)	47710	3 850	58 540	132710	240010	106720	120600	252140	50 92 0	12 180	1	1 025 380	= Consommation brute
+ Energieumwandlung:														+ Transformation d'énergie:
 Was serkraft werke 	0	I	I	I	1	1	1	-120600	1	1	120 600	1	0	 Central es hydrauliques
 Kernkraftwerke 	9	1	1	1	1	1	1	1	-252140	1	83 210	1 390	-167 540	 Central es nucléaires
 korrventionelli-thermische Kraft-, Fernheiz- und Fernheizkraft- werke 	E	-3720	0	-46 260	I	-420	-6460	I	I	I	7 060	22 320	-27480	 Centrales themiques class, chauffage à distance, centrales chaleur-force
Gas werke	8	1	1	1	1	1	0	1	1	1	1	1	0	- Usines à gaz
- Raffinerien	3	I	I	I	-132710	132 710	1	1	1	1	1	I	0	- Raffineries
Diverse Emeuerbare	8	-2720	I	I	1	1	1520	1	1	-18660	17740	1	-2 120	 Renowelables div.
 + Eigenverbrauch des Energie- sek tors, Netzverlustę Verbrauch der Speicherungen 	8	I	I	I	I	-6320	-130	I	I	I	-35480	-2 350	-44 280	 + Consommation propre du secteur énergétique, pertes de réseau, pompage d'accumulation
+ Nichtenerge fischer Verbrauch	Ē	I	I	I	1	- 18 890	1	1	1	1	1	1	- 18 890	+ Consommation non énergétique
= Endverbrauch	E	41270	3 850	12 280	1	347 090	101650	1	1	32 260	205310	21360	765 070	= Consommation finale
Haushalte	0	17 140	20	1	1	51 320	45550	1	1	19050	69 68 0	8 520	211310	Ménages
Industrie	đ	12 92 0	3 800	12 010	I	11610	33100	I	I	2 030	62310	7.770	145 550	Indus trie
Dienstleis tungen	<u>ð</u>	10230	0	270	1	25730	20250	1	1	3920	57 040	5 070	122 510	Services
Verkehr	9	I	I	I	I	256310	920	I	I	6730	12 850	I	276810	Transport
Statistische Differenz inkl. Landwirtschaft	(\$	980	0	0	1	2 120	1830	1	1	530	3430	0	8 890	Différence statistique, y compris l'agriculture
1 + Lagerabnahme - Lagerzunahme	-	 4 diminution de stock augmentation de stock 	de stock on de stock								OFEN, SCI	hweizerische itatistique gle	Gesamtener; obale suisse (BFE, Schweizerische Gesamtenergiestatistik 2022 (Tab. 4) OFEN, Statistique globale suöse de l'énergie 2022 (tabi. 4)

⁷ Note that Liechtenstein's consumption of liquid fuels is included in these numbers (see chp. 3.1.6.2).

Table A - 21 Energy balance for Switzerland 2023 (table 4, Swiss overall energy statistics, SFOE 2024) in TJ.⁷.

Informative Inventory Report of Switzerland 2025

Annex 5 Additional information concerning uncertainties

The tables in the following chapters provide information about the level and trend uncertainty analysis of all relevant air pollutant emissions in 1990 and 2023. Input data used for the uncertainty estimation are the same for approach 1 (uncertainty propagation) and approach 2 (Monte Carlo simulations) and listed in Annex A5.1. Uncertainty estimates obtained by approach 1 are given in the tables in Annex A5.2 and uncertainty estimates obtained by approach 2 are given in the tables in Annex A5.3.

Categories for which no emission is quantified for neither the base year nor the reporting year are not listed in the tables.

For tables reporting input uncertainties in Annex A5.1 and results from approach 1 in Annex A5.2, columns labelled A to M correspond exactly to columns A to M from Table 5-1 from the EMEP/EEA guidebook (EMEP/EEA 2023, part A, chp. 5, "Uncertainties", or Table 3.2, chp. 3, from the 2006 IPCC Guidelines (IPCC 2006).

For tables reporting uncertainty results from approach 2, columns labelled A to J correspond exactly to columns A to J from Table 3.3, chp. 3, from the 2006 IPCC Guidelines (IPCC 2006).

A5.1 Uncertainty estimations: input data

Bibliographic references for tables of Annex A5.1:

EMEP/EEA 2019: Default values of EMEP/EEA 2019 and associated uncertainty ranges (activity data and emission factors).

EMIS: Uncertainties that are implemented in the EMIS database (activity data and emission factors).

GHGI: Uncertainty analysis of Switzerland's greenhouse gas inventory (FOEN 2025); mainly activity data.

France/Sweden: Uncertainties from France's or Sweden's Informative Inventory Reports (Citepa 2012, SEPA 2010); mainly emission factors.

UBA: Uncertainties for mobile sources from IFEU/INFRAS (2010), in which uncertainties are evaluated for road and non-road vehicles via Monte Carlo simulations (for emission factors).

UBA/INFRAS: PM10 emission factor uncertainties derived from raw data of IFEU/INFRAS (2010).

Kupper 2012: see References (chp. 12.1).

INFRAS 2017b: see References (chp. 12.1).

INFRAS 2021: see References (chp. 12.1).

Schleiss 2017: see References (chp. 12.1).

Schrade et al. 2025: see References (chp. 12.1).

Table A - 22 Input uncertainties for NO_x for the year 2023, assigned to activity data (col. E) and emissions factors (col. F). For normal and gamma distributions, the given uncertainty is the standard deviation with a coverage factor of 2, expressed in percentage of the mean ((fu) means fuel used approach).

А	В			E				F	
	•	-		Year 20	023				
	1	Activity da	ita uncer	tainty fo	r a 95 % confidence	Emiss	ion factor	runcerta	ainty for a 95 %
NFR code	Pollutant	Distribu- tion type	std. dev. %	Corr.	Ref.	Distribu- tion type	std. dev. %	Corr.	Ref.
1A1a	NOx (as NO2)	normal	10	no	GHGI	normal	19	yes	EMIS
1A1b	NOx (as NO2)	normal	1	no	GHGI	normal	20	yes	EMIS
1A1c	NOx (as NO2)	normal	5	no	EMIS	normal	20	yes	EMEP/EEA 2019
1A2a	NOx (as NO2)	normal	2	no	GHGI	normal	27	yes	EMIS
1A2b	NOx (as NO2)	normal	2	no	GHGI	normal	20	yes	EMIS
1A2c	NOx (as NO2)	normal	2	no	GHGI	normal	10	yes	EMIS
1A2d	NOx (as NO2)	normal	2	no	GHGI	normal	10	yes	EMIS
1A2e	NOx (as NO2)	normal	2	no	GHGI	normal	10	yes	EMIS
1A2f 1A2gvii	NOx (as NO2) NOx (as NO2)	normal	2	no no	GHGI GHGI	normal	17 13	yes	EMIS UBA
1A2gviii	NOx (as NO2)	normal normal	2	no	GHGI	normal normal	15	yes yes	EMIS
1A3ai(i)	NOx (as NO2)	normal	1	no	GHGI	normal	20	yes	EMEP/EEA 2019
1A3aii(i)	NOx (as NO2)	normal	1	no	GHGI	normal	20	yes	EMEP/EEA 2019
1A3bi(fu)	NOx (as NO2)	normal	1	no	GHGI	normal	38	yes	UBA
1A3bii(fu)	NOx (as NO2)	normal	1	no	GHGI	normal	32	yes	UBA
1A3biii(fu)	NOx (as NO2)	normal	1	no	GHGI	normal	18	yes	UBA
1A3biv(fu)	NOx (as NO2)	normal	1	no	GHGI	normal	36	yes	UBA
1A3c	NOx (as NO2)	normal	1	no	GHGI	normal	13	yes	UBA
1A3dii	NOx (as NO2)	normal	1	no	GHGI	normal	13	yes	UBA
1A3ei	NOx (as NO2)	normal	2	no	GHGI	normal	50	yes	EMEP/EEA 2019
1A4ai	NOx (as NO2)	normal	2	no	GHGI	normal	16	yes	EMIS
1A4aii	NOx (as NO2)	normal	1	no	GHGI	normal	13	yes	UBA
1A4bi	NOx (as NO2)	normal	4	no	GHGI	normal	13	yes	EMIS
1A4bii	NOx (as NO2)	normal	1	no	GHGI	normal	30	yes	EMIS
1A4ci 1A4cii	NOx (as NO2) NOx (as NO2)	normal normal	21	no no	GHGI GHGI	normal normal	30 13	yes yes	EMIS UBA
1A4ch 1A5b	NOx (as NO2)	normal	1	no	GHGI	normal	13	yes	UBA
1B2c	NOx (as NO2)	normal	22	no	EMIS	gamma	200	yes	EMIS
2A1	NOx (as NO2)	normal	2	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2A2	NOx (as NO2)	normal	2	no	GHGI	gamma	500	yes	EMEP/EEA 2019
2A5a	NOx (as NO2)	normal	5	no	EMIS	gamma	500	yes	EMEP/EEA 2019
2B2	NOx (as NO2)	normal	2	no	GHGI	normal	10	yes	EMEP/EEA 2019
2B5	NOx (as NO2)	normal	2	no	GHGI	normal	40	yes	EMEP/EEA 2019
2B10a	NOx (as NO2)	normal	2	no	GHGI	normal	60	yes	EMEP/EEA 2019
2C1	NOx (as NO2)	normal	2	no	GHGI	normal	50	yes	EMEP/EEA 2019
2C3	NOx (as NO2)	normal	5	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2C7c	NOx (as NO2)	normal	5	no	EMIS	gamma	100	yes	EMEP/EEA 2019
2G	NOx (as NO2)	normal	25	no	EMIS	gamma	100	yes	EMEP/EEA 2019
2H3 3B1a	NOx (as NO2) NOx (as NO2)	normal normal	3	no no	EMIS GHGI	gamma normal	200 50	yes	EMEP/EEA 2019 EMEP/EEA 2019
3B18 3B1b	NOx (as NO2)	normal	6	no	GHGI	normal	50	yes yes	EMEP/EEA 2019 EMEP/EEA 2019
3B15 3B2	NOx (as NO2)	normal	6	no	GHGI	normal	50	yes	EMEP/EEA 2019
3B3	NOx (as NO2)	normal	6	-	GHGI	normal	50	yes	EMEP/EEA 2019
3B4d	NOx (as NO2)	normal	6		GHGI	normal	50	yes	EMEP/EEA 2019
3B4e	NOx (as NO2)	normal	6	no	GHGI	normal	50	yes	EMEP/EEA 2019
3B4f	NOx (as NO2)	normal	6	no	GHGI	normal	50	yes	EMEP/EEA 2019
3B4gi	NOx (as NO2)	normal	6		GHGI	normal	50	yes	EMEP/EEA 2019
3B4gii	NOx (as NO2)	normal	6		GHGI	normal	50	yes	EMEP/EEA 2019
3B4giii	NOx (as NO2)	normal	6	no	GHGI	normal	50	yes	EMEP/EEA 2019
3B4giv	NOx (as NO2)	normal	6	no	GHGI	normal	50	yes	EMEP/EEA 2019
3B4h 3Da1	NOx (as NO2) NOx (as NO2)	normal	6 5	no	GHGI	normal	50 100	yes	EMEP/EEA 2019
3Da1 3Da2a	NOx (as NO2) NOx (as NO2)	normal normal	5	no no	GHGI GHGI	normal normal	100 50	yes	EMEP/EEA 2019 EMEP/EEA 2019
3Daza 3Dazb	NOx (as NO2)	normal	6	no	GHGI	normal	100	yes yes	EMEP/EEA 2019 EMEP/EEA 2019
3Da2c	NOx (as NO2)	normal	20	no	Schleiss 2017	normal	100	yes	EMEP/EEA 2019
3Da3	NOx (as NO2)	normal	6	no	GHGI	normal	100	yes	EMEP/EEA 2019
5A	NOx (as NO2)	normal	10	no	GHGI	normal	50	yes	EMIS
5B2	NOx (as NO2)	normal	20	no	EMIS	normal	100	yes	EMEP/EEA 2019
5C1a	NOx (as NO2)	normal	50	no	EMIS	normal	40	yes	EMIS
5C1bi	NOx (as NO2)	normal	30	no	EMIS	normal	30	yes	EMIS
5C1biii	NOx (as NO2)	normal	30	no	EMIS	normal	30	yes	EMIS
5C1biv	NOx (as NO2)	normal	20	no	EMIS	normal	50	yes	EMIS
5C1bv	NOx (as NO2)	normal	5	no	EMIS	normal	30	yes	EMIS
5C2	NOx (as NO2)	normal	48	no	EMIS	gamma	156	yes	EMIS
5D1	NOx (as NO2)	normal	1 10	no	EMIS	normal	10	yes	EMIS
5D2	NOx (as NO2)	normal		no	EMIS	normal	10	yes	EMIS
6A	NOx (as NO2)	normal	30	no	EMIS	normal	50	yes	EMIS

Table A - 23 Input uncertainties for NMVOC for the year 2023, assigned to activity data (col. E) and emissions factors (col. F). For normal and gamma distributions, the given uncertainty is the standard deviation with a coverage factor of 2, expressed in percentage of the mean ((fu) means fuel used approach).

A	В			E				F	
				Veer 20	22				
				Year 20	123				
				tainty fo	r a 95 % confidence			r uncerta	ainty for a 95 %
NFR code	Pollutant	Distribu-	std.	Corr.	Ref.	Distribu-	std.	Corr.	Ref.
1A1a	NMVOC	tion type normal	dev. % 10	no	GHGI	tion type normal	dev. % 32	yes	EMIS
1A1b	NMVOC	normal	10	no	GHGI	normal	20	yes	EMIS
1A1c	NMVOC	normal	5	no	EMIS	normal	20	yes	EMEP/EEA 2019
1A2a	NMVOC	normal	2	no	GHGI	normal	18	yes	EMIS
1A2b	NMVOC	normal	2	no	GHGI	normal	19	yes	EMIS
1A2c	NMVOC	normal	2	no	GHGI	normal	10	yes	EMIS
1A2d	NMVOC	normal	2	no	GHGI	normal	10	yes	EMIS
1A2e	NMVOC	normal	2	no	GHGI	normal	10	yes	EMIS
1A2f 1A2gvii	NMVOC NMVOC	normal normal	2	no no	GHGI GHGI	normal	30 34	yes	EMIS UBA
1A2gvii 1A2gviii	NMVOC	normal	2	no	GHGI	normal normal	30	yes yes	EMIS
1A3ai(i)	NMVOC	normal	1	no	GHGI	normal	50	yes	EMEP/EEA 2019
1A3aii(i)	NMVOC	normal	1	no	GHGI	normal	50	yes	EMEP/EEA 2019
1A3bi(fu)	NMVOC	normal	1	no	GHGI	normal	52	yes	UBA
1A3bii(fu)	NMVOC	normal	1	no	GHGI	normal	46	yes	UBA
1A3biii(fu)	NMVOC	normal	1	no	GHGI	normal	22	yes	UBA
1A3biv(fu)	NMVOC	normal	1	no	GHGI	gamma	400	yes	UBA
1A3bv(fu)	NMVOC	normal	1	no	GHGI	normal normal	40	yes	UBA
1A3c 1A3dii	NMVOC NMVOC	normal normal	1	no no	GHGI GHGI	normal	34	yes yes	UBA UBA
1A3ei	NMVOC	normal	2	no	GHGI	normal	50	yes	EMEP/EEA 2019
1A4ai	NMVOC	normal	2	no	GHGI	normal	56	yes	EMIS
1A4aii	NMVOC	normal	1	no	GHGI	normal	75	yes	Sweden
1A4bi	NMVOC	normal	4	no	GHGI	normal	68	yes	EMIS
1A4bii	NMVOC	normal	1	no	GHGI	normal	75	yes	Sweden
1A4ci	NMVOC	normal	21	no	GHGI	normal	75	yes	EMIS
1A4cii	NMVOC	normal	1	no	GHGI	normal	75	yes	Sweden
1A5b 1B2ai	NMVOC NMVOC	normal normal	1 30	no no	GHGI	normal normal	34 50	yes	UBA EMEP/EEA 2019
1B2aiv	NMVOC	normal	30	no	EMEP/EEA 2019	normal	47	yes yes	EMIS
1B2av	NMVOC	normal	1	no	EMEP/EEA 2019	gamma	40	yes	EMIS
1B2b	NMVOC	normal	22	no	EMIS	normal	50	yes	EMEP/EEA 2019
1B2c	NMVOC	normal	22	no	EMIS	gamma	100	yes	EMIS
2A1	NMVOC	normal	2	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2A2	NMVOC	normal	2	no	GHGI	gamma	500	yes	EMEP/EEA 2019
2A5a	NMVOC	normal	5	no	EMIS	gamma	500	yes	EMEP/EEA 2019
2B10a	NMVOC	normal	2	no	GHGI	normal	40	yes	EMEP/EEA 2019
2C1 2C3	NMVOC NMVOC	normal normal	2	no no	GHGI GHGI	gamma gamma	100 200	yes yes	EMEP/EEA 2019 EMEP/EEA 2019
2C3 2C7a	NMVOC	normal	5	no	EMIS	gamma	200	yes	EMEP/EEA 2019 EMEP/EEA 2019
2C7c	NMVOC	normal	5	no	EMIS	gamma	100	yes	EMEP/EEA 2019
2D3a	NMVOC	normal	1	no	EMIS	normal	50	no	EMIS
2D3b	NMVOC	normal	5	no	EMIS	gamma	100	yes	EMEP/EEA 2019
2D3c	NMVOC	normal	20	no	EMIS	gamma	100	yes	EMEP/EEA 2019
2D3d	NMVOC	normal	20	no	EMIS	normal	40	yes	EMEP/EEA 2019
2D3e	NMVOC	normal	40	no	EMIS	normal	50	yes	EMEP/EEA 2019
2D3f	NMVOC	normal	20	no	EMIS	normal	40	yes	EMEP/EEA 2019
2D3g 2D3h	NMVOC NMVOC	normal normal	30 20	no no	EMIS EMIS	gamma normal	100 40	yes yes	EMEP/EEA 2019 EMEP/EEA 2019
2D3i	NMVOC	normal	30	no	EMEP/EEA 2019	gamma	180	yes	EMEP/EEA 2019 EMEP/EEA 2019
2031 2G	NMVOC	normal	25	no	EMIS	gamma	200	yes	EMEP/EEA 2019
2H1	NMVOC	normal	30	no	EMEP/EEA 2019	gamma	200	yes	EMEP/EEA 2019
2H2	NMVOC	normal	10	no	EMEP/EEA 2019	gamma	100	yes	EMEP/EEA 2019
2H3	NMVOC	normal	3	no	EMIS	gamma	200	yes	EMEP/EEA 2019
3B1a	NMVOC	normal	6	no	GHGI	normal	60	yes	Schrade 2024
3B1b	NMVOC	normal	6	no	GHGI	normal	70	yes	Schrade 2024
3B2	NMVOC	normal	6	no	GHGI	gamma	200	yes	EMEP/EEA 2019 EMEP/EEA 2019
3B3 3B4d	NMVOC NMVOC	normal normal	6	no no	GHGI GHGI	gamma gamma	200	yes yes	EMEP/EEA 2019 EMEP/EEA 2019
3B40 3B4e	NMVOC	normal	6	no	GHGI	gamma	200	yes	EMEP/EEA 2019 EMEP/EEA 2019
3B4e 3B4f	NMVOC	normal	6	no	GHGI	gamma	200	yes	EMEP/EEA 2019 EMEP/EEA 2019
3B4gi	NMVOC	normal	6	no	GHGI	gamma	200	yes	EMEP/EEA 2019
3B4gii	NMVOC	normal	6	no	GHGI	gamma	200	yes	EMEP/EEA 2019
3B4giii	NMVOC	normal	6	no	GHGI	gamma	200	yes	EMEP/EEA 2019
3B4giv	NMVOC	normal	6	no	GHGI	gamma	200	yes	EMEP/EEA 2019
3B4h	NMVOC	normal	6	no	GHGI	gamma	200	yes	EMEP/EEA 2019
3De	NMVOC	normal	5	no	GHGI (LULUCF) GHGI	gamma	200	yes	EMEP/EEA 2019
5A 5B1	NMVOC NMVOC	normal normal	10 20	no no	GHGI Schleiss 2017	normal normal	50 100	yes yes	EMIS EMIS
5B1 5B2	NMVOC	normal	20	no	EMIS	normal	30	yes yes	EMIS
562 5C1a	NMVOC	normal	50	no	EMIS	normal	50	yes	EMIS
5C1bi	NMVOC	normal	30	no	EMIS	normal	30	yes	EMIS
5C1biii	NMVOC	normal	30	no	EMIS	normal	30	yes	EMIS
5C1biv	NMVOC	normal	20	no	EMIS	normal	20	yes	EMIS
5C1bv	NMVOC	normal	5	no	EMIS	normal	30	yes	EMIS
5C2	NMVOC	normal	48	no	EMIS	gamma	156	yes	EMIS
5D1	NMVOC	normal	1	no	EMIS	normal	27	yes	EMIS
5D2	NMVOC	normal	10	no	EMIS	normal	20	yes	EMIS
5E	NMVOC	normal	20	no	EMIS	normal	24	yes	EMIS
6A	NMVOC	normal	30	no	EMIS	normal	50	yes	EMIS

Table A - 24 Input uncertainties for SO_x for the year 2023, assigned to activity data (col. E) and emissions factors (col. F). For normal and gamma distributions, the given uncertainty is the standard deviation with a coverage factor of 2, expressed in percentage of the mean ((fu) means fuel used approach).

A	В			E				F	
				Year 20	123				
				tainty fo	r a 95 % confidence			r uncerta	ainty for a 95 %
NFR code	Pollutant	Distribu- tion type	std. dev. %	Corr.	Ref.	Distribu- tion type	std. dev. %	Corr.	Ref.
1A1a	SOx (as SO2)	normal	10	no	GHGI	normal	22	yes	EMIS
1A1b	SOx (as SO2)	normal	1	no	GHGI	normal	20	yes	EMIS
1A2a	SOx (as SO2)	normal	2	no	GHGI	normal	15	yes	EMIS
1A2b	SOx (as SO2)	normal	2	no	GHGI	normal	10	yes	EMIS
1A2c	SOx (as SO2)	normal	2	no	GHGI	normal	11	yes	EMIS
1A2d	SOx (as SO2)	normal	2	no	GHGI	normal	14	yes	EMIS
1A2e	SOx (as SO2)	normal	2	no	GHGI	normal	12	yes	EMIS
1A2f	SOx (as SO2)	normal	2	no	GHGI	normal	19	yes	EMIS
1A2gvii	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A2gviii	SOx (as SO2)	normal	2	no	GHGI	normal	19	yes	EMIS
1A3ai(i)	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A3aii(i)	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A3bi(fu)	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A3bii(fu)	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A3biii(fu)	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A3biv(fu)	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A3c	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A3dii	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A3ei	SOx (as SO2)	normal	2	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A4ai	SOx (as SO2)	normal	2	no	GHGI	normal	10	yes	EMIS
1A4aii	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A4bi	SOx (as SO2)	normal	4	no	GHGI	normal	10	yes	EMIS
1A4bii	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A4ci	SOx (as SO2)	normal	21	no	GHGI	normal	18	yes	EMIS
1A4cii	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1A5b	SOx (as SO2)	normal	1	no	GHGI	normal	10	yes	EMEP/EEA 2019
1B2aiv	SOx (as SO2)	normal	30	no	EMEP/EEA 2019	normal	47	yes	EMIS
1B2c	SOx (as SO2)	normal	22	no	EMIS	normal	31	yes	EMIS
2A1	SOx (as SO2)	normal	2	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2A2	SOx (as SO2)	normal	2	no	GHGI	gamma	500	yes	EMEP/EEA 2019
2A5a	SOx (as SO2)	normal	5	no	EMIS	gamma	500	yes	EMEP/EEA 2019
2B5	SOx (as SO2)	normal	2	no	GHGI	normal	20	yes	EMEP/EEA 2019
2B10a	SOx (as SO2)	normal	2	no	GHGI	normal	40	yes	EMEP/EEA 2019
2C1	SOx (as SO2)	normal	2	no	GHGI	gamma	100	yes	EMEP/EEA 2019
2C3	SOx (as SO2)	normal	5	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2C7c	SOx (as SO2)	normal	5	no	EMIS	gamma	100	yes	EMEP/EEA 2019
2G	SOx (as SO2)	normal	25	no	EMIS	gamma	100	yes	EMEP/EEA 2019
2H3	SOx (as SO2)	normal	3	no	EMIS	gamma	200	yes	EMEP/EEA 2019
5B2	SOx (as SO2)	normal	20	no	EMIS	normal	100	yes	EMIS
5C1a	SOx (as SO2)	normal	50	no	EMIS	normal	40	yes	EMIS
5C1bi	SOx (as SO2)	normal	30	no	EMIS	normal	30	yes	EMIS
5C1biii	SOx (as SO2)	normal	30	no	EMIS	normal	30	yes	EMIS
5C1biv	SOx (as SO2)	normal	20	no	EMIS	normal	30	yes	EMIS
5C2	SOx (as SO2)	normal	48	no	EMIS	gamma	133	yes	EMIS
5D1	SOx (as SO2)	normal	1	no	EMIS	normal	37	yes	EMIS
5D2	SOx (as SO2)	normal	10	no	EMIS	normal	20	yes	EMIS
6A	SOx (as SO2)	normal	30	no	EMIS	normal	50	yes	EMIS

Table A - 25 Input uncertainties for NH_3 for the year 2023, assigned to activity data (col. E) and emissions factors (col. F). For normal and gamma distributions, the given uncertainty is the standard deviation with a coverage factor of 2, expressed in percentage of the mean ((fu) means fuel used approach).

А	В			E				F	
				Year 20	23				
		Activity da	ta uncer	tainty fo	r a 95 % confidence	Emiss	ion facto		inty for a 95 %
NFR code	Pollutant	Distribu-	std.		a 55 % connuence	Distribu-	std.	uncerte	
Nin couc	i onutant	tion type	dev. %	Corr.	Ref.	tion type	dev. %	Corr.	Ref.
1A1a	NH3	normal	10	no	GHGI	normal	20	yes	EMIS
1A1b	NH3	normal	10	no	GHGI	normal	10	yes	EMIS
1A10 1A2a	NH3	normal	2	no	GHGI	normal	10	yes	EMIS
1A2b	NH3	normal	2	no	GHGI	normal	10	yes	EMIS
1A2c	NH3	normal	2	no	GHGI	normal	10	yes	EMIS
1A2d	NH3	normal	2	no	GHGI	normal	10	yes	EMIS
1A2e	NH3	normal	2	no	GHGI	normal	10	yes	EMIS
1A2f	NH3	normal	2	no	GHGI	normal	9	yes	EMIS
1A2gvii	NH3	normal	1	no	GHGI	normal	50	yes	France
1A2gviii	NH3	normal	2	no	GHGI	normal	9	yes	EMIS
1A3bi(fu)	NH3	normal	1	no	GHGI	normal	50	yes	France
1A3bii(fu)	NH3	normal	1	no	GHGI	normal	50	yes	France
1A3biii(fu)	NH3	normal	1	no	GHGI	normal	50	yes	France
1A3biv(fu)	NH3	normal	1	no	GHGI	normal	50	yes	France
1A3c	NH3	normal	1	no	GHGI	normal	50	yes	France
1A3dii	NH3	normal	1	no	GHGI	normal	50	yes	France
1A4ai	NH3	normal	2	no	GHGI	normal	10	yes	EMIS
1A4aii	NH3	normal	1	no	GHGI	normal	10	yes	EMIS
1A4bi	NH3	normal	4	no	GHGI	normal	10	yes	EMIS
1A4bii	NH3	normal	1	no	GHGI	normal	10	yes	EMIS
1A4ci	NH3	normal	21	no	GHGI	normal	10	yes	EMIS
1A4cii	NH3	normal	1	no	GHGI	normal	50	yes	France
1A5b	NH3	normal	1	no	GHGI	normal	50	yes	France
2B1	NH3	normal	2	no	GHGI	normal	10	yes	EMEP/EEA 2019
2B2	NH3	normal	2	no	GHGI	normal	10	yes	EMEP/EEA 2019
2B10a	NH3	normal	2	no	GHGI	normal	40	yes	EMEP/EEA 2019
2C1	NH3	normal	2	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2C7c	NH3	normal	5	no	EMIS	gamma	500	yes	EMEP/EEA 2019
2G	NH3	normal	25	no	EMIS	normal	40	yes	EMEP/EEA 2019
2H2	NH3	normal	10	no	EMEP/EEA 2019	gamma	500	yes	EMEP/EEA 2019
2H3	NH3	normal	3	no	EMIS	gamma	200	yes	EMEP/EEA 2019
2L	NH3	normal	25	no	EMIS	normal	100	yes	EMEP/EEA 2019
3B1a	NH3	normal	6	no	GHGI	normal	29	yes	INFRAS 2021
3B1b	NH3	normal	6	no	GHGI	normal	27	yes	INFRAS 2021
3B2	NH3	normal	6	no	GHGI	normal	87	yes	INFRAS 2021
3B3	NH3	normal	6	no	GHGI	normal	40	yes	INFRAS 2021
3B4d	NH3	normal	6	no	GHGI	normal	65	yes	INFRAS 2021
3B4e	NH3	normal	6	no	GHGI	normal	52	yes	INFRAS 2021
3B4f	NH3	normal	6	no	GHGI	normal	68	yes	INFRAS 2021
3B4gi	NH3	normal	6	no	GHGI	normal	82	yes	INFRAS 2021
3B4gii	NH3	normal	6	no	GHGI	normal	86	yes	INFRAS 2021
3B4giii	NH3	normal	6	no	GHGI	normal	93	yes	INFRAS 2021
3B4giv	NH3	normal	6	no	GHGI	normal	85	yes	INFRAS 2021
3B4h	NH3	normal	6	no	GHGI	normal	50	yes	INFRAS 2021
3Da1	NH3	normal	5	no	GHGI	normal	50	yes	Kupper 2012
3Da2a	NH3	normal	6	no	GHGI	normal	21	yes	INFRAS 2021
3Da2b	NH3	normal	6	no	GHGI	normal	50	yes	Kupper 2012
3Da2c	NH3	normal	20	no	Schleiss 2017	normal	50	yes	Kupper 2012
3Da3	NH3	normal	6	no	GHGI	normal	62	yes	INFRAS 2021
5A	NH3	normal	10		GHGI	normal	50	yes	EMIS
5B1	NH3	normal	20	no	Schleiss 2017	normal	100	yes	EMIS
5B2	NH3	normal	20	no	EMIS	normal	75	yes	INFRAS 2014
5C1biv	NH3	normal	20	no	EMIS	normal	50	yes	EMIS
5C2	NH3	normal	48	no	EMIS	normal	25	yes	EMIS
5D1	NH3	normal	1	no	EMIS	normal	50	yes	EMIS
6A	NH3	normal	30	no	EMIS	normal	100	yes	EMEP/EEA 2019

Table A - 26 Input uncertainties for PM2.5 for the year 2023, assigned to activity data (col. E) and emissions factors (col. F). For normal and gamma distributions, the given uncertainty is the standard deviation with a coverage factor of 2, expressed in percentage of the mean ((fu) means fuel used approach).

А	В			E				F	
				Year 20)23				
	1	Activity da	ta uncer	tainty fo	r a 95 % confidence	Emiss	ion facto	r uncerta	ainty for a 95 %
NFR code	Pollutant	Distribu- tion type	std. dev. %	Corr.	Ref.	Distribu- tion type	std. dev. %	Corr.	Ref.
1A1a	PM2.5	normal	10	no	GHGI	normal	71	yes	EMIS
1A1b	PM2.5	normal	1	no	GHGI	normal	20	yes	EMIS
1A1c	PM2.5	normal	5	no	EMIS	normal	20	yes	EMEP/EEA 2019
1A2a	PM2.5	normal	2	no	GHGI	normal	28	yes	EMIS
1A2b	PM2.5	normal	2	no	GHGI	normal	30	yes	EMIS
1A2c	PM2.5	normal	2	no	GHGI	normal	10	yes	EMIS
1A2d 1A2e	PM2.5 PM2.5	normal normal	2	no no	GHGI GHGI	normal normal	33 10	yes yes	EMIS EMIS
1A26	PM2.5	normal	2	no	GHGI	normal	65	yes	EMIS
1A2gvii	PM2.5	normal	1	no	GHGI	normal	50	yes	UBA/INFRAS
1A2gviii	PM2.5	normal	2	no	GHGI	normal	65	yes	EMIS
1A3ai(i)	PM2.5	normal	1	no	GHGI	normal	30	yes	UBA/INFRAS
1A3aii(i)	PM2.5	normal	1	no	GHGI	normal	30	yes	UBA/INFRAS
1A3bi(fu)	PM2.5	normal	1	no	GHGI	normal	57	yes	UBA/INFRAS
1A3bii(fu)	PM2.5	normal	1	no	GHGI	normal	48	yes	UBA/INFRAS
1A3biii(fu)	PM2.5	normal	1	no	GHGI	normal	27	yes	UBA/INFRAS
1A3biv(fu)	PM2.5	normal	1	no	GHGI	normal	54	yes	UBA/INFRAS
1A3bvi(fu)	PM2.5	normal	1	no	GHGI	normal	50	yes	UBA/INFRAS
1A3c 1A3dii	PM2.5 PM2.5	normal	1	no	GHGI GHGI	normal	50 50	yes	UBA/INFRAS UBA/INFRAS
1A3dii 1A3ei	PM2.5	normal normal	2	no no	GHGI	normal normal	27	yes yes	UBA/INFRAS
1A4ai	PM2.5	normal	2	no	GHGI	normal	78	yes	EMIS
1A4bi	PM2.5	normal	4	no	GHGI	normal	76	yes	EMIS
1A4ci	PM2.5	normal	21	no	GHGI	normal	39	yes	EMIS
1A4cii	PM2.5	normal	1	no	GHGI	normal	80	yes	EMIS
1A5b	PM2.5	normal	1	no	GHGI	normal	50	yes	UBA/INFRAS
1B1a	PM2.5	normal	30	no	EMEP/EEA 2019	normal	40	yes	EMIS
1B2c	PM2.5	normal	22	no	EMIS	gamma	237	yes	EMEP/EEA 2019
2A1	PM2.5	normal	2	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2A2	PM2.5	normal	2	no	GHGI	gamma	500	yes	EMEP/EEA 2019
2A5a 2B5	PM2.5 PM2.5	normal normal	2	no no	emis Ghgi	gamma gamma	500 100	yes yes	EMEP/EEA 2019 EMEP/EEA 2019
2B10a	PM2.5	normal	2	no	GHGI	normal	40	yes	EMEP/EEA 2019
20100	PM2.5	normal	2	no	GHGI	gamma	125	yes	EMEP/EEA 2019
2C3	PM2.5	normal	5	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2C7a	PM2.5	normal	5	no	EMIS	gamma	200	yes	EMEP/EEA 2019
2C7c	PM2.5	normal	5	no	EMIS	gamma	500	yes	EMEP/EEA 2019
2D3c	PM2.5	normal	20	no	EMIS	gamma	200	yes	EMEP/EEA 2019
2D3i	PM2.5	normal	30	no	EMEP/EEA 2019	gamma	500	yes	EMEP/EEA 2019
2G	PM2.5	normal	25	no	EMIS	gamma	100	yes	EMEP/EEA 2019
2H1	PM2.5	normal	30	no	EMEP/EEA 2019	gamma	200	yes	EMEP/EEA 2019
2H2	PM2.5	normal	10 3	-	EMEP/EEA 2019	gamma	500	yes	EMEP/EEA 2019
2H3 2I	PM2.5 PM2.5	normal normal	10		EMIS EMEP/EEA 2019	gamma gamma	200 500	yes yes	EMEP/EEA 2019 EMEP/EEA 2019
3B1a	PM2.5	normal	6		GHGI	gamma	300	yes	EMIS
3B1b	PM2.5	normal	6		GHGI	gamma	300	yes	EMIS
3B2	PM2.5	normal	6		GHGI	gamma	300	yes	EMIS
3B3	PM2.5	normal	6	no	GHGI	gamma	300	yes	EMIS
3B4d	PM2.5	normal	6		GHGI	gamma	300	yes	EMIS
3B4e	PM2.5	normal	6		GHGI	gamma	300	yes	EMIS
3B4f	PM2.5	normal	6		GHGI	gamma	300	yes	EMIS
3B4gi	PM2.5	normal	6		GHGI	gamma	300	yes	EMIS
3B4gii 2B4giii	PM2.5	normal	6		GHGI	gamma	300	yes	<u> </u>
3B4giii 3B4giv	PM2.5 PM2.5	normal normal	6		GHGI GHGI	gamma gamma	300 300	yes yes	
3B4h	PM2.5	normal	6		GHGI	gamma	300	yes	
3De	PM2.5	normal	5	no	GHGI (LULUCF)	gamma	200	yes	EMEP/EEA 2019
5A	PM2.5	normal	10		GHGI	normal	30	yes	EMIS
5B2	PM2.5	normal	20		EMIS	normal	100	yes	EMIS
	DN 42 F	normal	50	no	EMIS	normal	30	yes	EMIS
5C1a	PM2.5		-		EMIS	normal	30	yes	EMIS
5C1bi	PM2.5	normal	30	no	21110			1	
5C1bi 5C1biii	PM2.5 PM2.5	normal normal	30	no	EMIS	normal	30	yes	EMIS
5C1bi 5C1biii 5C1biv	PM2.5 PM2.5 PM2.5	normal normal	30 20	no no	EMIS EMIS	normal normal	30 34	yes yes	EMIS EMIS
5C1bi 5C1biii 5C1biv 5C1bv	PM2.5 PM2.5 PM2.5 PM2.5 PM2.5	normal normal normal	30 20 5	no no no	EMIS EMIS EMIS	normal normal normal	30 34 33	yes yes yes	EMIS EMIS EMIS
5C1a 5C1bi 5C1biii 5C1biiv 5C1biv 5C1bv 5C2 5E	PM2.5 PM2.5 PM2.5	normal normal	30 20	no no no	EMIS EMIS	normal normal	30 34	yes yes	EMIS EMIS

Table A - 27 Input uncertainties for PM10 for the year 2023, assigned to activity data (col. E) and emissions factors (col. F). For normal and gamma distributions, the given uncertainty is the standard deviation with a coverage factor of 2, expressed in percentage of the mean ((fu) means fuel used approach).

A	В			E Year 20)23			F	
	1	Activity da	ita uncer	tainty fo	r a 95 % confidence	Emiss	ion facto	r uncert;	ainty for a 95 %
NFR code	Pollutant	Distribu- tion type	std. dev. %	Corr.	Ref.	Distribu- tion type	std. dev. %	Corr.	Ref.
LA1a	PM10	normal	10	no	GHGI	normal	71	yes	EMIS
A1b	PM10	normal	1	no	GHGI	normal	20	yes	EMIS
A1c	PM10	normal	5	no	EMIS	normal	20	yes	EMEP/EEA 2019
A2a	PM10	normal	2	no	GHGI	normal	28	yes	EMIS
A2b	PM10	normal	2	no	GHGI	normal	30	yes	EMIS
A2c	PM10	normal	2	no	GHGI	normal	10	yes	EMIS
.A2d	PM10	normal	2	no	GHGI	normal	33	yes	EMIS
.A2e	PM10	normal	2	no	GHGI	normal	10	yes	EMIS
A2f	PM10	normal	2	no	GHGI	normal	65	yes	EMIS
A2gvii	PM10	normal	1	no	GHGI	normal	50	yes	UBA/INFRAS
A2gviii	PM10	normal	2	no	GHGI	normal	65	yes	EMIS
LA3ai(i)	PM10	normal	1	no	GHGI	normal	30	yes	UBA/INFRAS
A3aii(i)	PM10 PM10	normal	1	no	GHGI	normal	30	yes	UBA/INFRAS UBA/INFRAS
A3bi(fu)	PM10 PM10	normal normal	1	no no	GHGI GHGI	normal normal	57 48	yes	
A3biii(fu)	PM10	normal	1	no	GHGI	normal	40	yes	UBA/INFRAS UBA/INFRAS
A3bir(fu)	PM10 PM10	normal	1	no	GHGI	normal	54	yes yes	UBA/INFRAS
A3biv(fu)	PM10 PM10	normal	1	no	GHGI	normal	50	yes yes	UBA/INFRAS
A3DVI(IU)	PM10 PM10	normal	1	no	GHGI	normal	50	yes	UBA/INFRAS
A3dii	PM10	normal	1	no	GHGI	normal	50	yes	UBA/INFRAS
A3ei	PM10	normal	2	no	GHGI	normal	27	yes	UBA/INFRAS
A4ai	PM10	normal	2	no	GHGI	normal	78	yes	EMIS
LA4bi	PM10	normal	4	no	GHGI	normal	76	yes	EMIS
A4ci	PM10	normal	21	no	GHGI	normal	39	yes	EMIS
A4cii	PM10	normal	1	no	GHGI	normal	80	yes	EMIS
A5b	PM10	normal	1	no	GHGI	normal	50	yes	UBA/INFRAS
B1a	PM10	normal	30	no	EMEP/EEA 2019	normal	40	yes	EMIS
.B2c	PM10	normal	22	no	EMIS	gamma	237	yes	EMEP/EEA 2019
A1	PM10	normal	2	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2A2	PM10	normal	2	no	GHGI	gamma	500	yes	EMEP/EEA 2019
A5a	PM10	normal	5	no	EMIS	gamma	500	yes	EMEP/EEA 2019
2B5	PM10	normal	2	no	GHGI	gamma	100	yes	EMEP/EEA 2019
2B10a	PM10	normal	2	no	GHGI	normal	40	yes	EMEP/EEA 2019
2C1	PM10	normal	2	no	GHGI	gamma	125	yes	EMEP/EEA 2019
2C3	PM10	normal	5	no	GHGI	gamma	200	yes	EMEP/EEA 2019
2C7a	PM10	normal	5	no	EMIS	gamma	200	yes	EMEP/EEA 2019
2C7c	PM10	normal	5	no	EMIS	gamma	500	yes	EMEP/EEA 2019
2D3c	PM10	normal	20	no	EMIS	gamma	200	yes	EMEP/EEA 2019
2D3i	PM10	normal	30	no	EMEP/EEA 2019	gamma	500	yes	EMEP/EEA 2019
2G	PM10	normal	25	no	EMIS	gamma	100	yes	EMEP/EEA 2019
2H1	PM10	normal	30	no	EMEP/EEA 2019	gamma	200	yes	EMEP/EEA 2019
2H2	PM10	normal	10	no	EMEP/EEA 2019	gamma	500	yes	EMEP/EEA 2019
2H3	PM10	normal	3	no	EMIS	gamma	200	yes	EMEP/EEA 2019
21	PM10	normal	10	no	EMEP/EEA 2019	gamma	500	yes	EMEP/EEA 2019
B1a	PM10	normal	6	no	GHGI	gamma	300	yes	EMIS
BB1b	PM10	normal	6	no	GHGI	gamma	300	yes	EMIS
3B2	PM10	normal	6	no	GHGI	gamma	300	yes	EMIS
BB3	PM10	normal	6	no	GHGI	gamma	300	yes	EMIS
BB4d	PM10	normal	6		GHGI	gamma	300	yes	EMIS
BB4e	PM10	normal	6	no	GHGI	gamma	300	yes	EMIS
BB4f	PM10	normal	6		GHGI	gamma	300	yes	EMIS
B4gi	PM10	normal	6	no	GHGI	gamma	300	yes	EMIS
B4gii	PM10	normal	6	no	GHGI	gamma	300	yes	
B4giii	PM10	normal	6	no	GHGI	gamma	300	yes	
B4giv	PM10	normal	6	no	GHGI	gamma	300	yes	
B4h	PM10 PM10	normal	6 5	no	GHGI	gamma	300	yes	EMED/EEA 2010
De A		normal	10	no	GHGI (LULUCF)	gamma	200 30	yes	EMEP/EEA 2019
B2	PM10 PM10	normal normal	20	no no	GHGI EMIS	normal normal	30 100	yes yes	EMIS EMIS
682 6C1a	PM10 PM10	normal	50		EMIS	normal	50		EMIS
C1a C1bi	PM10 PM10		30	no	EMIS			yes	EMIS
C1bi C1biii	PM10 PM10	normal	30	no	EMIS	normal	30 30	yes	EMIS
	PM10 PM10	normal	30 20	no	EMIS	normal	30	yes	EMIS
C1biv C1bv	PM10 PM10	normal normal	20	no no	EMIS	normal normal	35	yes yes	EMIS
C10V	PM10 PM10	normal	48	no	EMIS	gamma	156		EMIS
E	PM10 PM10	normal	48		EMIS	normal	30	yes yes	EMIS
						• 00000101d1	. 30	ve5	

A5.2 Uncertainty estimations: results from approach 1

Table A - 28 Uncertainty analysis of NO_x emissions, approach 1, for 2023 and for the trend 1990-2023. The uncertainties are given considering a 95 % confidence interval and expressed as the distance from edge to mean, in percentage of the mean ((fu) means fuel used approach). AD: activity data; EF: emission factor; EM: emission; corr.: correlated.

A	В	С	D	(G	ŀ	4	I	J	k	(L	-	N	Л
						Cate	gory		Sensitivi-						
		Emissions	Emissions		ssion	contrib		Sensitivi-	ty if not	Contribu		Contribu		Contribu	
NFR	Pollutant	1990	2023		bined nty 2023		variance	ty if corr. (type A)	corr. (type	inventor uncertaint	-	inventor uncertaint	-	inventor uncertaint	
				uncertai	1109 2023	20	23	(type A)	B)	uncertaint	y nom Ab	uncertaint	ly nom Er	uncertaine	y HOM EN
				(-)%	(+)%	(-)%	(+)%			(-)%	(+)%	(-)%	(+)%	(-)%	(+)%
1A1a	NOx (as NO2)	6'279.37	2'266.58	21	21	1.084	1.084	0.001	0.016	0.228	0.228	0.024	0.024	0.052	0.052
1A1b	NOx (as NO2)	494.17	338.32	20	20	0.021	0.021	0.001	0.002	0.004	0.004	0.025	0.025	0.001	0.001
1A1c 1A2a	NOx (as NO2)	0.01 279.07	0.04 96.50	21 27	21	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2a 1A2b	NOx (as NO2) NOx (as NO2)	127.53	28.81	27	27 20	0.003	0.003	0.000	0.001	0.002	0.002	0.001	0.001	0.000	0.000
1A2D 1A2c	NOx (as NO2) NOx (as NO2)	127.55	190.46	10	10	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.000	0.000
1A2d	NOx (as NO2)	1'261.91	31.23	10	10	0.002	0.002	0.001	0.000	0.001	0.001	0.011	0.028	0.001	0.001
1A2e	NOx (as NO2)	743.69	192.51	10	10	0.002	0.002	0.000	0.001	0.001	0.001	0.004	0.004	0.000	0.000
1A2f	NOx (as NO2)	10'534.54	2'825.44	17	17	1.071	1.071	0.005	0.020	0.057	0.057	0.081	0.081	0.010	0.010
1A2gvii	NOx (as NO2)	6'333.94	1'536.52	13	13	0.184	0.184	0.004	0.011	0.020	0.020	0.052	0.052	0.003	0.003
1A2gviii	NOx (as NO2)	2'181.62	1'637.67	17	17	0.360	0.360	0.006	0.012	0.034	0.034	0.110	0.110	0.013	0.013
1A3ai(i)	NOx (as NO2)	1'214.30	1'966.25	20	20	0.711	0.711	0.011	0.014	0.025	0.025	0.222	0.222	0.050	0.050
1A3aii(i)	NOx (as NO2)	153.76	54.52	20	20	0.001	0.001	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000
1A3bi(fu)	NOx (as NO2)	43'748.48	15'009.57	38	38	150.796	150.796	0.003	0.107	0.194	0.194	0.129	0.129	0.054	0.054
1A3bii(fu)	NOx (as NO2)	6'199.14	3'493.94	32	32	5.803	5.803	0.010	0.025	0.045	0.045	0.328	0.328	0.110	0.110
		29'630.57	3'029.17	18	18	1.368	1.368	0.048	0.022	0.039	0.039	0.870	0.870	0.758	0.758
1A3biv(fu) 1A3c	NOx (as NO2) NOx (as NO2)	308.37 595.50	172.80 330.50	36 13	36 13	0.018	0.018	0.001	0.001	0.002	0.002	0.018	0.018	0.000	0.000
1A3c 1A3dii	NOx (as NO2) NOx (as NO2)	1'054.73	330.50 898.19	13	13	0.009	0.009	0.001	0.002	0.004	0.004	0.012	0.012	0.000	0.000
1A3dii 1A3ei	NOx (as NO2) NOx (as NO2)	1054.75	6.22	50	50	0.003	0.003	0.004	0.008	0.012	0.012	0.001	0.000	0.003	0.003
1A4ai	NOx (as NO2)	5'139.32	2'831.98	16	16	0.949	0.949	0.008	0.020	0.000	0.045	0.128	0.000	0.008	0.000
1A4aii	NOx (as NO2)	16.28	39.69	13	13	0.000	0.000	0.000	0.000	0.045	0.001	0.003	0.003	0.000	0.000
1A4bi	NOx (as NO2)	11'636.07	3'464.39	14	14	1.004	1.004	0.003	0.025	0.129	0.129	0.037	0.037	0.018	0.018
1A4bii	NOx (as NO2)	18.76	19.14	30	30	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.000	0.000
1A4ci	NOx (as NO2)	388.54	379.41	37	37	0.089	0.089	0.002	0.003	0.081	0.081	0.053	0.053	0.009	0.009
1A4cii	NOx (as NO2)	4'357.53	1'607.61	13	13	0.202	0.202	0.001	0.011	0.021	0.021	0.015	0.015	0.001	0.001
1A5b	NOx (as NO2)	882.99	397.10	13	13	0.012	0.012	0.001	0.003	0.005	0.005	0.010	0.010	0.000	0.000
1B2c	NOx (as NO2)	211.21	0.57	100	276	0.000	0.000	0.000	0.000	0.000	0.000	0.048	0.136	0.002	0.019
2A1	NOx (as NO2)	15.87	9.42	98	275	0.000	0.003	0.000	0.000	0.000	0.000	0.003	0.008	0.000	0.000
2A2	NOx (as NO2)	0.27	0.24	100	740	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
2A5a	NOx (as NO2)	1.79	0.52 NO	100	741	0.000 NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2B2 2B5	NOx (as NO2) NOx (as NO2)	82.78 22.20	15.64	NO 40	NO 40	0.000	NO 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2B3 2B10a	NOx (as NO2) NOx (as NO2)	8.93	0.63	40 60	60	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000
2C1	NOx (as NO2)	245.46	131.32	50	50	0.020	0.020	0.000	0.001	0.003	0.003	0.001	0.001	0.000	0.000
2C3	NOx (as NO2)	17.41	NO	NO	NO	NO	NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2C7c	NOx (as NO2)	NA	1.42	74	122	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
2G	NOx (as NO2)	29.36	17.23	78	125	0.001	0.002	0.000	0.000	0.004	0.004	0.004	0.006	0.000	0.000
2H3	NOx (as NO2)	91.00	22.58	98	275	0.002	0.018	0.000	0.000	0.001	0.001	0.005	0.015	0.000	0.000
3B1a	NOx (as NO2)	672.26	373.95	50	50	0.163	0.163	0.001	0.003	0.024	0.024	0.054	0.054	0.003	0.003
3B1b	NOx (as NO2)	344.28	281.92	50	50	0.092	0.092	0.001	0.002	0.018	0.018	0.060	0.060	0.004	0.004
3B2	NOx (as NO2)	67.60	64.85	50	50	0.005	0.005	0.000	0.000	0.004	0.004	0.015	0.015	0.000	0.000
3B3	NOx (as NO2)	185.29	84.18	50	50	0.008	0.008	0.000	0.001	0.005	0.005	0.008	0.008	0.000	0.000
3B4d	NOx (as NO2)	21.62	22.67	50	50	0.001	0.001	0.000	0.000	0.001	0.001	0.006	0.006	0.000	0.000
3B4e	NOx (as NO2)	17.58	26.53 7.07	50 50	50 50	0.001	0.001	0.000	0.000	0.002	0.002	0.007	0.007	0.000	0.000
3B4f 3B4gi	NOx (as NO2) NOx (as NO2)	1.35 7.19	9.38	50	50	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000
3B4gii 3B4gii	NOx (as NO2) NOx (as NO2)	4.46	12.47	50	50	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.000	0.000
3B4giii 3B4giii	NOx (as NO2) NOx (as NO2)	0.44	0.54	50		0.000	0.000	0.000	0.000	0.001	0.001	0.004	0.004	0.000	0.000
3B4giv	NOx (as NO2)	0.84	1.23	50		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3B4h	NOx (as NO2)	2.00	5.40	50		0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000
3Da1	NOx (as NO2)	1'205.08	609.12	100	100	1.702	1.702	0.001	0.004	0.031	0.031	0.148	0.148	0.023	0.023
3Da2a	NOx (as NO2)	2'074.98	1'449.29	50	50	2.443	2.443	0.005	0.010	0.094	0.094	0.270	0.270	0.082	0.082
3Da2b	NOx (as NO2)	87.01	NO	NO	NO	NO	NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3Da2c	NOx (as NO2)	14.76	122.27	102	102	0.071	0.071	0.001	0.001	0.025	0.025	0.083	0.083	0.008	0.008
3Da3	NOx (as NO2)	243.41	417.48	100	100	0.801	0.801	0.002	0.003	0.027	0.027	0.239	0.239	0.058	0.058
5A	NOx (as NO2)	1.83	1.24	51	51	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5B2	NOx (as NO2)	NA	7.23	102	102	0.000	0.000	0.000	0.000	0.001	0.001	0.005	0.005	0.000	0.000
5C1a	NOx (as NO2)	80.75	38.30	64 NO		0.003	0.003	0.000	0.000	0.019	0.019	0.003	0.003	0.000	0.000
5C1bi 5C1biii	NOx (as NO2) NOx (as NO2)	9.75 22.50	NO NO	NO NO	NO NO	NO NO	NO NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1biii	NOx (as NO2) NOx (as NO2)	114.00	42.53	54	54	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1biv 5C1bv	NOx (as NO2) NOx (as NO2)	114.00	42.55	30	30	0.002	0.002	0.000	0.000	0.009	0.009	0.002	0.002	0.000	0.000
5C2	NOx (as NO2)	23.65	15.87	104		0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.000	0.000
5D1	NOx (as NO2)	25.35	5.03	104		0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5D2	NOx (as NO2)	0.23	1.13	14		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6A	NOx (as NO2)	92.05	85.24	58		0.011	0.011	0.000	0.001	0.026	0.026	0.019	0.019	0.001	0.001
Total						169.1	169.1							1.3	1.3
				Emission	is 2023										
Total		140'707.8	46'742.4	uncertai	nty (%):	13.0	13.0			Trend unce	rtainty (%)			1.1	1.1
											11				

Table A - 29 Uncertainty analysis of NMVOC emissions, approach 1, for 2023 and for the trend 1990-2023. The uncertainties are given considering a 95 % confidence interval and expressed as the distance from edge to mean, in percentage of the mean ((fu) means fuel used approach). AD: activity data; EF: emission factor; EM: emission; corr.: correlated.

	correla	-			-										
A	В	С	D	(3	ŀ	1	1	J	ł	<	l	-	N	Λ
				Emi	sion	Cate	gory	Concitivi	Sensitivi-	Contrib	ution to	Contrib	ution to	Contrib	ution to
		Emissions	Emissions		sion	contrib	ution to	Sensitivi-	ty if not						
NFR	Pollutant	1990	2023		bined	inventory	variance	ty if corr.	corr. (type	invento		invento		invento	
				uncertai	nty 2023	20	23	(type A)	B)	uncertaint	y from AD	uncertaint	ty from EF	uncertaint	y from EIVI
				(-)%	(+)%	(-)%	(+)%			(-)%	(+)%	(-)%	(+)%	(-)%	(+)%
1A1a	NMVOC	320.80	187.05	34	34	0.008	0.008	0.000	0.001	0.009	0.009	0.012	0.012	0.000	0.000
1A18	NMVOC	6.95	2.99	20	20	0.000	0.008	0.000	0.001	0.000	0.000	0.000	0.012	0.000	0.000
1A10 1A1c	NMVOC	2.13	6.18	20	20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A10 1A2a	NMVOC	8.95	6.18	18	18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2a 1A2b			5.52		10	0.000	0.000		0.000	0.000		0.000	0.000	0.000	0.000
	NMVOC	53.62		19				0.000			0.000				
1A2c	NMVOC	34.22	18.24	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2d	NMVOC	29.90	3.35	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2e	NMVOC	22.05	20.16	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
1A2f	NMVOC	596.56	421.87	30	30	0.032	0.032	0.001	0.001	0.004	0.004	0.028	0.028	0.001	0.001
1A2gvii	NMVOC	1'331.50	256.93	34	34	0.015	0.015	0.000	0.001	0.002	0.002	0.007	0.007	0.000	0.000
1A2gviii	NMVOC	294.30	116.53	30	30	0.002	0.002	0.000	0.000	0.001	0.001	0.005	0.005	0.000	0.000
1A3ai(i)	NMVOC	247.46	127.04	50	50	0.008	0.008	0.000	0.000	0.001	0.001	0.011	0.011	0.000	0.000
1A3aii(i)	NMVOC	58.81	30.49	50	50	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.000	0.000
1A3bi(fu)	NMVOC	55'582.12	3'635.14	52	52	7.094	7.094	0.033	0.012	0.022	0.022	1.732	1.732	2.999	2.999
1A3bii(fu)	NMVOC	4'868.98	131.94	46	46	0.007	0.007	0.004	0.000	0.001	0.001	0.162	0.162	0.026	0.026
. ,		3'437.85	87.52	22	22	0.001	0.001	0.003	0.000	0.001	0.001	0.055	0.055	0.003	0.003
1A3biv(fu)	NMVOC	5'736.73	826.68	100	599	1.345	48.222	0.002	0.003	0.005	0.005	0.190	1.136	0.036	1.291
		17'165.87	1'772.97	40	40	0.991	0.991	0.008	0.006	0.011	0.011	0.322	0.322	0.104	0.104
1A3c	NMVOC	83.76	38.53	34	34	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000
1A3dii	NMVOC	1'640.55	388.66	34	34	0.034	0.034	0.000	0.001	0.002	0.002	0.001	0.001	0.000	0.000
1A3ei	NMVOC	0.90	0.31	50	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A4ai	NMVOC	1'329.00	873.24	56	56	0.471	0.471	0.002	0.003	0.007	0.007	0.105	0.105	0.011	0.011
1A4aii	NMVOC	1'091.65	306.69	75	75	0.104	0.104	0.000	0.001	0.002	0.002	0.011	0.011	0.000	0.000
1A4bi	NMVOC	10'056.33	2'346.74	68	68	5.026	5.026	0.000	0.008	0.042	0.042	0.019	0.019	0.002	0.002
1A4bii	NMVOC	398.23	119.60	75	75	0.016	0.016	0.000	0.000	0.001	0.001	0.006	0.006	0.000	0.000
1A4ci	NMVOC	235.07	255.12	78	78	0.078	0.078	0.001	0.001	0.026	0.026	0.050	0.050	0.003	0.003
1A4cii	NMVOC	4'369.08	792.31	75	75	0.695	0.695	0.001	0.003	0.005	0.005	0.067	0.067	0.005	0.005
1A5b	NMVOC	160.25	63.97	34	34	0.001	0.001	0.000	0.000	0.000	0.000	0.003	0.003	0.000	0.000
1B2ai	NMVOC	0.02	0.01	58	58	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1B2aiv	NMVOC	1'344.61	215.10	56	56	0.028	0.028	0.000	0.001	0.031	0.031	0.018	0.018	0.001	0.001
1B2av	NMVOC	19'127.24	2'021.04	36	44	1.038	1.542	0.009	0.007	0.012	0.012	0.317	0.386	0.100	0.149
1B2b	NMVOC	323.52	175.86	55	55	0.018	0.018	0.000	0.001	0.019	0.019	0.017	0.017	0.001	0.001
1B2c	NMVOC	13.72	0.03	77	124	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
2A1	NMVOC	41.25	24.49	98	275	0.001	0.009	0.000	0.000	0.000	0.000	0.005	0.014	0.000	0.000
2A2	NMVOC	0.69	0.63	100	740	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
2A5a	NMVOC	4.59	1.34	100	741	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
2B10a	NMVOC	608.61	15.18	40	40	0.000	0.000	0.000	0.000	0.000	0.000	0.018	0.018	0.000	0.000
2C1	NMVOC	1'053.60	187.83	74	122	0.038	0.103	0.000	0.001	0.002	0.002	0.017	0.028	0.000	0.001
2C3	NMVOC	56.57	NO	NO	NO	NO	NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2C7a	NMVOC	2.98	0.26	98	275	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2C7c	NMVOC	NA	0.46	74	122	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2D3a	NMVOC	8'866.55	6'506.75	50	50	20.834	20.834	0.015	0.022	0.031	0.031	1.560	1.560	2.434	2.434
2D3b	NMVOC	4'895.00	2'700.00	74	122	7.826	21.384	0.005	0.009	0.065	0.065	0.379	0.627	0.148	0.398
2D3c	NMVOC	2'430.00	365.45	76	124	0.153	0.402	0.001	0.001	0.035	0.035	0.055	0.092	0.004	0.010
2D3d	NMVOC	40'731.00	8'285.92	45	45	27.018	27.018	0.005	0.028	0.795	0.795	0.211	0.211	0.676	0.676
2D3e	NMVOC	11'731.23	1'566.25	64	64	1.979	1.979	0.004	0.005	0.300	0.300	0.215	0.215	0.136	0.136
2D3f	NMVOC	910.00	60.60	45	45	0.001	0.001	0.001	0.000	0.006	0.006	0.022	0.022	0.001	0.001
2D3g	NMVOC	27'503.97	3'184.68	80	126	12.634	31.496	0.012	0.011	0.458	0.458	0.864	1.431	0.957	2.257
2D3b	NMVOC	20'353.80	3'617.41	45	45	5.150	5.150	0.0012	0.011	0.347	0.347	0.176	0.176	0.151	0.151
2D3i	NMVOC	5'470.21	1'932.86	100	245	7.416	44.128	0.002	0.007	0.278	0.278	0.198	0.503	0.131	0.331
2031 2G	NMVOC	22'431.61	6'315.50	100	277	79.935	599.996	0.002	0.001	0.270	0.757	0.196	0.834	0.661	1.268
2H1	NMVOC	554.99	181.31	101	277	0.068	0.496	0.000	0.021	0.026	0.026	0.250	0.034	0.001	0.003
2H1 2H2	NMVOC	1'413.07	1'416.69	74	122	2.184	5.917	0.000	0.001	0.028	0.028	0.269	0.044	0.001	0.202
2H2 2H3	NMVOC	1413.07	38.70	98	275	0.003	0.022	0.004	0.005	0.008	0.008	0.269	0.445	0.007	0.202
3B1a	NMVOC	6'412.83	6'584.61	98	60	31.065	31.065	0.000	0.000	0.001	0.203	1.024	1.024	1.090	1.090
3B1a 3B1b	NMVOC	5'121.56	7'441.23	70	70	53.838	53.838	0.017	0.022	0.203	0.203	1.024	1.024	2.219	2.219
3B10 3B2	NMVOC	66.79	69.04	98	275	0.009	0.071	0.021	0.023	0.230	0.230	0.018	0.049	0.000	0.002
3B2 3B3	NMVOC	1'126.15	770.22	98	275	1.121	8.856	0.000	0.000	0.002	0.002	0.165	0.049	0.000	0.002
3B3 3B4d	NMVOC	37.02	49.60	98	275	0.005	0.037	0.002	0.003	0.024	0.024	0.103	0.483	0.028	0.217
3B40 3B4e	NMVOC	120.39	205.58	98	275	0.005	0.037	0.000	0.000	0.002	0.002	0.013	0.038	0.000	0.001
3B4e 3B4f	NMVOC	8.64	49.21	98	275	0.080	0.031	0.001	0.001	0.008	0.008	0.059	0.165	0.003	0.027
	NMVOC	508.70	49.21 633.80	98 98	275	0.005	5.997	0.000	0.000	0.002	0.002	0.016	0.044	0.000	0.002
3B4gi 2B4gii					275	2.474		0.002						0.029	
3B4gii	NMVOC	366.34	1'144.35	98			19.549		0.004	0.035	0.035	0.350	0.986		0.973
3B4giii	NMVOC	46.28	59.07	98	275	0.007	0.052	0.000	0.000	0.002	0.002	0.016	0.045	0.000	0.002
3B4giv	NMVOC	129.27	215.88	98	275	0.088	0.696	0.001	0.001	0.007	0.007	0.061	0.172	0.004	0.030
3B4h	NMVOC	3.60	4.37	98	275	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.000	0.000
3De	NMVOC	481.06	453.28	98	275	0.388	3.066	0.001	0.002	0.011	0.011	0.112	0.315	0.013	0.099
5A	NMVOC	405.68	123.02	51	51	0.008	0.008	0.000	0.000	0.006	0.006	0.004	0.004	0.000	0.000
5B1	NMVOC	105.05	175.20	102	102	0.063	0.063	0.001	0.001	0.017	0.017	0.051	0.051	0.003	0.003
5B2	NMVOC	49.57	1'146.82	36	36	0.336	0.336	0.004	0.004	0.110	0.110	0.115	0.115	0.025	0.025
5C1a	NMVOC	516.80	245.09	71	71	0.059	0.059	0.000	0.001	0.059	0.059	0.020	0.020	0.004	0.004
5C1bi	NMVOC	3.75	NO	NO	NO	NO	NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1biii	NMVOC	4.50	NO	NO	NO	NO	NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1biv	NMVOC	0.46	20.09	28	28	0.000	0.000	0.000	0.000	0.002	0.002	0.001	0.001	0.000	0.000
5C1bv	NMVOC	1.20	0.37	30	30	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C2	NMVOC	25.19	16.91	104	211	0.001	0.003	0.000	0.000	0.004	0.004	0.003	0.008	0.000	0.000
5D1	NMVOC	0.51	0.10	27	27	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5D2	NMVOC	0.00	0.02	22	22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5E	NMVOC	28.00	60.00	31	31	0.001	0.001	0.000	0.000	0.006	0.006	0.004	0.004	0.000	0.000
6A	NMVOC	202.98	166.12	58	58	0.018	0.018	0.000	0.001	0.024	0.024	0.020	0.020	0.001	0.001
Total						272.6	947.7							12.2	17.4
				Emission	s 2023										
Total		294'960.8	71'290.2	uncertai		16.5	30.8			Trend upor	ertainty (%):			3.5	4.2
		234 500.0	71290.2			10.5	30.0			in chia unice				5.5	4.2

Table A - 30 Uncertainty analysis of SO_x emissions, approach 1, for 2023 and for the trend 1990-2023. The uncertainties are given considering a 95 % confidence interval and expressed as the distance from edge to mean, in percentage of the mean ((fu) means fuel used approach). AD: activity data; EF: emission factor; EM: emission; corr.: correlated.

A	В	С	D	Ģ	ì	ŀ	1	I	J	k	(l	-	Ν	N
				Emis	cion	Cate	gory	Sensitivi-	Sensitivi-	Contrib	ution to	Contrib	ution to	Contrib	ution to
		Emissions	Emissions	comb		contrib	ution to	ty if corr.	ty if not	inventor		invento			ry trend
NFR	Pollutant	1990	2023	uncertair		inventory		(type A)	corr. (type	uncertaint	-		ty from EF		ty from EM
				ancertan		20	23	(type A)	B)	uncertaint	,	uncertain	.,	uncertaint	,
				(-)%	(+)%	(-)%	(+)%			(-)%	(+)%	(-)%	(+)%	(-)%	(+)%
1A1a	SOx (as SO2)	3'679.11	255.94	24	24	4.780	4.780	0.000	0.007	0.092	0.092	0.005	0.005	0.009	0.009
1A1b	SOx (as SO2)	660.41	58.83	20	20	0.174	0.174	0.000	0.002	0.003	0.003	0.006	0.006	0.000	0.000
1A2a	SOx (as SO2)	362.55	9.25	15	15	0.002	0.002	0.000	0.000	0.001	0.001	0.006	0.006	0.000	0.000
1A2b	SOx (as SO2)	67.34	0.45	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
1A2c	SOx (as SO2)	1'187.10	62.95	11	11	0.062	0.062	0.001	0.002	0.005	0.005	0.006	0.006	0.000	0.000
1A2d	SOx (as SO2)	3'238.01	0.56	14	14	0.000	0.000	0.006	0.000	0.000	0.000	0.083	0.083	0.007	0.007
1A2e	SOx (as SO2)	1'077.50	3.75	12	12	0.000	0.000	0.002	0.000	0.000	0.000	0.023	0.023	0.001	0.001
1A2f	SOx (as SO2)	3'530.25	1'299.67	19	19	77.035	77.035	0.027	0.033	0.094	0.094	0.506	0.506	0.265	0.265
1A2gvii	SOx (as SO2)	370.66 3'533.86	2.67 260.22	10 19	10 19	0.000	0.000 3.090	0.001	0.000	0.000	0.000	0.006	0.006	0.000	0.000
1A2gviii 1A3ai(i)	SOx (as SO2) SOx (as SO2)	3 533.86	137.22	19	19	0.239	0.239	0.000	0.007	0.019	0.019	0.002	0.002	0.000	0.000
1A3aii(i)	SOx (as SO2) SOx (as SO2)	24.94	4.65	10	10	0.239	0.239	0.003	0.004	0.000	0.008	0.033	0.033	0.001	0.001
1A3bi(fu)	SOx (as SO2) SOx (as SO2)	1'618.97	34.55	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
. ,	SOX (as SO2) SOX (as SO2)	292.93	4.86	10	10	0.015	0.013	0.002	0.001	0.002	0.002	0.021	0.021	0.000	0.000
	SOx (as SO2)	1'842.88	4.30	10	10	0.001	0.001	0.003	0.000	0.000	0.000	0.032	0.032	0.001	0.001
. ,	SOx (as SO2)	25.47	0.52	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A3c	SOx (as SO2)	26.92	0.12	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A3dii	SOx (as SO2)	64.88	0.49	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
1A3ei	SOx (as SO2)	0.28	0.05	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A4ai	SOx (as SO2)	3'869.92	83.11	10	10	0.088	0.088	0.005	0.002	0.005	0.005	0.050	0.050	0.003	0.003
1A4aii	SOx (as SO2)	1.61	0.05	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A4bi	SOx (as SO2)	10'354.85	207.08	11	11	0.610	0.610	0.014	0.005	0.028	0.028	0.138	0.138	0.020	0.020
1A4bii	SOx (as SO2)	1.20	0.03	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A4ci	SOx (as SO2)	335.80	51.09	28	28	0.252	0.252	0.001	0.001	0.039	0.039	0.012	0.012	0.002	0.002
1A4cii	SOx (as SO2)	304.60	1.60	10	10	0.000	0.000	0.001	0.000	0.000	0.000	0.005	0.005	0.000	0.000
1A5b	SOx (as SO2)	78.17	33.02	10	10	0.014	0.014	0.001	0.001	0.002	0.002	0.007	0.007	0.000	0.000
1B2aiv	SOx (as SO2)	419.02	14.34	56	56	0.080	0.080	0.000	0.000	0.016	0.016	0.019	0.019	0.001	0.001
1B2c	SOx (as SO2)	300.98	0.83	38	38	0.000	0.000	0.001	0.000	0.001	0.001	0.017	0.017	0.000	0.000
2A1	SOx (as SO2)	0.69	0.41	98	275	0.000	0.002	0.000	0.000	0.000	0.000	0.001	0.003	0.000	0.000
2A2	SOx (as SO2)	0.01	0.01	100	740	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2A5a	SOx (as SO2)	0.08	0.02	100	741	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2B5	SOx (as SO2)	625.20	197.85	20	20	1.976	1.976	0.004	0.005	0.014	0.014	0.078	0.078	0.006	0.006
2B10a 2C1	SOx (as SO2)	168.00 144.04	40.01	40 74	40	0.321	0.321	0.001	0.001	0.003	0.003	0.028	0.028	0.001	0.001
2C1	SOx (as SO2) SOx (as SO2)	696.30	13.11 NO	V4 NO	122 NO	0.117 NO	0.320 NO	0.000	0.000	0.001	0.001	0.005	0.008	0.000	0.000
2C3 2C7c	SOX (as SO2) SOX (as SO2)	696.30 NA	0.02	74	122	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2G	SOx (as SO2) SOx (as SO2)	3.44	3.27	74	122	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20 2H3	SOx (as SO2) SOx (as SO2)	1.30	0.32	98	275	0.008	0.021	0.000	0.000	0.003	0.003	0.001	0.003	0.000	0.000
5B2	SOx (as SO2)	1.30 NA	1.09	102	102	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.002	0.000	0.000
502 5C1a	SOx (as SO2) SOx (as SO2)	24.23	11.49	64	64	0.062	0.062	0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.000
5C1bi	SOx (as SO2) SOx (as SO2)	45.00	NO	NO	NO	0.000 NO	0.000 NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
5C1biii	SOx (as SO2)	19.50	NO	NO	NO	NO	NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1biv	SOx (as SO2)	74.10	17.22	36	36	0.048	0.048	0.000	0.000	0.012	0.012	0.009	0.009	0.000	0.000
5C2	SOx (as SO2)	0.51	0.35	99	177	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.000	0.000
5D1	SOx (as SO2)	0.13	0.03	37	37	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5D2	SOx (as SO2)	0.00	0.01	22	22	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6A	SOx (as SO2)	9.17	7.20	58	58	0.022	0.022	0.000	0.000	0.008	0.008	0.008	0.008	0.000	0.000
Total						89.0	89.2							0.3	0.3
				Emission											
Total		39'181.6	2'829.0	uncertair	nty (%):	9.4	9.4			Trend unce	rtainty (%):			0.6	0.6

Table A - 31 Uncertainty analysis of NH₃ emissions, approach 1, for 2023 and for the trend 1990-2023. The uncertainties are given considering a 95 % confidence interval and expressed as the distance from edge to mean, in percentage of the mean ((fu) means fuel used approach). AD: activity data; EF: emission factor; EM: emission; corr.: correlated.

А	В	С	D	(i i	ł	Н	I	J	ĸ			L	Ν	Λ
	1					Cate	gory		Sensitivi-						
		Emissions	Emissions	Emis	sion		ution to	Sensitivi-	tv if not	Contribu	ution to	Contrib	ution to	Contrib	ution to
NFR	Pollutant	1990	2023	comb			/ variance	ty if corr.	corr. (type	inventor	-	invento	-	invento	-
				uncertai	nty 2023		23	(type A)	B)	uncertaint	y from AD	uncertain	ty from EF	uncertaint	y from EM
				(-)%	(+)%	(-)%	(+)%			(-)%	(+)%	(-)%	(+)%	(-)%	(+)%
1A1a	NH3	4.85	42.37	(-)/0	22	0.000	0.000	0.001	0.001	0.009	0.009	0.011	0.011	0.000	0.000
1A1b	NH3	0.01	0.01	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2a	NH3	0.00	0.00	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2b	NH3	0.11	0.00	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2c	NH3	0.02	0.01	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2d	NH3	0.02	0.00	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2e	NH3	0.02	0.01	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A2f	NH3	147.02	168.44	9	9	0.001	0.001	0.001	0.002	0.007	0.007	0.007	0.007	0.000	0.000
1A2gvii	NH3	1.00	1.55	50	50	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
1A2gviii	NH3 NH3	17.00 1'324.97	39.15 826.10	9 50	9 50	0.000	0.000	0.000	0.001	0.002	0.002	0.003	0.003	0.000	0.000
1A3bi(fu) 1A3bii(fu)	NH3	1 324.97 8.57	35.60	50	50	0.010	0.010	0.003	0.012	0.022	0.022	0.144	0.144	0.021	0.021
1A3biii(fu)		4.55	33.00	50	50	0.001	0.001	0.000	0.001	0.001	0.001	0.021	0.021	0.000	0.000
1A3biv(fu)		3.26	3.48	50	50	0.001	0.001	0.000	0.000	0.001	0.001	0.022	0.022	0.000	0.000
1A3c	NH3	0.07	0.07	50	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A3dii	NH3	0.20	0.21	50	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A4ai	NH3	19.80	37.71	10	10	0.000	0.000	0.000	0.001	0.001	0.001	0.003	0.003	0.000	0.000
1A4aii	NH3	0.01	0.02	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A4bi	NH3	153.12	55.96	11	11	0.000	0.000	0.001	0.001	0.004	0.004	0.009	0.009	0.000	0.000
1A4bii	NH3	0.01	0.01	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A4ci	NH3	2.88	8.44	23	23	0.000	0.000	0.000	0.000	0.004	0.004	0.001	0.001	0.000	0.000
1A4cii	NH3	0.76	0.82	50	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A5b 2B1	NH3 NH3	0.04	0.04	50 10	50 10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2B1 2B2	NH3	0.07	NO	NO	NO	0.000 NO	0.000 NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2B2 2B10a	NH3	7.73	NA	NA	NA	NA	NA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20100	NH3	11.90	1.51	98	275	0.000	0.000	0.000	0.000	0.000	0.000	0.011	0.031	0.000	0.001
2C7c	NH3	9.19	8.16	100	741	0.000	0.013	0.000	0.000	0.001	0.001	0.002	0.011	0.000	0.000
2G	NH3	203.15	67.89	47	47	0.004	0.004	0.001	0.001	0.035	0.035	0.052	0.052	0.004	0.004
2H2	NH3	132.33	49.36	100	741	0.009	0.478	0.001	0.001	0.010	0.010	0.077	0.571	0.006	0.326
2H3	NH3	1.04	0.26	98	275	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.000	0.000
2L	NH3	2.38	3.69	103	103	0.000	0.000	0.000	0.000	0.002	0.002	0.003	0.003	0.000	0.000
3B1a	NH3	9'337.10	10'144.27	30	30	32.458	32.458	0.043	0.148	1.349	1.349	1.240	1.240	3.358	3.358
3B1b	NH3	5'190.92	7'241.49	28	28	14.441	14.441	0.047	0.106	0.963	0.963	1.273	1.273	2.549 0.017	2.549
3B2 3B3	NH3 NH3	509.75 6'965.04	483.81 4'735.68	87 41	87 41	0.637 13.157	0.637	0.001	0.007	0.064	0.064	0.114	0.114	0.017	0.017 0.537
3B3 3B4d	NH3	158.13	4733.08	65	65	0.039	0.039	0.003	0.003	0.030	0.030	0.036	0.036	0.002	0.002
3B4e	NH3	256.31	393.78	52	52	0.055	0.152	0.001	0.002	0.021	0.052	0.149	0.149	0.002	0.025
3B4f	NH3	19.65	101.49	68	68	0.017	0.017	0.001	0.001	0.013	0.013	0.086	0.086	0.008	0.008
3B4gi	NH3	978.79	673.74	82	82	1.098	1.098	0.001	0.010	0.090	0.090	0.098	0.098	0.018	0.018
3B4gii	NH3	304.87	680.42	86	86	1.231	1.231	0.006	0.010	0.090	0.090	0.559	0.559	0.320	0.320
3B4giii	NH3	29.77	31.69	93	93	0.003	0.003	0.000	0.000	0.004	0.004	0.012	0.012	0.000	0.000
3B4giv	NH3	124.46	90.55	85	85	0.021	0.021	0.000	0.001	0.012	0.012	0.007	0.007	0.000	0.000
3B4h	NH3	14.55	42.62	50	50	0.002	0.002	0.000	0.001	0.006	0.006	0.023	0.023	0.001	0.001
3Da1	NH3	4'258.83 34'567.08	2'250.67 20'191.26	50 22	50 22	4.571 70.303	4.571 70.303	0.015	0.033 0.295	0.232	0.232	0.758	0.758	0.628	0.628
3Da2a 3Da2b	NH3 NH3	1'169.36	20191.26 NO	NO	NO	70.303 NO	70.303 NO	0.094	0.295	2.685	0.000	0.000	0.000	0.000	11.146 0.000
3Da2b 3Da2c	NH3	34.00	1'042.45	54	54	1.126	1.126	0.013		0.000	0.000	0.000	0.000	0.000	0.000
3Da2c 3Da3	NH3	760.92	1'413.21	62	62	2.773	2.773	0.013	0.013	0.430	0.188	0.742	0.742	0.594	0.730
5A	NH3	615.79	186.65	51	51	0.032	0.032	0.004	0.003	0.039	0.039	0.211	0.211	0.046	0.046
5B1	NH3	175.08	292.01	102	102	0.317	0.317	0.002	0.004	0.121	0.121	0.229	0.229	0.067	0.067
5B2	NH3	10.28	245.32	78	78	0.130	0.130	0.003	0.004	0.101	0.101	0.260	0.260	0.078	0.078
5C1biv	NH3	5.70	2.02	54	54	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.000	0.000
5C2	NH3	13.71	9.20		54	0.000			0.000	0.009	0.009	0.001	0.001	0.000	0.000
5D1	NH3	89.98	128.83	50	50	0.015	0.015	0.001	0.002	0.003	0.003	0.043	0.043	0.002	0.002
6A	NH3	845.56	969.88	104	104	3.665	3.665	0.005	0.014	0.601	0.601	0.463	0.463	0.575	0.575
Total						146.8	147.3							20.7	21.1
				Emission											
Total		68'492.4	52'895.0	uncertair	ity (%):	12.1	12.1			Trend unce	rtainty (%):			4.6	4.6

Table A - 32 Uncertainty analysis of PM2.5 emissions, approach 1, for 2023 and for the trend 1990-2023. The uncertainties are given considering a 95 % confidence interval and expressed as the distance from edge to mean, in percentage of the mean ((fu) means fuel used approach). AD: activity data; EF: emission factor; EM: emission; corr.: correlated.

А	В	С	D	(i i	ŀ	1	1	J	K			L	N	1
		Ŭ				Cate			Sensitivi-		-				
		Emissions	Emissions	Emis		contrib		Sensitivi-	ty if not	Contribu			ution to	Contribu	
NFR	Pollutant	1990	2023	comb		inventory		ty if corr.	corr. (type	inventor			ry trend	invento	
				uncertai	nty 2023	20	23	(type A)	B)	uncertaint	y from AD	uncertain	ty from EF	uncertaint	y from EIVI
				(-)%	(+)%	(-)%	(+)%			(-)%	(+)%	(-)%	(+)%	(-)%	(+)%
1A1a	PM2.5	781.83	46.09	72	72	0.282	0.282	0.005	0.002	0.024	0.024	0.347	0.347	0.121	0.121
1A1b	PM2.5	47.66	1.50	20	20	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.007	0.000	0.000
1A1c	PM2.5	4.64	13.44	21	21	0.002	0.002	0.000	0.000	0.003	0.003	0.009	0.009	0.000	0.000
1A2a	PM2.5	14.81	2.34	28	28	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
1A2b	PM2.5	20.39	1.00	30	30	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.004	0.000	0.000
1A2c	PM2.5	40.77	5.17	10	10	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.000	0.000
1A2d 1A2e	PM2.5 PM2.5	149.62 25.68	0.18	33 10	33 10	0.000	0.000	0.001	0.000	0.000	0.000	0.041	0.041	0.002	0.002
1A2e 1A2f	PIVI2.5 PM2.5	437.58	40.13	65	65	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000
1A2gvii	PM2.5	728.86	384.17	50	50	9.531	9.531	0.002	0.014	0.026	0.026	0.400	0.400	0.160	0.160
1A2gviii	PM2.5	872.51	186.20	65	65	3.785	3.785	0.001	0.007	0.020	0.020	0.033	0.033	0.001	0.001
1A3ai(i)	PM2.5	92.39	14.12	30	30	0.005	0.005	0.000	0.001	0.001	0.001	0.008	0.008	0.000	0.000
1A3aii(i)	PM2.5	22.67	1.69	30	30	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.004	0.000	0.000
1A3bi(fu)	PM2.5	579.17	98.62	57	57	0.826	0.826	0.001	0.004	0.007	0.007	0.072	0.072	0.005	0.005
1A3bii(fu)	PM2.5	329.00	48.06	48	48	0.139	0.139	0.001	0.002	0.003	0.003	0.049	0.049	0.002	0.002
1A3biii(fu)	PM2.5	1'584.33	36.16	27	27	0.025	0.025	0.012	0.001	0.002	0.002	0.324	0.324	0.105	0.105
1A3biv(fu)		209.02	57.14	54 50	54 50	0.246	0.246	0.000	0.002	0.004	0.004	0.018	0.018	0.000	0.000
1A3bvi(fu) 1A3c	PM2.5 PM2.5	689.50 172.71	958.18 232.99	50	50	59.290 3.506	59.290 3.506	0.029	0.035	0.064	0.064	1.472 0.356	1.472 0.356	2.171 0.127	2.171 0.127
1A3c 1A3dii	PM2.5 PM2.5	59.09	232.99 21.94	50	50	3.506	0.031	0.007	0.009	0.016	0.016	0.356	0.356	0.127	0.127
1A3dii 1A3ei	PM2.5	0.11	0.04	27	27	0.031	0.031	0.000	0.001	0.001	0.001	0.015	0.015	0.000	0.000
1A3ei 1A4ai	PM2.5	1'354.47	429.98	78	78	29.048	29.048	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A4bi	PM2.5	14'535.91	1'851.74	76	76	512.485	512.485	0.054	0.010	0.358	0.358	4.112	4.112	17.033	17.033
1A4ci	PM2.5	696.98	204.88	44	44	2.136	2.136	0.002	0.008	0.226	0.226	0.065	0.065	0.055	0.055
1A4cii	PM2.5	435.10	127.76	80	80	2.698	2.698	0.001	0.005	0.009	0.009	0.083	0.083	0.007	0.007
1A5b	PM2.5	86.95	44.87	50	50	0.130	0.130	0.001	0.002	0.003	0.003	0.046	0.046	0.002	0.002
1B1a	PM2.5	0.16	0.04	50	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1B2c	PM2.5	0.44	0.00	102	337	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
2A1	PM2.5	240.48	142.77	98	275	5.032	39.899	0.003	0.005	0.015	0.015	0.315	0.889	0.100	0.790
2A2	PM2.5	7.21	6.60	100	740	0.011	0.617	0.000	0.000	0.001	0.001	0.018	0.135	0.000	0.018
2A5a 2B5	PM2.5 PM2.5	102.21 61.20	97.86 39.43	100 74	741 122	2.478 0.218	135.560 0.598	0.003	0.004	0.025	0.025	0.274 0.069	2.029 0.114	0.076	4.117 0.013
2B3 2B10a	PM2.5	7.86	55.45 NA	NA	NA	0.218 NA	0.558 NA	0.001	0.001	0.004	0.004	0.000	0.000	0.000	0.013
2C1	PM2.5	817.90	6.81	84	158	0.008	0.030	0.007	0.000	0.001	0.001	0.556	1.051	0.309	1.104
2C3	PM2.5	78.33	NO	NO	NO	NO	NO	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2C7a	PM2.5	5.66	0.50	98	275	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.008	0.000	0.000
2C7c	PM2.5	1.53	1.40	100	741	0.001	0.028	0.000	0.000	0.000	0.000	0.004	0.029	0.000	0.001
2D3c	PM2.5	4.00	3.81	100	276	0.004	0.029	0.000	0.000	0.004	0.004	0.010	0.029	0.000	0.001
2D3i	PM2.5	12.00	NA	NA	NA	NA	NA	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2G	PM2.5	512.78	327.02	78	125	16.718	42.810	0.008	0.012	0.425	0.425	0.568	0.941	0.504	1.066
2H1 2H2	PM2.5 PM2.5	235.77 187.99	150.91 166.06	102 100	277 741	6.149 7.190	45.105 390.390	0.004	0.006	0.236	0.236	0.349	0.982	0.177	1.020 11.241
2H2 2H3	PM2.5	187.99	3.87	98	275	0.004	0.029	0.003	0.000	0.080	0.080	0.433	0.003	0.212	0.000
2113	PM2.5	216.08	47.23	100	741	0.582	31.577	0.000	0.000	0.001	0.001	0.001	0.003	0.000	0.000
3B1a	PM2.5	20.61	23.05	100	440	0.138	2.654	0.001	0.001	0.008	0.008	0.067	0.297	0.005	0.088
3B1b	PM2.5	18.26	22.19	100	440	0.128	2.461	0.001	0.001	0.007	0.007	0.066	0.292	0.004	0.085
3B2	PM2.5	0.79	0.82	100	440	0.000	0.003	0.000	0.000	0.000	0.000	0.002	0.010	0.000	0.000
3B3	PM2.5	9.57	6.35	100	440	0.010	0.202	0.000	0.000	0.002	0.002	0.015	0.067	0.000	0.005
3B4d	PM2.5	0.14	0.18	100	440	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.000	0.000
3B4e	PM2.5	3.94	6.73	100	440	0.012	0.227	0.000	0.000	0.002	0.002	0.021	0.094	0.000	0.009
3B4f	PM2.5	0.59	3.35	100	440	0.003	0.056	0.000	0.000	0.001	0.001	0.012	0.052	0.000	0.003
3B4gi 3B4gii	PM2.5 PM2.5	9.25 6.78	11.52 21.19	100 100	440 440	0.034	0.664 2.244	0.000	0.000	0.004	0.004	0.035	0.152 0.318	0.001	0.023
3B4giii 3B4giii	PM2.5	1.89	21.19	100	440	0.116	0.029	0.001	0.001	0.007	0.007	0.072	0.318	0.005	0.101
3B4giv	PM2.5	1.89	3.11	100	440	0.002	0.029	0.000	0.000	0.001	0.001	0.007	0.032	0.000	0.001
3B4h	PM2.5	0.24	0.09	100	440	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.002
3De	PM2.5	47.48	44.87	98	275	0.498	3.942	0.001	0.002	0.012	0.012	0.122	0.345	0.015	0.119
5A	PM2.5	0.73	0.50	32	32	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5B2	PM2.5	NA	0.06	102	102	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1a	PM2.5	465.12	220.58	58	58	4.270	4.270	0.004	0.008	0.574	0.574	0.126	0.126	0.345	0.345
5C1bi	PM2.5	0.47	NO	NO	NO	NO	NO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1biii	PM2.5	16.50	NO 2.00	NO 20	NO	NO 0.000	NO 0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1biv	PM2.5	14.25	2.98 0.83	39 33	39 33	0.000	0.000	0.000	0.000	0.003	0.003	0.000	0.000	0.000	0.000
5C1bv 5C2	PM2.5 PM2.5	4.39 64.43	43.25	33 104	211	0.000	2.146	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C2 5E	PM2.5	1.40	43.25	36	36	0.000	0.000	0.001	0.002	0.108	0.108	0.098	0.215	0.021	0.000
6A	PM2.5	4.42	4.69	50	50	0.000	0.000	0.000	0.000	0.002	0.002	0.001	0.001	0.000	0.000
Total	-			10		668.5	1'330.0							21.7	40.1
				Emission	s 2023										
Total		27'172.2	6'224.0	uncertair		25.9	36.5			Trend unce	rtainty (%):			4.7	6.3
											1 (12)				

Table A - 33 Uncertainty analysis of PM10 emissions, approach 1, for 2023 and for the trend 1990-2023. The uncertainties are given considering a 95 % confidence interval and expressed as the distance from edge to mean, in percentage of the mean ((fu) means fuel used approach). AD: activity data; EF: emission factor; EM: emission; corr.: correlated.

А	В	С	D	(3	ŀ	4	I	I	К			L	N	1
		C	0	,	_	Cate		<u> </u>	J Sensitivi-	<u> </u>			-		
		Emissions	Emissions	Emis		contrib		Sensitivi-	ty if not	Contribu			ution to	Contribu	
NFR	Pollutant	1990	2023	comi	nty 2023	inventory		ty if corr. (type A)	corr. (type	inventor uncertaint	-	invento uncertain	-	inventor uncertaint	·
				uncertai	111 2025	20	23	(type A)	B)	uncertaint	y ITOIII AD	uncertain	LY HOIT EF	uncertaint	
				(-)%	(+)%	(-)%	(+)%			(-)%	(+)%	(-)%	(+)%	(-)%	(+)%
1A1a	PM10	1'044.54	46.09	72	72	0.055	0.055	0.010	0.001	0.018	0.018	0.695	0.695	0.483	0.483
1A1b 1A1c	PM10 PM10	47.66 4.89	1.50 14.17	20 21	20 21	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.009	0.000	0.000
1A1c 1A2a	PM10 PM10	20.53	2.61	21	21	0.000	0.000	0.000	0.000	0.003	0.003	0.007	0.007	0.000	0.000
1A2b	PM10	29.24	1.05	30	30	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.008	0.000	0.000
1A2c	PM10	40.77	5.17	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.003	0.000	0.000
1A2d	PM10	166.58	0.18	33	33	0.000	0.000	0.002	0.000	0.000	0.000	0.058	0.058	0.003	0.003
1A2e	PM10	25.68	1.11	10	10	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.002	0.000	0.000
1A2f 1A2gvii	PM10 PM10	832.63 2'173.23	68.17 2'366.27	65 50	65 50	0.099 70.673	0.099 70.673	0.007	0.002	0.005	0.005	0.451 2.093	0.451 2.093	0.204 4.393	0.204 4.393
1A2gvii 1A2gviii	PM10	913.14	196.65	65	65	0.825	0.825	0.042	0.005	0.118	0.016	0.278	0.278	0.077	0.077
1A3ai(i)	PM10	102.65	14.12	30	30	0.001	0.001	0.001	0.000	0.001	0.001	0.021	0.021	0.000	0.000
1A3aii(i)	PM10	25.19	1.69	30	30	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.007	0.000	0.000
1A3bi(fu)	PM10	579.17	98.62	57	57	0.161	0.161	0.003	0.003	0.005	0.005	0.196	0.196	0.039	0.039
1A3bii(fu)	PM10	329.00	48.06	48	48	0.027	0.027	0.002	0.001	0.002	0.002	0.105	0.105	0.011	0.011
. ,		1'584.33 209.02	36.16 57.14	27 54	27 54	0.005	0.005	0.016	0.001	0.002	0.002	0.426	0.426	0.181	0.181 0.001
		2'045.83	2'609.72	54	54	85.963	85.963	0.001	0.002	0.003	0.003	2.494	2.494	6.236	6.236
1A3c	PM10	969.78	1'516.58	50	50	29.030	29.030	0.030	0.072	0.130	0.130	1.566	1.566	2.457	2.457
1A3dii	PM10	59.09	21.94	50	50	0.006	0.006	0.000	0.001	0.001	0.001	0.001	0.001	0.000	0.000
1A3ei	PM10	0.11	0.04	27	27	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1A4ai	PM10	1'427.63	457.11	78	78	6.416	6.416	0.003	0.013	0.028	0.028	0.201	0.201	0.041	0.041
1A4bi	PM10	15'325.72	1'948.21	76 44	76 44	110.875	110.875	0.108	0.053	0.281	0.281	8.233	8.233	67.867	67.867
1A4ci 1A4cii	PM10 PM10	710.36 511.19	208.01 185.85	44 80	44 80	0.430	0.430	0.002	0.006	0.171 0.009	0.171	0.071	0.071	0.034	0.034
1A461 1A5b	PM10	286.52	261.49	50	50	0.863	0.863	0.000	0.003	0.003	0.003	0.207	0.207	0.001	0.001
1B1a	PM10	1.60	0.38	50	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1B2c	PM10	0.44	0.00	102	337	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000
2A1	PM10	374.35	222.25	98	275	2.384	18.898	0.002	0.006	0.017	0.017	0.208	0.587	0.044	0.345
2A2	PM10	14.41	13.18	100	740	0.009	0.481	0.000	0.000	0.001	0.001	0.021	0.155	0.000	0.024
2A5a 2B5	PM10 PM10	302.32 73.80	347.67 47.59	100 74	741	6.114 0.062	334.409 0.170	0.006	0.010	0.067	0.067	0.633	4.689 0.064	0.406	21.991 0.004
2B3 2B10a	PM10	17.07	47.33 NA	NA	NA	0.002 NA	0.170 NA	0.001	0.001	0.004	0.004	0.000	0.000	0.002	0.004
2C1	PM10	1'485.46	10.46	84	158	0.004	0.014	0.015	0.000	0.001	0.001	1.292	2.441	1.669	5.957
2C3	PM10	113.15	NO	NO	NO	NO	NO	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2C7a	PM10	5.96	0.53	98	275	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.013	0.000	0.000
2C7c 2D3c	PM10 PM10	3.06 19.98	2.78 19.05	100 100	741 276	0.000	0.021	0.000	0.000	0.001	0.001	0.004	0.032	0.000	0.001
2D3C 2D3i	PM10 PM10	24.00	19.05 NA	NA	276 NA	0.018 NA	0.140 NA	0.000	0.001	0.013	0.015	0.030	0.088	0.001	0.008
2G	PM10	588.38	398.75	78	125	4.858	12.441	0.005	0.011	0.387	0.387	0.347	0.574	0.270	0.479
2H1	PM10	243.80	156.07	102	277	1.286	9.429	0.002	0.004	0.182	0.182	0.166	0.468	0.061	0.252
2H2	PM10	310.39	308.26	100	741	4.842	262.932	0.005	0.008	0.120	0.120	0.517	3.826	0.281	14.651
2H3	PM10	15.60	3.87	98	275	0.001	0.006	0.000	0.000	0.000	0.000	0.006	0.016	0.000	0.000
2I 3B1a	PM10 PM10	864.32 84.47	187.64 94.45	100 100	741 440	1.794 0.452	97.420 8.713	0.004	0.005	0.073	0.073	0.400 0.169	2.964 0.746	0.165	8.788 0.557
3B18 3B1b	PM10 PM10	74.85	94.45	100	440	0.432	8.079	0.002	0.003	0.024	0.024	0.169	0.748	0.029	0.557
3B2	PM10	19.76	20.43	100	440	0.021	0.408	0.000	0.001	0.005	0.005	0.035	0.154	0.001	0.024
3B3	PM10	213.16	142.62	100	440	1.030	19.869	0.002	0.004	0.036	0.036	0.165	0.728	0.029	0.531
3B4d	PM10	3.42	4.58	100	440	0.001	0.020		0.000	0.001	0.001	0.009	0.039	0.000	0.002
3B4e	PM10	6.20 0.94	10.58	100 100	440	0.006	0.109	0.000	0.000	0.003	0.003	0.022	0.099	0.001	0.010
3B4f 3B4gi	PM10 PM10	123.32	5.36 153.65	100	440 440	0.001	0.028 23.061	0.000	0.000	0.001 0.038	0.001	0.014 0.291	0.060	0.000	0.004
3B4gii	PM10 PM10	67.84	211.92	100	440	2.274	43.867	0.005	0.004	0.053	0.038	0.291	2.240	0.262	5.022
3B4giii	PM10	10.41	13.29	100	440	0.009	0.172	0.000	0.000	0.003	0.003	0.025	0.112	0.001	0.013
3B4giv	PM10	18.52	29.57	100	440	0.044	0.854	0.001	0.001	0.007	0.007	0.061	0.270	0.004	0.073
3B4h	PM10	0.50	0.80	100	440	0.000	0.001	0.000	0.000	0.000	0.000	0.002	0.007	0.000	0.000
3De	PM10	1'053.57	999.51	98 32	275	48.315 0.000	382.331 0.000	0.016	0.027	0.194	0.194	1.589 0.000	4.475 0.000	2.562	20.060
5A 5B2	PM10 PM10	0.73 NA	0.50	32	32 102	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1a	PM10	516.80	245.09	71	71	1.515	1.515	0.000	0.000	0.000	0.475	0.063	0.063	0.230	0.230
5C1bi	PM10	3.08	NO	NO	NO	NO	NO		0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1biii	PM10	24.00	NO	NO	NO	NO	NO		0.000	0.000	0.000	0.000	0.000	0.000	0.000
5C1biv	PM10	19.95	4.25	40	40	0.000	0.000	0.000	0.000	0.003	0.003	0.003	0.003	0.000	0.000
5C1bv	PM10	4.39	0.83	33	33	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
5C2 5E	PM10 PM10	70.77 2.80	47.50 3.00	104 36	211 36	0.123	0.506		0.001	0.088	0.088	0.051 0.002	0.114 0.002	0.010	0.021
6A	PM10	229.38	113.32	50	50	0.162	0.000	0.000	0.000	0.002	0.132	0.002	0.002	0.000	0.000
Total						383.5	1'532.7							88.2	163.3
				Emission	s 2023										
Total		36'471.4	14'078.4	uncertaii	nty (%):	19.6	39.1			Trend unce	rtainty (%):			9.4	12.8

A5.3 Uncertainty estimations: results from approach 2

Numeric results of the uncertainty estimations using Monte Carlo simulations are summarised in the tables in Annex A5.3.1. In these tables, columns labelled A to J correspond exactly to columns A to J from Table 3.3, chp. 3, from the 2006 IPCC Guidelines (IPCC 2006).

Results of the sensitivity analysis between input emissions from each category and inventory emission are depicted by tornado plots in the figures in Annex A5.3.2 (see also discussion in chp. 1.7.3).

Distributions of inventory emissions obtained from the 500'000 Monte Carlo simulations are shown as histograms, for each pollutant, for the base year, the reporting year and the trend, in the figures in Annex A5.3.3.

A5.3.1 Uncertainty estimations, approach 2, numeric results

Table A - 34 Uncertainty analysis of NO_x emissions, approach 2, for 2023 and for the trend 1990-2023. Monte Carlo simulations were run 500'000 times. The reported uncertainties correspond to the borders of the narrowest 95.0 % confidence interval. Contributions to inventory trend (mean, uncertainties, columns I and J) are values normalised by the total inventory base year emission ((fu) means fuel used approach).

A	В	C Emissions	D		E :y data	Emis	sion		5 sion pined	H Emission contri-	l Contri-	Contribu	
NFR	Pollutant	1990	2023		tainty 23	uncer	tainty 23		tainty	bution to variance 2023	bution to trend	uncertaint	
		t	t	(-)%	(+)%	(-)%	(+)%	(-)%	(+)%	Fraction	%	(-)%	(+)%
1A1a	NOx (as NO2)	6'279.37	2'266.58	10	10	19	19	21	22	0.006	-2.862	0.801	0.776
1A1b	NOx (as NO2)	494.17	338.32	1	1	20	20	20	20	0.000	-0.111	0.028	0.026
1A1c	NOx (as NO2)	0.01	0.04	5	5	20	20	20	21	0.000	0.000	0.000	0.000
1A2a	NOx (as NO2)	279.07	96.50	2	2	27	27	27	27	0.000	-0.130	0.039	0.039
1A2b	NOx (as NO2)	127.53	28.81	2	2	20	20	20	20	0.000	-0.070	0.017	0.017
1A2c	NOx (as NO2)	1'050.42	190.46	2	2	10	10	10	10	0.000	-0.614	0.103	0.099
1A2d	NOx (as NO2)	1'261.91	31.23	2	2	10	10	10	10	0.000	-0.878	0.146	0.142
1A2e	NOx (as NO2)	743.69	192.51	2	2	10	10	10	10	0.000	-0.393	0.067	0.064
1A2f	NOx (as NO2)	10'534.54	2'825.44	2	2	17	17	17	17	0.006	-5.499	1.162	1.097
1A2gvii	NOx (as NO2)	6'333.94	1'536.52	1	1	13	13	13	13	0.001	-3.424	0.631	0.600
1A2gviii	NOx (as NO2)	2'181.62 1'214.30	1'637.67 1'966.25	2	2	17 20	17 20	17 20	17 20	0.002	-0.388 0.536	0.093	0.089
1A3ai(i)	NOx (as NO2)	1 214.30	54.52	1	1	20	20	20	20	0.004	-0.071	0.127	0.131
1A3aii(i) 1A3bi(fu)	NOx (as NO2) NOx (as NO2)	43'748.48	15'009.57	1	1	38	38	39	38	0.892	-20.272	5.396	5.662
1A3bii(fu)	NOx (as NO2)	6'199.14	3'493.94	1	1	33	32	32	32	0.032	-1.927	0.658	0.638
1A3biii(fu)	NOx (as NO2)	29'630.57	3'029.17	1	1	18	18	18	18	0.008	-18.952	3.598	3.580
		308.37	172.80	1	1	36	36	36	36	0.000	-0.097	0.038	0.037
1A3c	NOx (as NO2)	595.50	330.50	1	1	13	13	13	13	0.000	-0.189	0.036	0.035
1A3dii	NOx (as NO2)	1'054.73	898.19	1	1	13	13	13	13	0.000	-0.112	0.025	0.023
1A3ei	NOx (as NO2)	19.41	6.22	2	2	50	50	50	50	0.000	-0.009	0.005	0.005
1A4ai	NOx (as NO2)	5'139.32	2'831.98	2	2	16	16	16	16	0.006	-1.646	0.340	0.335
1A4aii	NOx (as NO2)	16.28	39.69	1	1	13	13	13	13	0.000	0.017	0.003	0.003
1A4bi	NOx (as NO2)	11'636.07	3'464.39	4	4	13	13	13	14	0.006	-5.830	1.082	1.052
1A4bii	NOx (as NO2)	18.76	19.14	1	1	30	30	30	30	0.000	0.000	0.000	0.000
1A4ci	NOx (as NO2)	388.54	379.41	21	21	30	30	36	37	0.001	-0.006	0.084	0.084
1A4cii	NOx (as NO2)	4'357.53	1'607.61	1	1	13	13	13	13	0.001	-1.963	0.362	0.351
1A5b	NOx (as NO2)	882.99	397.10	1	1	13	13	13	13	0.000	-0.347	0.065	0.063
1B2c	NOx (as NO2)	211.21	0.57	22	22	100	204	100	205	0.000	-0.150	0.308	0.150
2A1	NOx (as NO2)	15.87	9.42	2	2	100	204	100	204	0.000	-0.005	0.009	0.005
2A2	NOx (as NO2)	0.27	0.24	2	2	100	449	100	449	0.000	0.000	0.000	0.000
2A5a	NOx (as NO2)	1.79	0.52	5	5	100	448	100	448	0.000	-0.001	0.004	0.001
2B2	NOx (as NO2)	82.78	NO	NO	NO	NO	NO	NO	NO	0.000	-0.059	0.010	0.009
2B5	NOx (as NO2)	22.20	15.64	2	2	40	40	40	40	0.000	-0.005	0.002	0.002
2B10a 2C1	NOx (as NO2)	8.93	0.63	2	2	60 50	60 50	60 50	61 50	0.000	-0.006 -0.081	0.004	0.004
2C1 2C3	NOx (as NO2)	245.46 17.41	131.32 NO	NO	NO	NO	NO	NO	NO	0.000	-0.081	0.042	0.042
2C3 2C7c	NOx (as NO2) NOx (as NO2)	17.41 NA	1.42	5	5	83	100	83	101	0.000	0.012	0.023	0.012
2G	NOx (as NO2)	29.36	17.23	25	25	84	100	85	101	0.000	-0.009	0.001	0.001
2H3	NOx (as NO2)	91.00	22.58	3	3	100	204	100	204	0.000	-0.049	0.100	0.000
3B1a	NOx (as NO2)	672.26	373.95	6	6	51	49	51	50	0.001	-0.213	0.117	0.113
3B1b	NOx (as NO2)	344.28	281.92	6	6	50	50	50	50	0.001	-0.045	0.032	0.029
3B2	NOx (as NO2)	67.60	64.85	6	6	50	49	50	50	0.000	-0.002	0.005	0.004
3B3	NOx (as NO2)	185.29	84.18	6	7	50	50	50	50	0.000	-0.072	0.039	0.038
3B4d	NOx (as NO2)	21.62	22.67	6	6	50	50	50	51	0.000	0.001	0.002	0.002
3B4e	NOx (as NO2)	17.58	26.53	6	6	50	50	50	51	0.000	0.006	0.003	0.004
3B4f	NOx (as NO2)	1.35	7.07	6	6	50	50	50	51	0.000	0.004	0.002	0.002
3B4gi	NOx (as NO2)	7.19	9.38	6	7	49	50	50	50	0.000	0.002	0.001	0.001
3B4gii	NOx (as NO2)	4.46	12.47	6	6	50	50	50	50	0.000	0.006	0.003	0.003
3B4giii	NOx (as NO2)	0.44	0.54	6	6	50	50	50	51	0.000	0.000	0.000	0.000
3B4giv	NOx (as NO2)	0.84	1.23	6	6	50	50	51	50	0.000	0.000	0.000	0.000
3B4h	NOx (as NO2)	2.00	5.40	6	6	51	49	51	50	0.000	0.002	0.001	0.001
3Da1 3Da2a	NOx (as NO2) NOx (as NO2)	1'205.08 2'074.98	609.12 1'449.29	5	5	100 49	100 51	101 51	100 50	0.010	-0.424 -0.446	0.434	0.427 0.249
3Daza 3Dazb	NOx (as NO2) NOx (as NO2)	2 074.98 87.01	1 449.29 NO	NO	NO	A9 NO	NO	NO	NO	0.014	-0.446	0.263	0.249
3Da2b 3Da2c	NOx (as NO2) NOx (as NO2)	14.76	122.27	20	20	98	102	101	105	0.000	0.082	0.065	0.083
3Da2c 3Da3	NOx (as NO2) NOx (as NO2)	243.41	417.48	6	6	99	102	101	103	0.000	0.124	0.127	0.082
5A	NOx (as NO2)	1.83	1.24	10	10	50	50	51	52	0.000	0.000	0.000	0.000
5B2	NOx (as NO2)	NA	7.23	20	20	101	99	102	104	0.000	0.005	0.005	0.005
5C1a	NOx (as NO2)	80.75	38.30	50	50	40	40	61	67	0.000	-0.030	0.036	0.034
5C1bi	NOx (as NO2)	9.75	NO	NO	NO	NO	NO	NO	NO	0.000	-0.007	0.003	0.003
5C1biii	NOx (as NO2)	22.50	NO	NO	NO	NO	NO	NO	NO	0.000	-0.016	0.007	0.007
5C1biv	NOx (as NO2)	114.00	42.53	20	20	50	50	53	55	0.000	-0.051	0.033	0.030
5C1bv	NOx (as NO2)	11.25	13.34	5	5	30	30	30	31	0.000	0.001	0.001	0.001
5C2	NOx (as NO2)	23.65	15.87	48	48	100	156	100	167	0.000	-0.006	0.018	0.011
5D1	NOx (as NO2)	25.35	5.03	1	1	10	10	10	10	0.000	-0.015	0.002	0.002
5D2	NOx (as NO2)	0.23	1.13	10	10	10	10	14	14	0.000	0.001	0.000	0.000
6A	NOx (as NO2)	92.05	85.24	30	30	50	50	56	60	0.000	-0.005	0.029	0.028
Total, Mon		140'721.9	46'746.7					12.9	13.1	1.0	-66.8	1.1	1.2
simulations													
Total, inver	ntory	140'707.8	46'742.4								-66.8		

Table A - 35 Uncertainty analysis of NMVOC emissions, approach 2, for 2023 and for the trend 1990-2023. Monte Carlo simulations were run 500'000 times. The reported uncertainties correspond to the borders of the narrowest 95.0 % confidence interval. Contributions to inventory trend (mean, uncertainties, columns I and J) are values normalised by the total inventory base year emission ((fu) means fuel used approach).

	В	С	D	E			F	(-	Н	1	1	1
A	в			Activit				Emis		Emission			,
NFR	Pollutant	Emissions 1990	Emissions 2023	uncer			n factor nty 2023	comb	pined	contribution	Contribution to trend	Contribution to tre	o uncertainty of
	Pollutant			20	-		,	uncertai		to variance			
1410	NINAVOC	t	t	(-)%	(+)%	(-)%	(+)%	(-)%	(+)%	Fraction	%	(-)%	(+)%
1A1a 1A1b	NMVOC NMVOC	320.80 6.95	187.05 2.99	10	10	32 20	33 20	34 20	34 20	0.000	-0.046	0.023	0.021
1A1c	NMVOC	2.13	6.18	5	5	20	20	21	21	0.000	0.001	0.000	0.000
1A2a	NMVOC	8.95	6.14	2	2	18	18	18	19	0.000	-0.001	0.000	0.000
1A2b	NMVOC	53.62	5.52	2	2	19	19	19	19	0.000	-0.017	0.005	0.005
1A2c	NMVOC	34.22	18.24	2	2	10	10	10	10	0.000	-0.005	0.001	0.001
1A2d 1A2e	NMVOC NMVOC	29.90 22.05	3.35 20.16	2	2	10 10	10 10	10 10	10 10	0.000	-0.009	0.002	0.002
1A26	NMVOC	596.56	421.87	2	2	30	30	30	30	0.000	-0.061	0.000	0.000
1A2gvii	NMVOC	1'331.50	256.93	1	1	34	34	34	34	0.000	-0.369	0.157	0.147
1A2gviii	NMVOC	294.30	116.53	2	2	30	30	30	30	0.000	-0.061	0.024	0.023
1A3ai(i)	NMVOC	247.46	127.04	1	1	50	50	50	50	0.000	-0.041	0.023	0.022
1A3aii(i)	NMVOC	58.81	30.49 3'635.14	1	1	50	50	50	50	0.000	-0.010	0.006	0.005
1A3bi(fu) 1A3bii(fu)	NMVOC NMVOC	55'582.12 4'868.98	131.94	1	1	52 46	52 45	53 46	52 45	0.012	-17.613 -1.628	8.425 0.842	8.443
1A3biii(fu)	NMVOC	3'437.85	87.52	1	1	22	22	22	22	0.000	-1.152	0.375	0.361
1A3biv(fu)	NMVOC	5'736.73	826.68	1	1	100	390	100	390	0.036	-1.556	6.060	1.556
1A3bv(fu)	NMVOC	17'165.87	1'772.97	1	1	40	40	40	40	0.002	-5.282	2.382	2.298
1A3c	NMVOC	83.76	38.53	1	1	34	34	34	34	0.000	-0.016	0.006	0.006
1A3dii 1A3oi	NMVOC	1'640.55 0.90	388.66 0.31	1	1	34 50	34 50	34 50	34 51	0.000	-0.431	0.179	0.175
1A3ei 1A4ai	NMVOC NMVOC	1'329.00	873.24	2	2	50	50	50	51	0.000	0.000	0.000 0.098	0.000
1A4aii	NMVOC	1'091.65	306.69	1	1	74	76	75	75	0.001	-0.137	0.038	0.209
1A4bi	NMVOC	10'056.33	2'346.74	4	4	68	68	69	67	0.008	-2.641	1.884	1.835
1A4bii	NMVOC	398.23	119.60	1	1	75	75	75	75	0.000	-0.096	0.076	0.075
1A4ci	NMVOC	235.07	255.12	21	21	74	76	78	79	0.000	0.007	0.028	0.030
1A4cii 1A5b	NMVOC NMVOC	4'369.08 160.25	792.31 63.97	1	1	75 34	75 34	75 34	75 34	0.001	-1.226	0.969	0.952
1A5b 1B2ai	NMVOC	160.25	63.97	30	1 30	34 49	34 51	34 57	34 60	0.000	-0.033	0.014	0.013
1B2aiv	NMVOC	1'344.61	215.10	30	30	47	47	54	57	0.000	-0.388	0.257	0.232
1B2av	NMVOC	19'127.24	2'021.04	1	1	38	41	38	41	0.002	-5.868	2.630	2.459
1B2b	NMVOC	323.52	175.86	22	22	51	50	54	56	0.000	-0.051	0.041	0.037
1B2c	NMVOC	13.72	0.03	22	22	83	101	84	104	0.000	-0.005	0.005	0.004
2A1 2A2	NMVOC NMVOC	41.25 0.69	24.49 0.63	2	2	100	204 446	100 100	204 446	0.000	-0.006	0.012	0.006
2A2 2A5a	NMVOC	4.59	1.34	5	5	100	440	100	446	0.000	-0.001	0.000	0.000
2B10a	NMVOC	608.61	15.18	2	2	40	40	40	40	0.000	-0.204	0.096	0.093
2C1	NMVOC	1'053.60	187.83	2	2	83	101	83	100	0.000	-0.298	0.307	0.251
2C3	NMVOC	56.57	NO	NO	NO	NO	NO	NO	NO	0.000	-0.019	0.040	0.019
2C7a	NMVOC	2.98	0.26	5	5	100	204	100	204	0.000	-0.001	0.002	0.001
2C7c 2D3a	NMVOC NMVOC	NA 8'866.55	0.46	5	5	84 50	100 50	83 50	101 50	0.000	0.000	0.000	0.000
2D3a 2D3b	NMVOC	4'895.00	2'700.00	5	5	84	100	83	101	0.033	-0.807	0.774	0.630
2D3c	NMVOC	2'430.00	365.45	20	20	84	100	84	103	0.000	-0.709	0.754	0.605
2D3d	NMVOC	40'731.00	8'285.92	20	20	40	40	44	46	0.046	-11.071	5.366	5.032
2D3e	NMVOC	11'731.23	1'566.25	40	40	49	50	62	66	0.003	-3.481	2.532	2.284
2D3f	NMVOC	910.00 27'503.97	60.60	20	20	40	40	44	46	0.000	-0.292	0.151	0.145
2D3g 2D3h	NMVOC NMVOC	20'353.80	3'184.68 3'617.41	30 20	30 20	83 40	100 40	85 44	106 46	0.038	-8.140 -5.738	8.028 2.901	6.675
2D3i	NMVOC	5'470.21	1'932.86	30	30	100	183	100	187	0.003	-1.198	2.301	1.197
2G	NMVOC	22'431.61	6'315.50	25	25	100	204	100	206	0.552	-5.166	9.714	5.166
2H1	NMVOC	554.99	181.31	30	30	100	202	100	206	0.000	-0.128	0.273	0.128
2H2	NMVOC	1'413.07	1'416.69	10	10	83	101	83	102	0.007	0.001	0.082	0.084
2H3	NMVOC	156.00	38.70	3	3	100	203	100	203	0.000	-0.040	0.082	0.040
3B1a 3B1b	NMVOC NMVOC	6'412.83 5'121.56	6'584.61 7'441.23	6	6	60 69	60 71	60 70	60 71	0.053	0.059	0.217 0.597	0.230
3B10 3B2	NMVOC	66.79	69.04	6	6	100	204	100	204	0.091	0.796	0.003	0.04
3B3	NMVOC	1'126.15	770.22	6	6	100	203	100	203	0.008	-0.122	0.252	0.122
3B4d	NMVOC	37.02	49.60	6	6	100	204	100	204	0.000	0.004	0.004	0.009
3B4e	NMVOC	120.39	205.58	6	6	100	204	100	204	0.001	0.029	0.029	0.061
3B4f	NMVOC NMVOC	8.64 508.70	49.21	6	6	100	204 205	100 100	204 205	0.000	0.014	0.014 0.043	0.029
3B4gi 3B4gii	NMVOC	508.70 366.34	633.80 1'144.35	6	6	100	205	100	205	0.005	0.043	0.043	0.092
3B4giii	NMVOC	46.28	59.07	6	6	100	204	100	204	0.007	0.207	0.207	0.009
3B4giv	NMVOC	129.27	215.88	6	6	100	204	100	204	0.001	0.030	0.030	0.061
3B4h	NMVOC	3.60	4.37	6	6	100	204	100	204	0.000	0.000	0.000	0.001
3De	NMVOC	481.06	453.28	5	5	100	203	100	204	0.003	-0.010	0.028	0.013
5A	NMVOC	405.68	123.02	10	10	50	50	51	51	0.000	-0.097	0.056	0.055
5B1 5B2	NMVOC NMVOC	105.05 49.57	175.20 1'146.82	20 20	20 20	100 30	100 30	101 35	104 37	0.000	0.024	0.026	0.031
562 5C1a	NMVOC	49.57 516.80	245.09	50	20 50	50	50	55	73	0.001	-0.093	0.137	0.105
5C1bi	NMVOC	3.75	NO	NO	NO	NO	NO	NO	NO	0.000	-0.001	0.001	0.001
5C1biii	NMVOC	4.50	NO	NO	NO	NO	NO	NO	NO	0.000	-0.002	0.001	0.001
5C1biv	NMVOC	0.46	20.09	20	20	20	20	28	28	0.000	0.007	0.002	0.003
5C1bv	NMVOC	1.20	0.37	5	5	30	30	30	31	0.000	0.000	0.000	0.000
5C2 5D1	NMVOC NMVOC	25.19 0.51	16.91 0.10	48 1	48	100 27	156 27	100 27	168 27	0.000	-0.003 0.000	0.009	0.006
5D1	NMVOC	0.00	0.02	10	10	20	20	22	22	0.000	0.000	0.000	0.000
582 5E	NMVOC	28.00	60.00	20	20	24	23	30	31	0.000	0.011	0.006	0.006
6A	NMVOC	202.98	166.12	30	30	49	51	57	60	0.000	-0.013	0.031	0.028
Total, Mont		295'044.8	71'319.2					22.5	24.8	1.0	-75.7	3.8	3.9
simulations Total, inven		294'960.8	71'290.2								-75.8		
.otal, invel		234 900.8	/1290.2								-73.8		

Table A - 36 Uncertainty analysis of SO_x emissions, approach 2, for 2023 and for the trend 1990-2023. Monte Carlo simulations were run 500'000 times. The reported uncertainties correspond to the borders of the narrowest 95.0 % confidence interval. Contributions to inventory trend (mean, uncertainties, columns I and J) are values normalised by the total inventory base year emission ((fu) means fuel used approach).

IA2d SOX (as SO2) 3'238.01 0.56 2 2 14 <td< th=""><th>А</th><th>В</th><th>С</th><th>D</th><th>E</th><th></th><th>F</th><th>-</th><th>(</th><th><u>.</u></th><th>Н</th><th>I</th><th>J</th><th></th></td<>	А	В	С	D	E		F	-	(<u>.</u>	Н	I	J	
IA1a SOC (as SO2) 3679 11 255 94 10 10 10 22 22 22 24 24 0.05 8.737 0.011 10.037 IA1b SOX (as SO2) 366.041 255 9.25 2 2 15 15 15 0.000 -1.537 0.0314 0.317 IA2c SOX (as SO2) 167.34 0.45 2 2 10 10 0.000 -0.717 0.020 0.020 IA2d SOX (as SO2) 1737.10 6.25 2 2 14 14 14 14 0.000 -2.743 0.355 0.355 IA2d SOX (as SO2) 3730.25 17299.67 2 2 19 19 19 19 0.000 -2.473 0.356 0.353 IA2di() SOX (as SO2) 3730.86 260.22 2 2 19 19 19 0.000 -2.432 1.528 1.530 IA2di() SOX (as SO2) 3733.86 260.22 2 1 10 10 0.000 -0.666 -6.00	NFR	Pollutant	1990	2023	uncer 20	tainty 23	fac uncer 20	tor tainty 23	comb uncer 20	oined tainty 23	contri- bution to variance 2023	bution to trend	uncertaint	y of trend
IA1b SOX (as SO2) 660.41 58.83 1 1 20 20 20 0.002 -1.537 0.314 0.317 IA2a SOX (as SO2) 67.34 0.45 2 2 15 15 15 0.000 -0.937 0.314 0.432 IA2b SOX (as SO2) 67.34 0.45 2 2 11 11 11 0.000 -0.171 0.020 0.020 IA2c SOX (as SO2) 1738.701 0.65 2 2 14 14 14 14 0.000 -8.268 1.371 1.184 IA2c SOX (as SO2) 370.66 2.67 1 1 10 10 10 0.000 -9.464 0.12 0.12 0.12 0.12 0.003 -8.344 1.528 1.530 IA340() SOX (as SO2) 79.48 8.70 1 1 10 10 10 10 0.000 -4.046 A.459 A.454 IA340() SOX (as SO2) 74.94 4.65 1 10 10 10 <t< td=""><td></td><td></td><td></td><td></td><td>. /</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					. /									
IA2a SOX (as SO2) 362.55 9.25 2 2 15 15 15 15 0.000 -0.992 0.147 0.143 IA2b SOX (as SO2) 167.34 0.45 2 2 10 10 10 0.000 -0.972 0.020 0.020 IA2c SOX (as SO2) 1717 0.655 2 2 11 11 11 0.000 -2.871 0.356 0.357 IA2d SOX (as SO2) 1737.50 3.75 2 2 12 12 12 0.000 -2.743 0.367 0.358 IA2d SOX (as SO2) 373.36 2.667 1 10 10 10 0.000 -9.940 0.109 0.109 IA3400 SOX (as SO2) 373.36 2.667 1 1 10 10 10 10 0.003 -8.34 1.528 1.530 IA3400 SOX (as SO2) 2753.86 2.677 1 10 10 10 10 10 0.003 -0.952 0.012 0.012 0.035		· · · ·												
LA2b. SOX (as SO2) 67.34 0.45 2 2 10 10 10 0.000 0.017 0.020 0.020 LA2c SOX (as SO2) 1187.10 62.95 2 2 11 11 11 0.000 -2.871 0.358 0.350 LA2d SOX (as SO2) 1323.01 0.56 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 10 0.000 -8.268 1.173 1.184 LA2e SOX (as SO2) 370.66 2.67 1 1 10 10 10 10 0.000 -0.469 0.012 0.012 LA3u(I) SoX (as SO2) 24.94 4.65 1 10 10 10 10 10 0.000 -0.462 0.066 0.006 LA3u(II) SoX (as SO2) 24.94 4.65 1 10 10 10 10 10 0.000 -0.464 0.045 0.425 0.525 0.527<		· · · ·				_								
LA2: SOX (as SO2) 1'187.10 6 2 95 2 2 11 11 11 11 0.001 -2.271 0.358 0.350 LA2d SOX (as SO2) 1'377.50 3.75 2 2 14 14 14 0.000 -2.871 0.358 0.350 LA2f SOX (as SO2) 1'077.50 3.75 2 2 12 12 12 0.000 -2.743 0.367 0.358 LA2f SOX (as SO2) 3'53.25 1'29 67 2 2 19 19 19 0.000 -0.940 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.108 0.000 -0.940 0.101 0.101 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 0.000 -0.462 0.458 1.14 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 0.000 -0.064 0.008 0.007 1.14		, ,												
IA2d SOX (as SO2) 3'238.01 0.56 2 2 14 14 14 14 0.000 -2.743 0.365 0.356 IA2r SOX (as SO2) 1'370.55 1'390.75 2 2 2 12 12 12 0.000 -2.743 0.356 0.356 IA2g SOX (as SO2) 3'350.25 1'290.7 2 2 19 19 19 0.000 -0.2743 0.365 3.562 1.044 IA2gwii< SOX (as SO2) 3'336.25 1.222 1 1 10 10 10 0.003 0.096 0.012 0.011 IA3ali(I) SOX (as SO2) 2.4.94 4.65 1 1 10 10 10 0.000 4.464 0.455 0.455 IA3bli(I) SOX (as SO2) 2.4.288 8.70 1 1 10 10 10 10 0.000 -0.664 0.008 0.007 IA3bli(V) SoX (as SO2) 2.4.288 8.70 1 1 10 10 10 10 0.000		,												
IA2e Sox (as SO2) 1077-50 3.75 2 2 12 12 12 0.000 -2.743 0.367 0.358 IA2f Sox (as SO2) 3'53.25 1'299.67 2 2 19 19 19 19 0.665 -5.692 10.63 1.044 IA2gwi Sox (as SO2) 3'53.86 260.22 2 19 19 19 19 0.033 0.096 0.012 0.012 IA3al(I) Sox (as SO2) 24.94 4.65 1 1 10 10 10 0.000 -0.052 0.066 0.066 IA3bl(I) Sox (as SO2) 24.94 4.65 1 1 10 10 0.000 -0.052 0.066 0.006 IA3bl(I) Sox (as SO2) 24.94 4.65 1 1 10 10 10 0.000 -0.064 0.086 0.072 IA3bl(I) Sox (as SO2) 24.94 1 1 10 10 10 0.000 -0.064 0.086 0.007 IA3bl(I) Sox (as SO2) </td <td>1A2c</td> <td>SOx (as SO2)</td> <td></td>	1A2c	SOx (as SO2)												
IA2f Six (as SO2) 3'530.25 1'299.67 2 2 19 19 19 0.865 -5.692 1.063 1.044 IA2gviii SOx (as SO2) 370.66 2.67 1 1 10 10 0.000 -0.940 0.109 0.109 0.109 0.109 0.109 0.019 0.109 0.024 0.435 1.538 1.11 1.01 1.01 1.01 0.000 -0.064 0.048 0.052 1.533 1.11 1.01 1.01 1.01 0.000 -0.064 0.008 0.007 1.438 1.431 1.01 1.01 1.01 0.000 -0.064 0.008 0.007 1.438 1.431 1.01 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.0	1A2d	SOx (as SO2)	3'238.01	0.56			14	14	14		0.000	-8.268	1.173	1.184
IA2gviii Sox (as SO2) 370.66 2.67 1 1 10 10 10 0.000 0.940 0.109 0.109 IA2gviii Sox (as SO2) 3'53.86 260.22 2 2 19 19 19 10 0.000 0.002 0.012 0.012 IA3ai(i) Sox (as SO2) 24.94 4.65 1 1 10 10 10 0.000 -0.052 0.006 0.006 IA3bi(i) Sox (as SO2) 1'84.85 1 1 10 10 10 0.000 -4.046 0.459 0.458 IA3bi(i) Sox (as SO2) 1'84.28 8.70 1 1 10 10 10 0.000 -0.066 0.008 0.008 IA3bi(i) Sox (as SO2) 1'84.28 8.70 1 1 10 10 10 0.000 -0.066 0.008 0.008 IA3bi(i) Sox (as SO2) 1'84.28 8.70 1 1 10 10 10 0.000 -0.000 0.000 0.000 0.000 0.000 <td>1A2e</td> <td>SOx (as SO2)</td> <td>1'077.50</td> <td>3.75</td> <td>2</td> <td>2</td> <td>12</td> <td>12</td> <td>12</td> <td>12</td> <td>0.000</td> <td>-2.743</td> <td>0.367</td> <td>0.358</td>	1A2e	SOx (as SO2)	1'077.50	3.75	2	2	12	12	12	12	0.000	-2.743	0.367	0.358
IA2gviii Sox (as SO2) 3'533.86 260.22 2 19 19 19 19 19 0.035 -8.354 1.528 1.530 IA3aii() Sox (as SO2) 99.68 137.22 1 1 10 10 10 0.000 -0.052 0.006 0.006 IA3bii(fu) Sox (as SO2) 124.94 4.65 1 1 10 10 10 0.000 -0.736 0.086 0.006 IA3bii(fu) Sox (as SO2) 292.93 4.86 1 1 10 10 10 0.000 -0.648 0.029 0.527 IA3bii(fu) Sox (as SO2) 25.47 0.52 1 1 10 10 10 0.000 -0.664 0.008 0.008 IA3bii (fu) Sox (as SO2) 2.642 0.12 1 1 10 10 10 0.000 -0.664 0.008 0.008 0.000 1.441 Sox (as SO2) 1.64 0.019 1.41 10 10 10 0.000 -0.001 0.000 0.000 0.000	1A2f	SOx (as SO2)	3'530.25	1'299.67	2	2	19	19	19	19	0.865	-5.692	1.063	1.044
AA3ai(i) Sox (as SO2) 99.68 137.22 1 1 10 10 10 10 0.003 0.096 0.012 0.0112 LA3ai(i) Sox (as SO2) 24.94 4.65 1 1 10 10 10 10 0.003 0.096 0.012 0.006 LA3bi(i) Sox (as SO2) 292.93 4.86 1 1 10 10 10 10 0.000 4.046 0.459 0.458 LA3bi(i) Sox (as SO2) 128.42 8.70 1 1 10 10 10 10 0.000 4.648 0.529 0.527 LA3bi(i) Sox (as SO2) 26.527 0.52 1 1 10 10 10 0.000 4.648 0.529 0.527 LA3ai Sox (as SO2) 0.628 0.005 2 2 10 10 10 10 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1A2gvii	SOx (as SO2)	370.66	2.67	1	1	10	10	10	10	0.000	-0.940	0.109	0.109
IA3aii(i) SOX (as SO2) 24.94 4.65 1 1 10 10 10 10 0.000 -0.052 0.006 0.006 IA3bi((i) SOX (as SO2) 1'618.97 34.55 1 1 10 10 10 0.000 -0.052 0.006 0.086 0.085 IA3bi((i) SOX (as SO2) 1'842.88 8.70 1 1 10 10 10 0.000 -0.064 0.008	1A2gviii	SOx (as SO2)	3'533.86	260.22	2	2	19	19	19	19	0.035	-8.354	1.528	1.530
IA3bi(fu) SOX (as SO2) 1'618.97 34.55 1 1 10 10 10 10 0.000 -4.046 0.459 0.458 IA3bii(fu) SOX (as SO2) 129.93 4.86 1 1 10 10 10 0.000 -4.046 0.0259 0.527 1.35ii(fu) SOX (as SO2) 25.47 0.52 1 1 10 10 10 0.000 -0.064 0.008 0.007 IA3bii (fu) SOX (as SO2) 25.47 0.52 1 1 10 10 10 0.000 -0.064 0.008 0.007 IA3dii SOX (as SO2) 0.488 0.05 2 2 10 10 10 10 0.000 -0.001 0.000 0.001 0.001	1A3ai(i)	SOx (as SO2)	99.68	137.22	1	1	10	10	10	10	0.003	0.096	0.012	0.012
AA3bii(fu) SOX (as 502) 292.9.3 4.86 1 1 10 10 10 10 0.000 -0.736 0.085 0.085 AA3bii(fu) SOX (as 502) 254.7 0.52 1 10 10 10 0.000 -0.064 0.008 0.007 IA3bii(fu) SOX (as SO2) 26.92 0.12 1 1 10 10 10 0.000 -0.064 0.008 0.007 IA3dii SOX (as SO2) 26.92 0.12 1 1 10 10 10 0.000 -0.064 0.008 0.007 IA3dii SOX (as SO2) 0.28 0.05 2 10 10 10 0.000 -0.004 0.000 0.000 0.000 IA4aii SOX (as SO2) 1.61 0.05 1 1 10 10 11 10 0.001 -0.004 0.000 0.000 0.000 1.046 1.048 1.044 1.041 1.046 1.048 1.044 1.041 1.046 1.048 1.040 1.010 10 10	1A3aii(i)	SOx (as SO2)	24.94	4.65	1	1	10	10	10	10	0.000	-0.052	0.006	0.006
Adbirt(iv) Sox (as So2) 1292 93 4.86 1 1 10 10 10 0.000 -0.736 0.086 0.085 IA3birt(i) Sox (as So2) 12842.88 8.70 1 1 10 10 10 0.000 -0.646 0.028 0.027 IA3birt(i) Sox (as So2) 25.47 0.52 1 1 10 10 10 0.000 -0.064 0.008 0.007 IA3di Sox (as So2) 26.92 0.12 1 1 10 10 10 0.000 -0.064 0.008 0.007 IA3di Sox (as So2) 0.28 0.05 Z 2 10 10 10 0.000 -0.001 0.000 0.000 1.046 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.040 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <	1A3bi(fu)	SOx (as SO2)	1'618.97	34.55	1	1	10	10	10	10	0.000	-4.046	0.459	0.458
IA3biv(fu) SOx (as SO2) 25.47 0.52 1 1 10 10 10 0.000 -0.064 0.008 0.007 IA3c SOx (as SO2) 66.48 0.012 1 11 10 10 10 0.000 -0.064 0.008 0.008 0.009 IA3dii SOx (as SO2) 0.648 0.05 2 2 10 10 10 0.000 -0.064 0.000 0.000 IA3ii SOx (as SO2) 0.28 0.05 2 2 10 10 10 0.000 -0.001 0.000 <	1A3bii(fu)		292.93	4.86	1	1	10	10	10	10	0.000	-0.736	0.086	0.085
IA3biv(fu) SOx (as SO2) 25.47 0.52 1 1 10 10 10 0.000 -0.064 0.008 0.007 IA3c SOx (as SO2) 66.48 0.012 1 11 10 10 10 0.000 -0.064 0.008 0.008 0.009 IA3dii SOx (as SO2) 0.648 0.05 2 2 10 10 10 0.000 -0.064 0.000 0.000 IA3ii SOx (as SO2) 0.28 0.05 2 2 10 10 10 0.000 -0.001 0.000 <	1A3biii(fu)	SOx (as SO2)	1'842.88	8.70	1	1	10	10	10	10	0.000	-4.684	0.529	0.527
IA3c Sox (as SO2) 26.92 0.12 1 1 10 10 10 10 0.000 -0.68 0.008 0.008 IA3dii Sox (as SO2) 64.88 0.49 1 1 10 10 10 0.000 -0.64 0.019 0.000 IA3ei Sox (as SO2) 0.28 0.05 2 2 10 10 10 0.000 -0.004 0.000 0.000 IA4ai Sox (as SO2) 1.61 0.05 1 1 10 10 10 0.001 -9.670 1.046 1.048 IA4ai Sox (as SO2) 1.61 0.05 1 1 10 10 10 10 0.000 -0.004 0.000 0.000 IA4bi Sox (as SO2) 1.50 1 1 10 10 10 10 10 10 0.000 -0.77 0.234 0.224 IA4bi Sox (as SO2) 304.60 1.60 1 10 10 10 10 10 0.000 -0.774 0.390 <t< td=""><td>1A3biv(fu)</td><td>, ,</td><td>25.47</td><td></td><td>1</td><td>1</td><td>10</td><td>10</td><td>10</td><td>10</td><td>0.000</td><td>-0.064</td><td></td><td></td></t<>	1A3biv(fu)	, ,	25.47		1	1	10	10	10	10	0.000	-0.064		
AA3dii SOX (as SO2) 64.88 0.49 1 1 10 10 10 0.000 -0.014 0.019 0.019 IA3ei SOX (as SO2) 0.28 0.05 2 2 10 10 10 0.000 -0.001 0.000 0.000 IA4ai SOX (as SO2) 37869.92 83.11 2 2 10 10 10 0.000 -0.004 0.000 0.000 IA4bii SOX (as SO2) 1.61 0.05 1 1 10 10 10 0.000 -0.004 0.000 0.000 IA4bii SOX (as SO2) 335.80 51.09 21 11 10 10 10 0.000 -0.013 0.0272 0.234 0.222 IA4cii SOX (as SO2) 335.80 51.09 21 11 10 10 10 0.000 -0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014	· · · ·					1								
IA3ei SOX (as SO2) 0.28 0.05 2 2 10 10 10 10 0.000 -0.001 0.000 0.000 IA4aii SOX (as SO2) 3'869.92 83.11 2 2 10 10 10 10 0.000 -0.004 0.000 0.000 IA4aii SOX (as SO2) 1.01 0.003 1 1 10 10 10 0.000 -0.004 0.000 0.000 IA4bi SOX (as SO2) 1.20 0.03 1 1 10 10 10 0.000 -0.003 0.000 -0.000 IA4cii SOX (as SO2) 335.80 51.09 21 21 18 18 28 28 0.000 -0.014 0.016 0.01 0.01							-	-	-	-				
IA4ai SOX (as SO2) 3'869.92 83.11 2 2 10 10 10 0.001 -9.670 1.046 1.048 IA4aii SOX (as SO2) 1.61 0.05 1 1 10 10 10 0.000 -0.004 0.000 0.000 IA4bi SOX (as SO2) 1.0'354.85 207.08 4 4 10 11 11 0.000 -0.003 0.000 0.000 IA4bi SOX (as SO2) 1.02 0.03 1 1 10 10 10 0.000 -0.777 0.234 0.222 IA4cii SOX (as SO2) 304.60 1.60 1 1 10 10 0.000 -0.777 0.034 0.222 IA4cii SoX (as SO2) 304.60 1.60 1 1 10 10 0.000 -0.777 0.034 0.222 IA4cii SoX (as SO2) 30.98 0.83 22 22 10 204 100 204 0.000 -0.001 0.01 202 IA1 SoX (as SO2)														
1A4aii SOX (as SO2) 1.61 0.05 1 1 10 10 10 0.000 -0.004 0.000 0.000 IA4bii SOX (as SO2) 10'354.85 207.08 4 4 10 10 11 11 10 0.000 -0.003 0.000 0.000 IA4bii SOX (as SO2) 132.80 51.09 21 21 18 18 28 28 0.003 -0.727 0.234 0.222 IA4cii SOX (as SO2) 304.60 1.60 1 1 10 10 0.000 -0.774 0.090 0.090 IA5b SOX (as SO2) 78.17 33.02 1 1 10 10 10 0.000 -0.774 0.090 0.090 IA50 (as SO2) 49.02 14.34 30 30 47 47 54 57 0.001 -0.766 0.297 0.286 2A1 SOX (as SO2) 0.01 0.01 2 100 244 100 447 0.000 0.000 0.000 0.001 0.001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
1A4bi SOX (as SO2) 10'354.85 207.08 4 4 10 10 11 11 0.007 -25.902 2.464 2.4244 IA4bii SOX (as SO2) 1.20 0.03 1 1 10 10 0.000 -0.003 0.000 0.000 IA4cii SOX (as SO2) 336.60 1.60 1 1 10 10 0.000 -0.727 0.234 0.221 IA4cii SOX (as SO2) 304.60 1.60 1 1 10 10 0.000 -0.774 0.090 0.090 IA4cii SOX (as SO2) 78.17 33.02 1 1 10 10 10 0.000 -0.714 0.090 0.090 IA5b SOX (as SO2) 30.98 0.83 22 23 31 37 39 0.000 -0.766 0.297 0.286 2A1 SOX (as SO2) 0.01 0.01 2 100 446 100 447 0.000 0.000 0.001 0.000 2A2 SOX (as SO2) 168.00														
1A4bii SOx (as SO2) 1.20 0.03 1 1 10 10 10 0.000 -0.003 0.000 0.000 1A4cii SOx (as SO2) 335.80 51.09 21 21 18 18 28 28 0.003 -0.727 0.234 0.222 1A4cii SOx (as SO2) 304.60 1.60 1 1 10 10 10 0.000 -0.774 0.090 0.000 1A5b SOx (as SO2) 78.17 33.02 1 1 10 10 10 0.000 -0.766 0.297 0.284 1B2ix SOx (as SO2) 0.69 0.41 2 2 100 244 100 244 0.000 -0.001 0.001 0.001 2A1 SOx (as SO2) 0.08 0.02 5 5 100 448 100 448 0.000 0.000 0.001 0.000 2A5 SOx (as SO2) 168.0 40.01 2 2 20 20 20 20 2.27 0.227 0.227 0.								-						
1A4ci SOx (as SO2) 335.80 51.09 21 21 18 18 28 28 0.003 -0.727 0.234 0.222 1A4cii SOx (as SO2) 304.60 1.60 1 1 10 10 10 10 0.000 -0.774 0.090 0.090 1A5b SOx (as SO2) 78.17 33.02 1 1 10 10 10 0.000 -0.774 0.090 0.090 1A5b SOx (as SO2) 78.17 33.02 1 1 10 10 10 0.000 -0.115 0.014 0.014 0.044 1B2c SOx (as SO2) 300.98 0.83 22 22 31 31 37 39 0.000 -0.001 0.001 2.26 2A1 SOx (as SO2) 0.69 0.41 2 2 100 244 100 446 100 447 0.000 0.000 0.001 0.001 2.27 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227														
1A4cii SOx (as SO2) 304.60 1.60 1 1 10 10 10 0.000 -0.774 0.090 0.090 1A5b SOx (as SO2) 78.17 33.02 1 1 10 10 10 0.000 -0.714 0.090 0.090 1A5b SOx (as SO2) 78.17 33.02 1 1 10 10 10 0.000 -0.715 0.014 0.014 1B2ic SOx (as SO2) 300.98 0.83 22 22 31 31 37 39 0.000 -0.766 0.297 0.286 2A1 SOx (as SO2) 0.01 0.01 2 2 100 446 100 447 0.000 0.001 0.027 0.237 0.237 0.237 0.234 0.335 0.280		, ,												
tA5b SOX (as SQ) 78.17 33.02 1 1 10 10 10 10 0.000 -0.115 0.014 0.014 1B2aiv SOX (as SQ) 419.02 14.34 30 30 47 47 54 57 0.001 -1.034 0.584 0.569 1B2c SOX (as SQ) 0.09 0.41 2 2 31 31 37 39 0.000 -0.766 0.297 0.286 2A1 SOX (as SQ) 0.01 0.01 2 100 244 100 244 0.000 -0.001 0.001 0.001 2A2 SOX (as SQ) 0.08 0.02 5 100 448 100 447 0.000 0.000 0.000 0.000 2A5 SOX (as SQ) 168.00 40.01 2 2 40 40 40 40 0.022 -1.092 0.227 0.133 0.131 2C1 SOX (as SQ) 144.04 13.11 2 2 83 101 0.002 -0.334 0.335 0.227<														
IB2aiv SOx (as SO2) 419.02 14.34 30 30 47 47 54 57 0.001 -1.034 0.584 0.569 IB2c SOx (as SO2) 300.98 0.83 22 22 31 31 37 39 0.000 -0.766 0.297 0.286 ZA1 SOx (as SO2) 0.01 0.01 2 2 100 244 100 204 0.000 -0.001 0.001 0.001 ZA2 SOx (as SO2) 0.01 0.01 2 2 100 448 100 448 0.000 -0.000 0.000 0.000 ZA5a SOx (as SO2) 625.20 197.85 2 2 0 20 20 20 0.022 -1.092 0.227 0.227 ZB10a SOx (as SO2) 144.04 13.11 2 2 83 101 83 101 0.000 -1.748 3.483 1.748 ZC1 SOx (as SO2) NA 0.02 5 5 83 101 83 101 0.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								-						
B2c SOX (as SO2) 300.98 0.83 22 22 31 31 37 39 0.000 -0.766 0.297 0.286 2A1 SOX (as SO2) 0.69 0.41 2 2 100 204 100 204 0.000 -0.01 0.001 0.001 2A2 SOX (as SO2) 0.01 0.01 2 2 100 446 100 447 0.000 0.000 0.000 0.000 2A5a SOX (as SO2) 0.08 0.02 5 5 100 448 100 447 0.000 0.000 0.001 0.002 2B5 SOX (as SO2) 168.00 40.01 2 2 40 40 40 0.004 -0.327 0.133 0.131 2C1 SOX (as SO2) 144.04 13.11 2 2 83 101 83 101 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 <t< td=""><td></td><td>, ,</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		, ,				-								
AA1 SOx (as SO2) 0.69 0.41 2 2 100 204 100 204 0.000 -0.001 0.001 0.001 2A2 SOx (as SO2) 0.01 0.01 2 2 100 446 100 447 0.000 0.000 0.000 0.000 2A5a SOx (as SO2) 0.08 0.02 5 5 100 448 100 448 0.000 0.000 0.000 0.001 0.000 2B5 SOx (as SO2) 625.20 197.85 2 2 20 20 20 0.022 -1.092 0.227 0.227 2B10a SOx (as SO2) 168.00 40.01 2 2 40 40 40 40 0.002 -0.334 0.335 0.280 2C1 SOx (as SO2) 144.04 13.11 2 2 83 101 83 101 0.000 -1.748 3.483 1.748 2C7c SOx (as SO2) NA 0.02 5 5 83 101 83 101 0.000		, ,												
2A2 SOX (as SO2) 0.01 0.01 2 2 100 446 100 447 0.000 0.000 0.000 0.000 2A5a SOX (as SO2) 0.08 0.02 5 5 100 448 100 448 0.000 0.000 0.000 0.000 2B5 SOX (as SO2) 625.20 197.85 2 2 20 20 20 0.022 -1.092 0.227 0.227 2B10a SOX (as SO2) 168.00 40.01 2 2 40 40 40 40 0.004 -0.327 0.133 0.131 2C1 SOX (as SO2) 144.04 13.11 2 2 83 101 83 101 0.002 -0.334 0.335 0.280 2C3 SOX (as SO2) NA 0.02 5 5 83 101 83 101 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		, ,												
2A5a SOX (as SO2) 0.08 0.02 5 5 100 448 100 448 0.000 0.000 0.001 0.000 2B5 SOX (as SO2) 625.20 197.85 2 2 20 20 20 20 0.022 -1.092 0.227 0.227 2B10a SOX (as SO2) 168.00 40.01 2 2 40 40 40 40 0.004 -0.327 0.133 0.131 2C1 SOX (as SO2) 144.04 13.11 2 2 83 101 83 101 0.000 -1.748 3.483 1.748 2C3 SOX (as SO2) NA 0.02 5 5 83 101 83 101 0.000 -0.000 0.000 <td></td> <td>, ,</td> <td></td>		, ,												
285 SOX (as SO2) 625.20 197.85 2 2 20 20 20 20 0.022 -1.092 0.227 0.227 2810a SOX (as SO2) 168.00 40.01 2 2 40 40 40 40 0.004 -0.327 0.133 0.131 2C1 SOX (as SO2) 144.04 13.11 2 2 83 101 83 101 0.002 -0.334 0.335 0.280 2C3 SOX (as SO2) 696.30 NO NO NO NO NO NO 0.00 -1.748 3.483 1.748 2C7c SOX (as SO2) 3.44 3.27 25 25 84 100 85 105 0.000 0.000 0.004 0.004 2C4 SOX (as SO2) 1.30 0.32 3 3 100 203 100 203 0.000 -0.002 0.005 0.002 5C1a SOX (as SO2) NA <t< td=""><td></td><td>, ,</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		, ,						-						
2810a SOX (as SO2) 168.00 40.01 2 2 40 40 40 40 0.004 -0.327 0.133 0.131 2C1 SOX (as SO2) 144.04 13.11 2 2 83 101 83 101 0.002 -0.334 0.335 0.280 2C3 SOX (as SO2) 696.30 NO NO NO NO NO NO NO 0.000 -1.748 3.483 1.748 2C7c SOX (as SO2) NA 0.02 5 5 83 101 83 101 0.000 -0.000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003		, ,												
2C1 SOX (as SO2) 144.04 13.11 2 2 83 101 83 101 0.002 -0.334 0.335 0.280 2C3 SOX (as SO2) 696.30 NO 0.000 -1.748 3.483 1.748 2C7c SOX (as SO2) NA 0.02 5 5 83 101 83 101 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 2G SOX (as SO2) 3.44 3.27 25 25 84 100 85 105 0.000 0.000 0.004 0.004 2H3 SOX (as SO2) 1.30 0.32 3 3 100 203 100 203 0.000 -0.002 0.005 0.002 5B2 SOX (as SO2) NA 1.09 20 20 99 101 101 104 0.000 0.003 0.003 0.003 5 5 5 50 40		,												
2C3 SOX (as SO2) 696.30 NO		, ,												
227c SOx (as SO2) NA 0.02 5 5 83 101 83 101 0.000 0.000 0.000 0.000 0.000 2G SOx (as SO2) 3.44 3.27 25 25 84 100 85 105 0.000 0.000 0.004 0.004 2H3 SOx (as SO2) 1.30 0.32 3 3 100 203 100 203 0.000 -0.002 0.003 0.003 5B2 SOx (as SO2) NA 1.09 20 20 99 101 101 104 0.000 0.003 0.003 0.003 5C1a SOx (as SO2) 24.23 11.49 50 50 40 40 62 66 0.001 -0.033 0.033 0.036 5C1a SOx (as SO2) 45.00 NO NO NO NO NO NO NO 0.000 -0.115 0.050 0.022 0.021 5C1bi SOx (as SO2) 74.10 17.22 20 20 30 35 37														
2G SOX (as SO2) 3.44 3.27 25 25 84 100 85 105 0.000 0.000 0.004 0.004 2H3 SOX (as SO2) 1.30 0.32 3 3 100 203 100 203 0.000 -0.002 0.005 0.002 5B2 SOX (as SO2) NA 1.09 20 20 99 101 101 104 0.000 0.003 0.003 0.003 5C1a SOX (as SO2) 24.23 11.49 50 50 40 40 62 66 0.001 -0.033 0.039 0.036 5C1bi SOX (as SO2) 45.00 NO NO NO NO NO NO NO 0.000 -0.115 0.050 0.048 5C1bii SOX (as SO2) 19.50 NO NO NO NO NO NO NO 0.000 -0.050 0.022 0.021 5C1bii SOX (as SO2) <td< td=""><td>2C3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2C3													
2H3 SOX (as SO2) 1.30 0.32 3 3 100 203 100 203 0.000 -0.002 0.005 0.002 5B2 SOX (as SO2) NA 1.09 20 20 99 101 101 104 0.000 0.003 0.003 0.003 5C1a SOX (as SO2) 24.23 11.49 50 50 40 40 62 66 0.001 -0.033 0.039 0.036 5C1bi SOX (as SO2) 45.00 NO NO NO NO NO NO 0.00 -0.115 0.050 0.048 5C1bii SOX (as SO2) 19.50 NO NO NO NO NO NO 0.000 -0.155 0.022 0.021 5C1bii SOX (as SO2) 74.10 17.22 20 20 30 35 37 0.001 -0.145 0.660 0.57 5C1bix SOX (as SO2) 0.51 0.35 48 48 97 133 98 145 0.000 0.000 0.001 0	2C7c	· · · · · · · · · · · · · · · · · · ·												0.000
SB2 SOX (as SO2) NA 1.09 20 20 99 101 101 104 0.000 0.003 0.033 0.033 0.033 0.035 0.035 0.035 0.048 0.050 0.048 0.050 0.022 0.021 0.021 0.022 0.021 0.035 0.035 0.035 0.035 0.035 0.055 0.055 0.050 0.001	2G	, ,												0.004
SC1a SOX (as SO2) 24.23 11.49 50 50 40 40 62 66 0.001 -0.033 0.039 0.036 SC1bi SOX (as SO2) 45.00 NO 0.030 -0.115 0.050 0.048 SC1bii SOX (as SO2) 19.50 NO NO NO NO NO NO NO 0.000 -0.115 0.050 0.048 SC1bii SOX (as SO2) 19.50 NO NO NO NO NO NO NO 0.00 -0.050 0.022 0.021 SC1bii SOX (as SO2) 74.10 17.22 20 20 30 35 37 0.001 -0.145 0.060 0.057 SC2 SOX (as SO2) 0.51 0.35 48 48 97 133 98 145 0.000 0.000 0.001 0.001 501 502 SOX (as SO2) 0.13 0.03 1 1 37 <	2H3	· · · · · ·												0.002
SC1bi SOX (as SO2) 45.00 NO NO <td>5B2</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>0.003</td>	5B2	· · · · · · · · · · · · · · · · · · ·												0.003
SC1biii SOX (as SO2) 19.50 NO NO <td>5C1a</td> <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.001</td> <td></td> <td>0.039</td> <td>0.036</td>	5C1a	, ,									0.001		0.039	0.036
SC1biv SOX (as SO2) 74.10 17.22 20 20 30 35 37 0.001 -0.145 0.060 0.057 SC2 SOX (as SO2) 0.51 0.35 48 48 97 133 98 145 0.000 0.000 0.001 0.001 SD1 SOX (as SO2) 0.13 0.03 1 1 37 37 37 0.000	5C1bi	, ,						NO						0.048
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5C1biii	SOx (as SO2)	19.50	NO	NO	NO	NO	NO	NO	NO	0.000	-0.050	0.022	0.021
SD1 SOx (as SO2) 0.13 0.03 1 1 37 37 37 0.000	5C1biv	SOx (as SO2)	74.10	17.22		20	30	30	35	37	0.001	-0.145	0.060	0.057
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5C2	SOx (as SO2)	0.51	0.35	48	48	97	133	98	145	0.000	0.000	0.001	0.001
6A SOx (as SO2) 9.17 7.20 30 30 50 56 60 0.000 -0.005 0.010 0.009 Total, Monte Carlo simulations 39'184.1 2'829.0 Image: Carlo simulation s	5D1	SOx (as SO2)	0.13	0.03	1	1	37	37	37	37	0.000	0.000	0.000	0.000
Total, Monte Carlo 39'184.1 2'829.0 9.5 9.4 1.0 -92.8 0.6 0.6	5D2	SOx (as SO2)	0.00	0.01	10	10	20	20	22	23	0.000	0.000	0.000	0.000
simulations 39'184.1 2'829.0 9.5 9.4 1.0 -92.8 0.6 0.6	6A	SOx (as SO2)	9.17	7.20	30	30	50	50	56	60	0.000	-0.005	0.010	0.009
Total, inventory 39'181.6 2'829.0 -92.8	-		39'184.1	2'829.0					9.5	9.4	1.0	-92.8	0.6	0.6
	Total, inve	ntory	39'181.6	2'829.0								-92.8		

Table A - 37 Uncertainty analysis of NH_3 emissions, approach 2, for 2023 and for the trend 1990-2023. Monte Carlo simulations were run 500'000 times. The reported uncertainties correspond to the borders of the narrowest 95.0 % confidence interval. Contributions to inventory trend (mean, uncertainties, columns I and J) are values normalised by the total inventory base year emission ((fu) means fuel used approach).

٨	D	C	D		-	F	-		_				
A	В	С	D	l	-			(Emic	sion	H	1	J	
		E a la classa	E a la classa	Activit	y data	Emis		-		Emission	Contribution	Cantrib	
NFR	Dellutent	Emissions	Emissions	uncer	tainty	fac		comb		contribution	Contribution	Contribu	
NFK	Pollutant	1990	2023	20	23	uncer	'	uncer	'	to variance	to trend	uncertaint	y of trend
				()0((.)0(20		20		2023	01	()0((.)0(
1.1.1 -	NU 12	t	t 12.27	(-)%	(+)%	(-)%	(+)%	(-)%	(+)%	Fraction	%	(-)%	(+)%
1A1a	NH3	4.85	42.37	10	10	20	20	22	22	0.000	0.055	0.014	0.015
1A1b	NH3	0.01	0.01	1	1	10	10	10	10	0.000	0.000	0.000	0.000
1A2a	NH3	0.00	0.00	2	2	10	10	10	10	0.000	0.000	0.000	0.000
1A2b	NH3	0.11	0.00	2	2	10	10	10	10	0.000	0.000	0.000	0.000
1A2c	NH3	0.02	0.01	2	2	10	10	10	10	0.000	0.000	0.000	0.000
1A2d	NH3	0.02	0.00	2	2	10	10	10	10	0.000	0.000	0.000	0.000
1A2e	NH3	0.02	0.01	2	2	10	10	10	10	0.000	0.000	0.000	0.000
1A2f	NH3	147.02	168.44	2	2	9	9	9	9	0.000	0.031	0.008	0.008
1A2gvii	NH3	1.00	1.55	1	1	50	49	50	49	0.000	0.001	0.000	0.000
1A2gviii	NH3	17.00	39.15	2	2	9	9	9	9	0.000	0.032	0.005	0.006
1A3bi(fu)	NH3	1'324.97	826.10	1	1	50	50	50	50	0.004	-0.731	0.375	0.375
1A3bii(fu)	NH3	8.57	35.60	1	1	50	50	50	50	0.000	0.040	0.020	0.021
1A3biii(fu)	NH3	4.55	33.03	1	1	50	50	50	50	0.000	0.042	0.021	0.022
1A3biv(fu)	NH3	3.26	3.48	1	1	50	50	50	50	0.000	0.000	0.000	0.000
1A3c	NH3	0.07	0.07	1	1	51	50	50	50	0.000	0.000	0.000	0.000
1A3dii	NH3	0.20	0.21	1	1	50	50	50	50	0.000	0.000	0.000	0.000
1A4ai	NH3	19.80	37.71	2	2	10	10	10	10	0.000	0.026	0.004	0.005
1A4aii	NH3	0.01	0.02	1	1	10	10	10	10	0.000	0.000	0.000	0.000
1A4bi	NH3	153.12	55.96	4	4	10	10	11	11	0.000	-0.142	0.026	0.025
1A4bii	NH3	0.01	0.01	1	1	10	10	10	10	0.000	0.000	0.000	0.000
1A4ci	NH3	2.88	8.44	21	21	10	10	23	24	0.000	0.008	0.003	0.003
1A4cii	NH3	0.76	0.82	1	1	50	50	50	50	0.000	0.000	0.000	0.000
1A5b	NH3	0.04	0.04	1	1	50	49	50	50	0.000	0.000	0.000	0.000
2B1	NH3	0.07	0.01	2	2	10	10	10	10	0.000	0.000	0.000	0.000
2B2	NH3	0.73	NO	NO	NO	NO	NO	NO	NO	0.000	-0.001	0.000	0.000
2B10a	NH3	7.73	NA	NA	NA	NA	NA	NA	NA	0.000	-0.011	0.005	0.005
2C1	NH3	11.90	1.51	2	2	100	204	100	204	0.000	-0.015	0.031	0.015
2C7c	NH3	9.19	8.16	5	5	100	447	100	446	0.000	-0.002	0.007	0.002
2G	NH3	203.15	67.89	25	25	40	40	46	49	0.000	-0.198	0.118	0.109
2H2	NH3	132.33	49.36	10	10	100	446	100	446	0.001	-0.120	0.535	0.120
2H3	NH3 NH3	1.04	0.26	3	3	100	203	100	203	0.000	-0.001	0.002	0.001
2L		2.38	3.69	25	25	99	101	103	105	0.000	0.002	0.002	0.003
3B1a	NH3	9'337.10 5'190.92	10'144.27	6 6	6 6	29 27	29 27	30 27	29 28	0.221	1.183	1.352	1.384
3B1b	NH3 NH3		7'241.49	6	6	87	87	87	28 88		3.005	1.167	1.228
3B2 3B3	NH3 NH3	509.75 6'965.04	483.81 4'735.68	6	6	40	40	87 41	41	0.004	-0.038 -3.255	0.088 1.486	0.072
3B3 3B4d	NH3	158.13	4755.68	6	6	40 65	40 64	65	65	0.090	-3.255	0.023	0.024
3B4u 3B4e	NH3	256.31	393.78	7	6	52	52	52	53	0.000	0.003	0.023	0.024
			101.49	6	6	68	68	68	69			0.114	
3B4f 3B4gi	NH3 NH3	19.65 978.79	673.74	6		82	82	82	82	0.000	0.120	0.084	0.084
3B4gi 3B4gii	NH3 NH3	304.87	673.74	6		82	82	82	82	0.007		0.394	0.379
3B4gii 3B4giii	NH3 NH3	304.87	680.42 31.69	6		93	93	87 93	86 94	0.008		0.488	0.483
3B4giii 3B4giv	NH3 NH3	124.46	90.55	6		93 85	93 86	93 85	94 86	0.000		0.005	0.006
3B4giv 3B4h	NH3 NH3	124.46	42.62	6		85 50	50	85 50	86 51	0.000		0.048	0.044
	NH3 NH3	4'258.83	2'250.67	5	5	50	50	50	51	0.000	-2.934	1.502	1.461
3Da1 3Da2a	NH3 NH3	4 258.83		5	5	21	21	22	22	0.031		4.152	4.187
3Daza 3Da2b	NH3 NH3	1'169.36	20 191.26 NO	NO		NO	NO	NO	NO	0.477		4.152	4.187
3Da2b 3Da2c	NH3	34.00		20	20	50	50	54	54	0.000		0.900	0.865
3Da2c 3Da3	NH3	760.92	1'413.21	20		62	62	62	63	0.008		0.805	0.849
5A	NH3	615.79	186.65	10		50	50	51	51	0.019		0.818	0.829
5A 5B1	NH3	175.08	292.01	20		100	99	101	104	0.000	-0.829 0.171	0.346	0.331
5B1 5B2	NH3	175.08	292.01	20	20	76	99 74	76	80	0.002	0.171	0.185	0.220
5B2 5C1biv	NH3 NH3	5.70		20		50	74 50	53	55	0.001		0.270	0.279
	NH3 NH3	5.70	9.20	20 48	20 48	25	25	53	55	0.000		0.003	
5C2 5D1				48	48	 50	25 50	53	55	0.000		0.012	0.012
101	NH2					50	50	50	50	0.000	0.057	0.030	0.030
	NH3	89.98 845 56	128.83				101	102	100	0.025	0 101	0 6 2 1	0 740
6A Total, Mon	NH3	845.56	969.88	30		99	101	103	108	0.025		0.631	
6A	NH3 ite Carlo s		969.88				101	103 12.2	108 12.1	0.025		0.631 4.8	0.748 4.9

Table A - 38 Uncertainty analysis of PM2.5 emissions, approach 2, for 2023 and for the trend 1990-2023. Monte Carlo simulations were run 500'000 times. The reported uncertainties correspond to the borders of the narrowest 95.0 % confidence interval. Contributions to inventory trend (mean, uncertainties, columns I and J) are values normalised by the total inventory base year emission ((fu) means fuel used approach).

Nr.R Policants Emission Internation policants Emission Internation policants Emission Internation policants Emission Internation policants Contribution to uncartainty of two policants IA1a PM2.5 714.30 460 10 10 70 72 72 72 70 0.000 0.7844 23.03 22.03 IA1a PM2.5 714.30 464 1.54 5 20 20 20 0.000 0.0784 0.028 0.028 IA2a PM2.5 1.464 5 2 2 20 10 10 0.000 0.084 0.028 <	٨	- D	C				I	_		2	ц	1		
NR Partial (1990) Ension (1990) Partial (1990) Partial (1990) Contribution (1990) <thcontribution (1990)<="" th=""> Contribution (1990)</thcontribution>	A	В	C	D							H Emission	I		
Phill Am Point Am			Emissions	Emissions								Contribution	Contrib	ution to
No. 1	NFR	Pollutant	1990	2023			uncer	tainty	uncer	tainty	to variance	to trend	uncertaint	y of trend
IA3 PMZ5 T72 T71 T3 0.000 -2.844 2.330 2 IA10 PMZ5 4 47.6 I.340 I.2 20 0.0 20 0.000 -0.75 0.098 0.098 0.098 0.008 0.018 0.013 0.028 0.001 0.034 0.0128 0.001 0.000 -0.75 0.044 0.012 0.010 1.00 0.028 0.070 0.044 0.070 0.044 0.070 0.044 0.070 0.044 0.070 0.044 0.070 0.044 0.070 0.044 0.070 0.044 0.070 0.044 0.070 0.044 0.070 0.044 0.045 0.04							-	-						
IA10 PM2.5 4 / 566 1.50 1 1 2 20 20 20 20.000 -0.179 0.000 0.179 0.015 0 IA2 PM2.5 1.64.8 2.34 2 2 28 28 28 0.000 -0.036 0.015 0 IA2 PM2.5 2.03 0.01 10 0.000 -0.036 0.044 0 IA2 PM2.5 2.04.8 111 2 2 10 10 10 0.000 -0.038 0.0346 0 IA2 PM2.5 2.85.8 111 2 2 10 10 10 0.000 -0.038 0.0346 0 IA2 PM2.5 2.87.51 186.20 2 10 10 100 0.000 -0.038 0.034 0.000 -0.038 0.027 0.000 -0.048 0.000 -0.048 0.000 -0.048 0.000 -0.048 0.000 0.000 0.000 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(+)%</td>				-			<u> </u>							(+)%
1A1C PM2.5 16.4c 13.4d 9 5 70 721 721 0.000 0.034 0.012 0 1A2b PM2.5 20.33 1.00 2 2 30 30 30 0.000 0.048 0.028 0 1A2b PM2.5 148.0 0.118 2 2 30 31 41 31 0.000 -0.038 0.044 0 1A2e PM2.5 272.86 0.111 2 2 65 65 66 64 0.000 -0.380 0.448 0 1A2e PM2.5 272.85 40.13 1 30 30 30 30 0.000 -0.340 0.441 0 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.144 1.143 1.143 1.143 1.144 1.143 1.144 1.143 1.143 1.143 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.297 0.078</td>														2.297 0.078
1A20 PM2.5 14.81 2.8 2 2 2.8 2.8 2.8 2.8 0.000 0.048 0.024 0.0 1A20 PM2.5 0.0.77 0.5.7 2 2 10 10 10 0.000 0.138 0.076 0.0 1A2 PM2.5 14.90 0.13 2 2 10 10 10 0.000 0.038 0.044 0.0 1A2 PM2.5 24.75.86 11.11 2 2 10 10 10 0.000 4.3.34 1.3 1.3.36 0.0.34 1.3.36 0.0.34 0.0.3 1.3.36 0.0.34 0.0.1.7 0.0.3 0.0.00 4.0.34 0.0.3 0.0.00 4.0.34 0.0.1.7 0.0.00 4.0.34 0.0.00 4.0.34 0.0.00 4.0.34 0.0.00 4.0.00 1.0.34 0.0.00 4.0.00 4.0.34 0.0.00 4.0.00 4.0.01 4.0.00 4.0.01 4.0.00 4.0.00 4.0.00 4.0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.078</td>														0.078
IA26 PMZ.5 0.039 1.00 2 2 30 30 30 0.000 0.075 0.044 0 IA26 PMZ.5 140.67 0.181 2 2 10 10 10 0.000 0.038 0.044 0 IA26 PMZ.5 135.65 0.111 2 2 10 10 10 0.000 0.036 0.048 0 IA27 PMZ.5 728.66 83.41.71 1 50 50 50 0.000 1.338 0.079 1.11 22 2 65 65 64 66 0.000 4.26.33 2.219 1 IA3400 PMZ.5 52.277 1.89.01 1 30 30 30 0.000 4.081 4.42 1 1.331.141 1.331.141 1 57 57 0.001 4.661 4.42 0.001 4.64 0.001 4.64 0.001 4.64 0.001 4.43 0.000														0.010
1A2 PM2.5 149.62 0.18 2 2 33 31 34 33 0.000 0.0380 0.036 0.048 0 1A2 PM2.5 473.58 40.13 2 2 10 10 10 0.000 0.039 0.048 0 1A2 PM2.5 723.66 384.17 1 50 50 50 0.010 1.338 0.034 0.000 4.338 0.034 0.000 4.338 0.044 0.01 1.438 0.000 4.338 0.000 4.304 0.001 1.481 1.42 1 50 30 0.000 4.304 0.01 1.481 1.448 1.44 84 48 48 40 0.000 4.304 0.044 0.000 1.448 0.000 1.448 0.000 1.448 0.000 1.448 0.000 1.440 0.024 0.044 0.000 1.440 0.045 1.448 0.000 1.435 0.135 0.135 1		PM2.5	20.39	1.00	2	2	30	30	30		0.000	-0.075		0.036
1A2 PM2.5 25.68 1.11 2 2 10 10 0.000 0.095 0.048 0 JA2pell PM2.5 728.86 384.17 1 1 50 50 0.000 1.338 0.043 0 JA2pell PM2.5 872.51 1166.20 2 26 65 64 66 0.000 0.338 0.043 0.044 0.000 0.001 0.010 0.075 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 </td <td>1A2c</td> <td>PM2.5</td> <td>40.77</td> <td>5.17</td> <td>2</td> <td></td> <td>10</td> <td>10</td> <td>10</td> <td>10</td> <td>0.000</td> <td>-0.138</td> <td>0.070</td> <td>0.055</td>	1A2c	PM2.5	40.77	5.17	2		10	10	10	10	0.000	-0.138	0.070	0.055
DAT PMZ.5 437.28 40.31 2 2 6 66 64 0.000 1.540 1.129 1 JA2geii PMZ.5 778.86 384.17 1 50 50 50 0.010 1.338 0.943 0.000 0.263 0.219 1 JA300 PMZ.5 22.27 1.69 1 29 0.000 0.000 0.040 0.010 1.348 0.000 0.041 0.040 0.010 1.348 0.000 1.012 0.000 0.041 0.011 1.348 1.343 0.000 1.034 0.000 1.041 1.48 48														0.297
DA2pri PM2.5 PT2.886 B86.20 2 66 66 66 60 2.4631 2.219 1 JA3000 PM2.5 92.39 14.12 1 1 29 30 30 0.000 -0.304 0.001 -0.4631 0.044 0.0 JA3000 PM2.5 275.71 7 1 1 30 30 0.000 -0.001 -0.081 0.044 0.0 JA3000 PM2.5 129.43 36.16 1 1 27 27 7 0.000 -6.004 3.442 0.035 0.030 -0.284 0.044 0.0454 0.0456 0.0444 0.0456 0.0444 0.0454 0.0456 0.0464 0.0454 0.0456 0.0464 0.0456 0.0464 0.0456 0.0464 0.0456 0.0464 0.0456 0.0464 0.0456 0.0464 0.0456 0.0464 0.0456 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464									-					0.038
jA2gein PM2.5 P37.51 1826.20 2 2 65 65 64 66 0.004 -2.633 2.219 1 JA3all0 PM2.5 92.39 14.12 1 129 0.00 -0.001 0.000 -0.034 0.048 0.048 0.048 0.048 0.049 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0431 1.0441 0.000 -0.044 0.044 0.000 1.0401 0.056 0.0001 0.0444 0.044 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.040 0.0444 0.041 0.0444 0.041 0.0451 0.0444 0.0444 0.0431 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>1.170 0.841</td>										-				1.170 0.841
JA3800 PM2.5 92.39 JA12 J <thj< th=""> <thj< tr=""> L</thj<></thj<>	-				_									1.962
DA3.80/L0 PM2.5 22.67 169 1 1 30 30 30 0.000 -0.081 0.048 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.043 0.044 0.044 0.044 0.044														0.148
1A3bur(i) PM2.5 329.00 48.06 1 1 48 48 48 48 0.000 1.01 0.775 0.00 1A3bur(i) PM2.5 1534.33 36.16 1 1 53 54 53 55 0.000 -6.004 3.48 2 1A3bur(i) PM2.5 172.71 22.299 1 1 51 50 50 0.000 -0.144 0.00 0.000 0.0144 0.000 0.0144 0.000														0.039
IA3BB IA3BB <th< td=""><td>1A3bi(fu)</td><td>PM2.5</td><td>579.17</td><td>98.62</td><td>1</td><td>1</td><td>57</td><td>57</td><td>57</td><td>57</td><td>0.001</td><td>-1.861</td><td>1.429</td><td>1.283</td></th<>	1A3bi(fu)	PM2.5	579.17	98.62	1	1	57	57	57	57	0.001	-1.861	1.429	1.283
1A3br(i) PM2.5 209.02 77.14 1 1 53 54 55 55 0.000 -0.58 0.444 0 1A3br(i) PM2.5 127.27 232.99 1 1 50 50 50 50 0.000 -0.244 0.148 0 1A3br PM2.5 0.11 0.04 2 2.8 50 50 50 0.000 -0.244 0.148 0 1A4bi PM2.5 0.11 0.04 2 2.8 72 27 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.358 1 1.6 0.00 30 40 49 1 0.003 1.188 1.167 1 1.80 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000														0.666
1A3bw(p) PM2.5 698 50 98.81 1 1 50 50 51 0.061 1.00 0.656 0.0 1A3ic PM2.5 172.71 232.99 1 1 51 44 50 0.000 -0.144 0.104 0 1A3ic PM2.5 0.11 0.04 2 2 28 27 27 27 0.000 -0.000 0.000		-												2.778
1A3c PM2.5 172.71 23.29 1 1 51 48 50 50 50 0.004 0.124 0.184 0 1A3dii PM2.5 0.01 0.04 2 2 28 27 27 27 0.000 1.001 1.80 0.07 81 0.003 1.188 1.167 1 1.80 0.07 91 0.000								-	_					0.389
1A36 PM2.5 59.09 21.94 1 1 50 50 50 50 0.000 0.014 0.000 0.000 1A361 PM2.5 1/34.47 429.98 2 2 28 27 27 27 0.000 1.188 1.157 1 1.80 80 79 81 0.003 -1.188 1.167 1 1.80 80 79 81 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.022 0.021 0.022 0.023 0.020 0.001 0.022 0.023 0.022 0.022 <td< td=""><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.739</td></td<>	. ,													0.739
N36 PM2.5 0.11 0.04 2 2 28 77 27 0.000 0.000 0.000 1A4ai PM2.5 14354.47 429.98 2 2 78 78 78 0.030 -3.553 3.273 3 1A4ci PM2.5 14353.91 181.7.74 4 4 76 76 76 0.030 -4.4700 1.6943 3 1A4ci PM2.5 435.10 127.76 1 180 0.03 -1.080 75 81 0.003 -1.188 1.1167 1 180 0.00 -0.000 -0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.00					_				_					0.169
IA4ai PM2.5 1354.47 24.998 2 2 7.8 <th7< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.001</td></th7<>														0.001
IA4ci PM2.5 696.68 204.88 21 21 39 34 45 0.002 1.1908 1.138 1 IA4cii PM2.5 66.95 44.87 1 1 50 50 50 0.000 -0.163 0.119 0 181a PM2.5 66.95 44.87 1 1 50 50 50 0.000 -0.163 0.119 0 181a PM2.5 0.44 0.00 24.2 0.000 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.022 0.036 0.0783 0 0.022 0.036 0.000 -0.020 0.010 0.022 0.036 0.022 0.036 0.022 0.031 0.020 0.024 0.000 -0.031 0.020 0.024 0.022 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.														3.065
1A4cii PM2.5 435.10 127.76 1 1 80 80 79 81 0.003 -1.188 1.167 1 1A5b PM2.5 86.95 0.44.87 1 1 50 50 0.001 0.002 0.002 0.000 0.000 0.001 0.001 0.002 0.010 0.022 0.031 0.020 0.000 0.004 0.095 0.0 2.47 1.01 44.8 0.064 0.000 -0.002 0.010 0.020 0.020 0.031 0.020 0.031 0.020 0.031 0.020 0.031 0.020 0.031 0.020 0.031 0.020 0.031 0.020 0.031 0.021 0.021	1A4bi	PM2.5	14'535.91	1'851.74			76	76	76	76	0.530	-44.700	16.943	20.511
1A5b PM2.5 86.95 44.87 1 1 50 50 50 0.000 -0.163 0.119 0 1B1.a PM2.5 0.14 0.004 30 40 40 49 51 0.000 -0.000 0.0004 0.000 2A1 PM2.5 0.444 0.002 22 100 244 100 244 0.000 -0.002 0.004 0.002 0.004 0.002 0.000 -0.002 0.000 0.002 0.000 0.002 0.004 0.002 0.004 0.002 0.000 -0.0376 0.783 0.00 2.010 244 100 446 0.000 -0.031 0.020 0.004 0.000 -0.031 0.020 0.004 0.000 -0.031 0.020 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>1.142</td>										-				1.142
Bita PM2.5 0.16 0.04 30 30 40 40 49 51 0.000 0.000 0.000 LB2 PM2.5 0.44 100 22 100 244 100 245 0.000 4.002 4.002 4.002 4.002 4.002 4.002 4.002 4.002 4.002 4.000									-					1.044
182c PM2.5 0.44 100 22 22 100 244 100 245 0.000 0.002 0.004 0 2A1 PM2.5 240.48 142.77 2 100 204 100 204 0.022 -0.376 0.783 0 2A2 PM2.5 102.21 97.86 5 100 447 100 448 0.064 -0.016 0.0995 0 2B10a PM2.5 7.86 NA NA NA NA NA NA 0.000 -0.034 0.095 0 2C3 PM2.5 7.83 NO NO NO NO NO NO 0.000 -0.031 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.022 0.022 0.023 0.022 0.022 0.023 0.022 0.022 0.022 0.022 0.022 0.023 0.022 0.025 0.020 0.020														0.103
2A1 PM2.5 240.48 142.77 2 2 100 204 0.022 0.376 0.783 0 2A2 PM2.5 7.21 6.60 2 100 446 100 446 0.002 0.010 0 2A5a PM2.5 16.20 39.43 2 2 83 101 84 100 0.000 -0.084 0.002 0 2B10 PM2.5 7.86 NA NA<							-							0.000
2A2 PM2.5 7.21 6.60 2 2 100 446 100 446 0.000 -0.002 0.010 0 2A5a PM2.5 102.21 97.86 5 100 447 100 448 0.064 -0.016 0.094 0 2B5 PM2.5 7.86 NA 0.000 -0.031 0.020 0 2C1 PM2.5 7.83 NO NO NO NO NO NO NO NO 0.000 -0.030 0.635 0 2C7c PM2.5 5.66 0.50 5 100 AN NA NA <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>0.376</td>					_				_					0.376
2A5s PM2.5 102.21 97.86 5 100 447 100 448 0.064 -0.016 0.094 0 2B10 PM2.5 61.20 39.43 2 2 83 101 84 100 0.000 -0.034 0.095 0 2B10 PM2.5 7.86 NA								-						0.002
2810a PM2.5 7.86 NA 0.000 -0.031 0.020 0.0231 2C1 PM2.5 78.33 NO NO NO NO NO NO NO NO NO 0.000 -0.032 0.0422 0.022 2C3 PM2.5 1.53 1.40 5 5 100 204 100 205 0.000 -0.001 0.002 0.022 2D3c PM2.5 1.40 0.31 20 100 205 0.000 -0.001 0.002 0.022 2D3c PM2.5 12.00 NA								447	100	448				0.038
2C1 PM2.5 817.90 6.81 2 2 94 125 94 125 0.000 -3.106 4.069 2 2C3 PM2.5 78.33 NO NO NO NO NO NO NO NO 0.000 -0.302 0.633 O 2C7.a PM2.5 1.53 1.40 5 5 100 204 100 205 0.000 -0.001 0.002 0.002 2D31 PM2.5 1.20 NA NA <th< td=""><td>2B5</td><td>PM2.5</td><td>61.20</td><td>39.43</td><td>2</td><td>2</td><td>83</td><td>101</td><td>84</td><td>100</td><td>0.000</td><td>-0.084</td><td>0.095</td><td>0.074</td></th<>	2B5	PM2.5	61.20	39.43	2	2	83	101	84	100	0.000	-0.084	0.095	0.074
2C3 PM2.5 78.33 NO	2B10a				_				_					0.017
2C7a PM2.5 5.66 0.50 5 5 100 204 100 205 0.000 -0.020 0.042 0.022 2C7c PM2.5 1.53 1.40 5 5 100 446 100 446 0.000 -0.001 0.002 0.002 2D3c PM2.5 12.00 NA NA NA NA NA NA NA 0.000 -0.001 0.002 0.002 2D3 PM2.5 12.00 NA NA NA NA NA NA NA NA 0.000 -0.046 0.205 0.000 2D3 PM2.5 138.77 150.91 30 100 204 100 207 0.025 -0.031 0.416 0 2H1 PM2.5 187.99 166.06 10 10 100 204 100 205 0.000 -0.046 0.095 0 2H2 PM2.5 15.60 3.87 3														2.948
2C7c PM2.5 1.53 1.40 5 5 100 446 100 446 0.000 -0.001 0.002 0.002 2D3c PM2.5 1.200 NA NA NA NA NA NA 0.000 -0.001 0.007 0.007 2D3i PM2.5 12.00 NA NA NA NA NA NA 0.000 -0.004 0.007 0.007 2G PM2.5 12.78 327.02 25 25 84 100 84 105 0.031 -0.717 1.091 0 2H2 PM2.5 187.99 166.06 10 100 446 100 446 0.184 -0.081 0.416 0 2H3 PM2.5 18.26 22.19 6 7 100 306 0.001 0.009 0.010 0.015 0.015 0.035 0.001 0.010 0.015 0.015 0.038 0.000 0.000 0.000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.302</td>														0.302
2D3c PM2.5 4.00 3.81 20 20 100 203 100 205 0.000 -0.001 0.007 0 2D3i PM2.5 512.76 327.02 25 84 100 84 105 0.031 -0.717 1.091 0 2H1 PM2.5 512.76 327.02 25 84 100 844 105 0.031 -0.717 1.091 0 2H2 PM2.5 156.0 3.87 3 3 100 205 0.000 -0.046 0.096 0 0 2H3 PM2.5 15.60 3.87 3 100 100 444 100 448 0.015 -0.623 2.806 0 0 381 PM2.5 18.26 22.19 6 7 100 305 100 306 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.035 100								-						0.020
2G PM2.5 512.78 327.02 25 25 84 100 84 105 0.031 -0.717 1.091 00 2H1 PM2.5 235.77 150.91 30 30 100 204 100 207 0.025 -0.326 0.867 0 2H2 PM2.5 15.60 3.87 3 3 100 205 0.000 -0.046 0.096 0 2H3 PM2.5 216.08 47.23 10 10 444 100 448 0.015 -0.623 2.806 0 3B1a PM2.5 20.61 23.05 6 6 100 305 0.001 0.015 0.015 0 335 0.001 0.015 0.015 0 336 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000										-				0.001
2H1 PM2.5 235.77 150.91 30 30 100 204 100 207 0.025 -0.326 0.867 0 2H2 PM2.5 187.99 166.06 10 10 100 446 0.018 -0.025 0.000 -0.046 0.096 0 2H3 PM2.5 15.60 3.87 3 100 205 100 205 0.000 -0.046 0.096 0 2H3 PM2.5 126.08 47.23 10 10 100 447 100 448 0.015 -0.623 2.806 0 3B1a PM2.5 18.26 2.19 6 7 100 305 100 306 0.001 0.009 0.010 0 3B2 PM2.5 0.79 0.82 6 6 100 306 0.000 0.000 0.000 0.000 0.0339 0 384 PM2.5 0.59 3.35 6 6 <td< td=""><td>2D3i</td><td>PM2.5</td><td>12.00</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>0.000</td><td>-0.046</td><td>0.205</td><td>0.046</td></td<>	2D3i	PM2.5	12.00	NA	NA	NA	NA	NA	NA	NA	0.000	-0.046	0.205	0.046
2H2 PM2.5 187.99 166.06 10 10 100 446 100 446 0.081 0.0416 0 2H3 PM2.5 15.60 3.87 3 3 100 205 0.000 -0.046 0.096 0 2l PM2.5 216.08 47.23 10 10 100 447 100 306 0.001 0.005 0.001 0.005 0.001 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.001 0.005 0.000	2G	PM2.5	512.78	327.02	25	25	84	100	84	105	0.031	-0.717	1.091	0.730
2H3 PM2.5 15.60 3.87 3 3 100 205 100 205 0.000 -0.046 0.096 0 21 PM2.5 216.08 47.23 10 10 100 447 100 448 0.015 -0.623 2.806 0 3B1a PM2.5 216.08 47.23 10 100 306 100 306 0.001 0.009 0.010 0 3B1b PM2.5 18.26 22.19 6 7 100 305 100 306 0.001 0.010 0.000					_				_					0.391
21 PM2.5 216.08 47.23 10 10 100 447 100 448 0.015 -0.623 2.806 0 3B1a PM2.5 20.61 23.05 6 6 100 306 100 306 0.001 0.009 0.010 0 3B1b PM2.5 18.26 22.19 6 7 100 305 100 306 0.001 0.015 0.015 0 3B2 PM2.5 0.79 0.82 6 6 100 306 100 306 0.000 0.000 0.000 0.039 0 3B4 PM2.5 0.14 0.18 6 6 100 306 100 306 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.011 0 384 PM2.5 9.25 11.52 6 6 100 306 0.000 0.000 0.002 0.002 0														0.108
381a PM2.5 20.61 23.05 6 6 100 306 100 306 0.001 0.009 0.010 0.039 3B1b PM2.5 18.26 22.19 6 7 100 305 100 305 0.001 0.015 0.015 0 3B2 PM2.5 0.79 0.82 6 6 100 306 0.000														0.046
B1b PM2.5 18.26 22.19 6 7 100 305 100 305 0.001 0.015 0.015 0.001 3B2 PM2.5 0.79 0.82 6 6 100 306 0.000						-								0.623
3B2 PM2.5 0.79 0.82 6 6 100 305 100 306 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002														0.032
3B3 PM2.5 9.57 6.35 6 6 100 306 100 306 0.000 -0.012 0.039 0 3B4d PM2.5 0.14 0.18 6 6 100 305 100 306 0.000 0.001 0.011 0.001 0.000 0.000 0.000 0.000 0.002 0.001 0.002 0.001 0.002 0.001 0.001 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.001</td></td<>														0.001
3B4e PM2.5 3.94 6.73 6 6 100 306 100 306 0.000 0.011 0.011 0.011 3B4f PM2.5 0.59 3.35 6 6 100 306 100 305 0.000 0.011 0.011 0.011 0.011 0.011 3B4gi PM2.5 9.25 11.52 6 6 100 306 0.000 0.009 0.009 0.09 0.036 3B4gii PM2.5 6.78 21.19 6 6 100 306 0.001 0.056 0.056 0.036 3B4gii PM2.5 1.89 2.42 6 6 100 305 100 306 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.00	3B3	PM2.5	9.57	6.35	6	6			100	306	0.000	-0.012	0.039	0.012
3B4f PM2.5 0.59 3.35 6 6 100 306 100 305 0.000 0.011 0.011 0.011 3B4gi PM2.5 9.25 11.52 6 6 100 306 100 306 0.000 0.009 0.009 0.0 3B4gii PM2.5 6.78 21.19 6 6 100 306 0.001 0.056 0.056 0.0 3B4gii PM2.5 1.89 2.42 6 6 100 306 0.000 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.001</td>														0.001
3B4gi PM2.5 9.25 11.52 6 6 100 306 100 306 0.000 0.009 0.009 0.009 3B4gii PM2.5 6.78 21.19 6 6 100 306 100 306 0.001 0.056 0.056 0.0 3B4giii PM2.5 1.89 2.42 6 6 100 305 100 306 0.000 0.002 0.002 0.002 0.002 0.002 0.003 384giv PM2.5 1.98 3.11 6 6 100 305 100 305 0.000 0.004 0.004 0.003 3B4giv PM2.5 1.98 3.11 6 6 100 308 100 308 0.000 0.004 0.004 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.030 0 38 0.000 -0.001 0.000 0.000 0.000 0.000														0.033
3B4gii PM2.5 6.78 21.19 6 6 100 306 100 306 0.001 0.056 0.056 0.056 3B4giii PM2.5 1.89 2.42 6 6 100 305 100 306 0.000 0.002 0.002 0.002 0.002 0.003 3B4giv PM2.5 1.98 3.11 6 6 100 305 100 305 0.000 0.004 0.004 0.004 3B4h PM2.5 0.24 0.09 6 6 100 308 100 308 0.000 -0.011 0.002 0.0 3De PM2.5 47.48 44.87 5 5 100 204 100 204 0.002 -0.010 0.030 0 SA PM2.5 0.73 0.50 10 10 30 31 32 0.000 -0.001 0.001 0 0 0 0 0 0														0.033
3B4giii PM2.5 1.89 2.42 6 6 100 305 100 306 0.000 0.002 0.002 0.002 3B4giii PM2.5 1.98 3.11 6 6 100 305 100 305 0.000 0.004 0.004 0.004 0.004 3B4h PM2.5 0.24 0.09 6 6 100 308 100 308 0.000 -0.001 0.002 0.002 3De PM2.5 47.48 44.87 5 5 100 204 100 204 0.002 -0.010 0.030 0 SA PM2.5 0.73 0.50 10 10 30 31 32 0.000 -0.001 0.001 0 SB2 PM2.5 NA 0.06 20 20 101 100 102 104 0.000 -0.001 0.001 0 0 0 0 0 0 0 <td< td=""><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.028</td></td<>	÷													0.028
3Bagiv PM2.5 1.98 3.11 6 6 100 305 100 305 0.000 0.004 0.004 0.004 3B4h PM2.5 0.24 0.09 6 6 100 308 100 308 0.000 -0.001 0.002 00 3De PM2.5 47.48 44.87 5 5 100 204 100 204 0.002 -0.010 0.030 00 SA PM2.5 0.73 0.50 10 10 30 31 32 0.000 -0.001 0.001 00 SB2 PM2.5 NA 0.06 20 20 101 100 102 104 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002	-													0.172
3BAh PM2.5 0.24 0.09 6 6 100 308 100 308 0.000 -0.001 0.002 00 3De PM2.5 47.48 44.87 5 5 100 204 100 204 0.002 -0.010 0.003 00 SA PM2.5 0.73 0.50 10 10 30 30 31 32 0.000 -0.010 0.001 00 SB2 PM2.5 NA 0.06 20 20 101 100 102 104 0.000 -0.001 0.001 00 SC1a PM2.5 465.12 220.58 49 51 30 30 58 59 0.005 -0.947 1.220 11 SC1bi PM2.5 16.50 NO NO NO NO NO 0.000 -0.042 0.001 0.022 0.001 0.024 0.029 0 0.51bit PM2.5 14.25 2.98	-													0.013
SA PM2.5 0.73 0.50 10 10 30 30 31 32 0.000 -0.001 0.001 0 5B2 PM2.5 NA 0.06 20 20 101 100 102 104 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.0	-			0.09			100	308	100	308		-0.001	0.002	0.001
SB2 PM2.5 NA 0.06 20 20 101 100 102 104 0.000														0.015
SC1a PM2.5 465.12 220.58 49 51 30 30 58 59 0.005 -0.947 1.220 1 SC1bi PM2.5 0.47 NO 0.000 -0.002 0.001 00 SC1biii PM2.5 16.50 NO NO NO NO NO NO 0.000 -0.002 0.001 00 SC1biii PM2.5 14.25 2.98 20 20 34 34 39 40 0.000 -0.044 0.029 00 SC1bv PM2.5 14.25 2.98 20 20 34 34 39 40 0.000 -0.044 0.029 00 SC1bv PM2.5 4.39 0.83 5 5 33 33 34 33 0.000 -0.014 0.008 0 SC2 PM2.5 64.43			-											0.001
SC1bi PM2.5 0.47 NO														0.000
SC1biii PM2.5 16.50 NO														1.084 0.001
SC1biv PM2.5 14.25 2.98 20 20 34 34 39 40 0.000 -0.044 0.029 00 SC1biv PM2.5 4.39 0.83 5 5 33 33 34 33 0.000 -0.044 0.029 00 SC1biv PM2.5 4.39 0.83 5 5 33 33 34 33 0.000 -0.014 0.008 00 SC2 PM2.5 64.43 43.25 48 48 100 157 100 168 0.001 -0.082 0.266 00 SE PM2.5 1.40 1.50 20 20 30 35 37 0.000 0.000 0.002 0 GA PM2.5 4.42 4.69 30 30 40 49 51 0.000 0.001 0.008 0 Total, Monte Carlo 27'152.2 G'220.6 30.6 30.8 1.0 -76														0.001
SC1bv PM2.5 4.39 0.83 5 5 33 33 34 33 0.000 -0.014 0.008 00 SC2 PM2.5 64.43 43.25 48 48 100 157 100 168 0.001 -0.082 0.266 00 SE PM2.5 1.40 1.50 20 20 30 35 37 0.000 0.000 0.002 00 6A PM2.5 4.42 4.69 30 30 40 49 51 0.000 0.001 0.008 00 Total, Monte Carlo simulations 27'152.2 6'220.6 4 30.6 30.8 1.0 -76.6 5.1					_				_					0.030
5C2 PM2.5 64.43 43.25 48 48 100 157 100 168 0.001 -0.082 0.266 0 5E PM2.5 1.40 1.50 20 20 30 35 37 0.000 0.000 0.002 0 6A PM2.5 4.42 4.69 30 30 40 49 51 0.000 0.001 0.008 0 Total, Monte Carlo simulations 27'152.2 6'220.6 30.6 30.8 1.0 -76.6 5.1														0.007
6A PM2.5 4.42 4.69 30 30 40 40 49 51 0.000 0.001 0.008 0 Total, Monte Carlo simulations 27'152.2 6'220.6 30 30.6 30.8 1.0 -76.6 5.1			64.43		48		100	157	100					0.171
Total, Monte Carlo 27'152.2 6'220.6 30.6 30.8 1.0 -76.6 5.1														0.002
simulations 27/152.2 6/220.6 30.6 30.8 1.0 -76.6 5.1			4.42	4.69	30	30	40	40	49	51	0.000	0.001	0.008	0.008
			27'152.2	6'220.6					30.6	30.8	1.0	-76.6	5.1	6.3
			27'172.2	6'224.0								-77.1		

427

Table A - 39 Uncertainty analysis of PM10 emissions, approach 2, for 2023 and for the trend 1990-2023. Monte Carlo simulations were run 500'000 times. The reported uncertainties correspond to the borders of the narrowest 95.0 % confidence interval. Contributions to inventory trend (mean, uncertainties, columns I and J) are values normalised by the total inventory base year emission ((fu) means fuel used approach).

		C			- 1		-		~				1
A NFR	B Pollutant	C Emissions 1990	D Emissions 2023	E Activity data uncertainty 2023		F Emission factor uncertainty 2023		G Emission combined uncertainty 2023		H Emission	l Contribution to trend		
										contribution		Contribution	to uncertainty
										to variance 2023		of trend	
1A1a 1A1b	PM10	47.66	1.50	10	10	20	20	20	20	0.000	-0.131	0.060	0.051
1A1c	PM10	4.89	14.17	5	5	20	20	21	21	0.000	0.026	0.011	0.012
1A2a	PM10	20.53	2.61	2	2	28	28	28	28	0.000	-0.051	0.025	0.022
1A2b	PM10	29.24	1.05	2	2	30	30	30	30	0.000	-0.080	0.041	0.036
1A2c	PM10	40.77	5.17	2	2	10	10	10	10	0.000	-0.101	0.042	0.036
1A2d 1A2e	PM10 PM10	166.58 25.68	0.18	2	2	33 10	33 10	33 10	33 10	0.000	-0.473 -0.070	0.251	0.221
1A2e 1A2f	PM10	832.63	68.17	2	2	65	64	65	65	0.000	-0.070	1.713	1.538
1A2gvii	PM10	2'173.23	2'366.27	- 1	1	50	50	50	50	0.079	0.546	0.328	0.370
1A2gviii	PM10	913.14	196.65	2	2	65	64	66	64	0.001	-2.032	1.583	1.464
1A3ai(i)	PM10	102.65	14.12	1	1	30	30	30	30	0.000	-0.252	0.128	0.113
1A3aii(i)	PM10	25.19	1.69	1	1	31	29	30	30	0.000	-0.067	0.034	0.030
1A3bi(fu)	PM10	579.17	98.62	1	1	57	57	57	57	0.000	-1.365	0.976	0.894
1A3bii(fu) 1A3biii(fu)	PM10 PM10	329.00 1'584.33	48.06 36.16	1	1	49 27	48 27	49 27	48 27	0.000	-0.798 -4.399	0.515	0.464
1A3bin(fu)		209.02	57.14	1	1	54	54	55	53	0.000	-4.333	0.299	0.273
1A3bvi(fu)		2'045.83	2'609.72	1	1	50	50	50	50	0.096	1.597	0.233	1.027
1A3c	PM10	969.78	1'516.58	1	1	50	50	50	50	0.032	1.552	0.925	1.009
1A3dii	PM10	59.09	21.94	1	1	50	50	50	50	0.000	-0.106	0.069	0.064
1A3ei	PM10	0.11	0.04	2	2	27	27	27	27	0.000	0.000	0.000	0.000
1A4ai	PM10	1'427.63	457.11 1'948.21	2	2	79 76	77 76	79 75	77	0.007	-2.743 -35.449	2.442	2.271
1A4bi 1A4ci	PM10 PM10	15'325.72 710.36	208.01	4 21	4 21	40	38	43	45	0.123	-35.449 -1.427	16.897 0.927	19.269 0.818
1A4Ci 1A4cii	PM10	511.19	185.85	1	1	40 80	80	43	45 79	0.000	-1.427	0.927	0.818
1A5b	PM10	286.52	261.49	1	1	49	51	50	50	0.001	-0.071	0.050	0.044
1B1a	PM10	1.60	0.38	30	30	40	40	48	51	0.000	-0.003	0.002	0.002
1B2c	PM10	0.44	0.00	22	22	100	243	100	244	0.000	-0.001	0.003	0.001
2A1	PM10	374.35	222.25	2	2	100	203	100	203	0.011	-0.429	0.881	0.429
2A2	PM10	14.41	13.18	2	2	100	449	100	449	0.000	-0.003	0.015	0.003
2A5a 2B5	PM10 PM10	302.32 73.80	347.67 47.59	5 2	5	100 83	446 101	100 83	446 101	0.169	0.121	0.121	0.539 0.064
2B5 2B10a	PM10	17.07	47.39 NA	NA	NA	NA	NA	NA	NA	0.000	-0.075	0.081	0.084
2C1	PM10	1'485.46	10.46	2	2	94	125	94	125	0.000	-4.120	5.180	3.887
2C3	PM10	113.15	NO	NO	NO	NO	NO	NO	NO	0.000	-0.320	0.670	0.320
2C7a	PM10	5.96	0.53	5	5	100	204	100	204	0.000	-0.015	0.032	0.015
2C7c	PM10	3.06	2.78	5	5	100	447	100	447	0.000	-0.001	0.004	0.001
2D3c	PM10 PM10	19.98 24.00	19.05 NA	20	20	100 NA	204 NA	100 NA	206	0.000	-0.003 -0.068	0.027	0.023
2D3i 2G	PM10 PM10	588.38	398.75	NA 25	NA 25	84	100	85	NA 104	0.000	-0.068	0.302	0.088
2H1	PM10	243.80	156.07	30	30	100	204	100	207	0.010	-0.248	0.661	0.295
2H2	PM10	310.39	308.26	10	10	100	448	100	447	0.132	-0.005	0.264	0.249
2H3	PM10	15.60	3.87	3	3	100	205	100	205	0.000	-0.033	0.070	0.033
21	PM10	864.32	187.64	10	10	100	446	100	446	0.050	-1.682	7.741	1.682
	PM10	84.47	94.45	6	6	100	306	100	305	0.005	0.028	0.030	0.095
3B1b 3B2	PM10 PM10	74.85 19.76	90.95 20.43	7	6	100 100	306 306	100 100	306 307	0.004	0.046	0.046	0.142
3B2 3B3	PM10	213.16	142.62	6	6	100	306	100	307	0.000	-0.198	0.008	0.012
3B4d	PM10	3.42	4.58	6	6	100	306	100	305	0.000	0.003	0.003	0.010
3B4e	PM10	6.20	10.58	6	6	100	307	100	307	0.000	0.012	0.012	0.039
3B4f	PM10	0.94	5.36	6	6	100	305	100	306	0.000	0.013	0.013	0.039
3B4gi	PM10	123.32	153.65	6	6	100	305	100	306	0.012	0.085	0.085	0.264
3B4gii	PM10	67.84	211.92	6	6	100	307	100	307	0.023	0.409	0.409	1.268
3B4giii 3B4giv	PM10 PM10	10.41 18.52	13.29 29.57	6	6 6	100 100	305 307	100 100	306 307	0.000	0.008	0.008	0.025
3B4giv 3B4h	PM10	0.50	0.80	6	6	100	307	100	307	0.000	0.001	0.001	0.003
3De	PM10	1'053.57	999.51	5	5	100	204	100	204	0.224	-0.149	0.460	0.236
5A	PM10	0.73	0.50	10	10	30	30	32	32	0.000	-0.001	0.000	0.000
5B2	PM10	NA	0.06	20	20	100	100	102	103	0.000	0.000	0.000	0.000
5C1a	PM10	516.80	245.09	50	50	50	50	68	72	0.002	-0.770	1.036	0.882
5C1bi 5C1biii	PM10 PM10	3.08 24.00	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	0.000	-0.009 -0.068	0.005	0.005
5C1biii 5C1biv	PM10 PM10	24.00	4.25	20	20	35	NO 35	40	NO 41	0.000	-0.068 -0.045	0.041	0.036
5C1bv	PM10	4.39	0.83	20	5	33	33	33	34	0.000	-0.043	0.027	0.024
5C2	PM10	70.77	47.50	48	48	100	155	100	167	0.000	-0.066	0.216	0.132
5E	PM10	2.80	3.00	20	20	30	30	36	36	0.000	0.001	0.002	0.003
6A	PM10	229.38	113.32	30	30	40	40	49	51	0.000	-0.330	0.304	0.262
Total, Mon		36'472.5	14'074.3					27.8	30.9	1.0	-60.7	10.5	12.2
simulations Total, inver		36'471.4	14'078.4			_					-61.4		
rotal, inver	nory	50 471.4	14 078.4								-61.4		

A5.3.2 Uncertainty estimations, approach 2, sensitivity results

Results for the sensitivity analysis between emissions from each category and inventory emission are given as tornado plots, in Figure A - 5 to

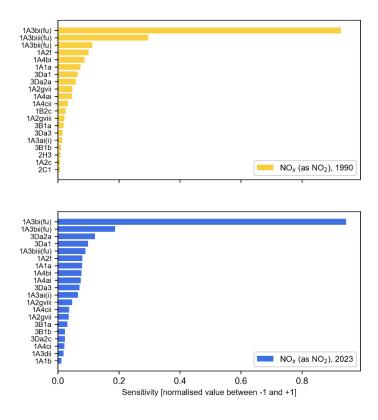


Figure A - 5 Results of the sensitivity analysis between emissions from each category and inventory emissions for NO_x, for the base year 1990 and the reporting year 2023 ((fu) means fuel used approach). Only the twenty categories ranked first are listed. See chp. 1.7 for details and compare also with Table 1-9 (results for the key category analysis approach 2, i.e. using uncertainties).

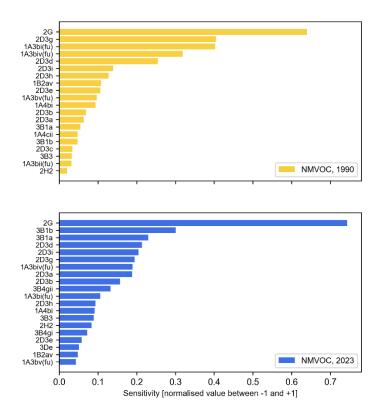


Figure A - 6 Results of the sensitivity analysis between emissions from each category and inventory emissions for NMVOC, for the base year 1990 and the reporting year 2023 ((fu) means fuel used approach). Only the twenty categories ranked first are listed. See chp. 1.7 for details and compare also with Table 1-9 (results for the key category analysis approach 2, i.e. using uncertainties).

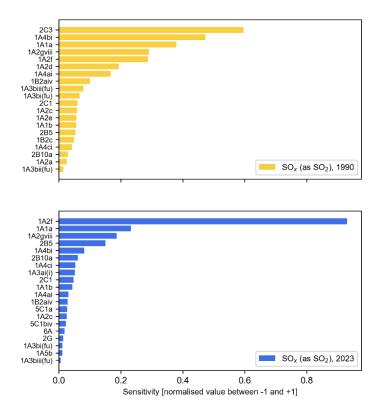


Figure A - 7 Results of the sensitivity analysis between emissions from each category and inventory emissions for SO_x (expressed as SO_2 equivalents), for the base year 1990 and the reporting year 2023 ((fu) means fuel used approach). Only the twenty categories ranked first are listed. See chp. 1.7 for details and compare also with Table 1-9 (results for the key category analysis approach 2, i.e. using uncertainties).

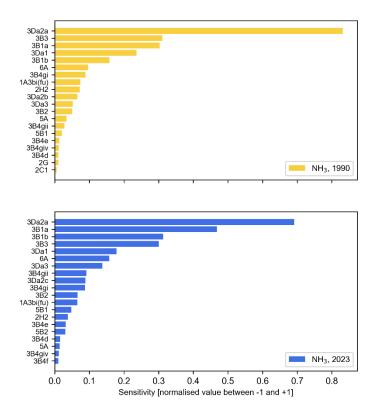


Figure A - 8 Results of the sensitivity analysis between emissions from each category and inventory emissions for NH_3 , for the base year 1990 and the reporting year 2023 ((fu) means fuel used approach). Only the twenty categories ranked first are listed. See chp. 1.7 for details and compare also with Table 1-9 (results for the key category analysis approach 2, i.e. using uncertainties).

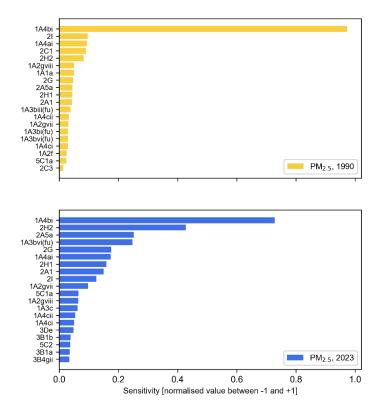


Figure A - 9 Results of the sensitivity analysis between emissions from each category and inventory emissions for PM2.5, for the base year 1990 and the reporting year 2023 ((fu) means fuel used approach). Only the twenty categories ranked first are listed. See chp. 1.7 for details and compare also with Table 1-9 (results for the key category analysis approach 2, i.e. using uncertainties).

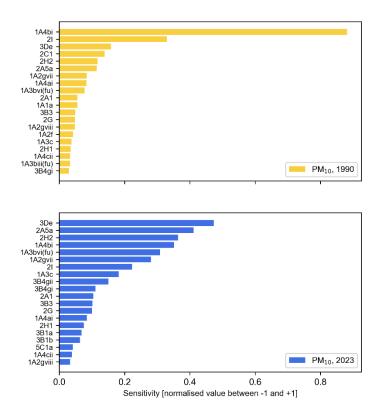


Figure A - 10 Results of the sensitivity analysis between emissions from each category and inventory emissions for PM10, for the base year 1990 and the reporting year 2023. Only the twenty categories ranked first are listed. See chp. 1.7 for details and compare also with Table 1-9 (results for the key category analysis approach 2, i.e. using uncertainties).

A5.3.3 Uncertainty estimations, approach 2, generated distributions for inventory emissions

The following figures present the probability distributions generated by Monte Carlo simulations for each pollutant, for the base year, the reporting year and the trend. Each distribution is fitted using a continuous, normal probability density function, whose integral (or total area) has a value of one, by definition. Therefore, for variables with a large uncertainty, the probability values, depicted on the y-axis, can be very low.

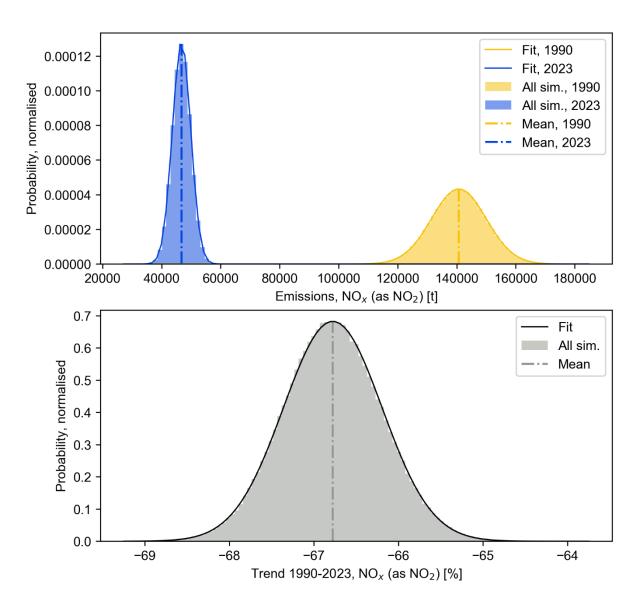


Figure A - 11 Monte Carlo simulations: Distributions obtained for the inventory mean emission for NO_x, for the base year 1990 (top panel, yellow), the reporting year 2023 (top panel, blue) and the trend 1990-2023 (bottom panel, grey). All sim.: all simulations (500'000 values for each distribution). Fit: fit of the distribution using a normal distribution. Mean: mean inventory emission obtained from the simulations.

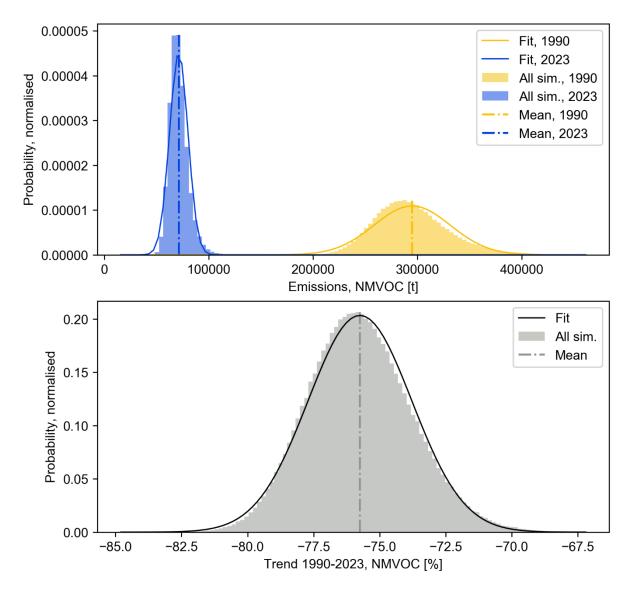


Figure A - 12 Monte Carlo simulations: Distributions obtained for the inventory mean emission for NMVOC, for the base year 1990 (top panel, yellow), the reporting year 2023 (top panel, blue) and the trend 1990-2023 (bottom panel, grey). All sim: all simulations (500'000 values for each distribution). Fit: fit of the distribution using a normal distribution. Mean: mean inventory emission obtained from the simulations.

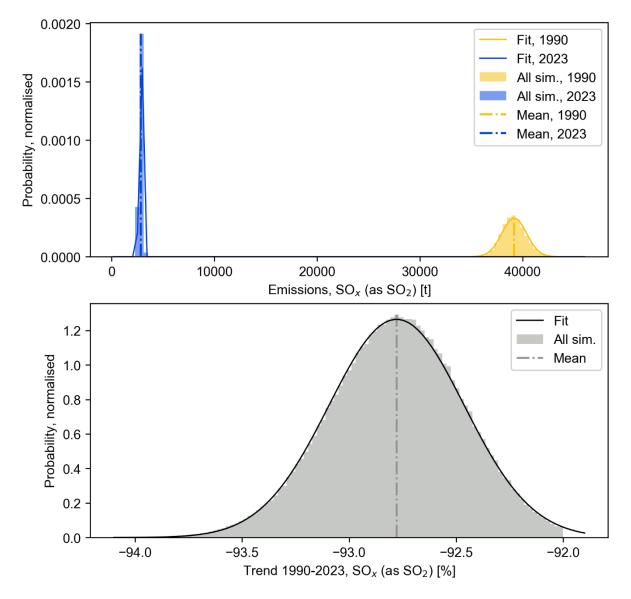


Figure A - 13 Monte Carlo simulations: Distributions obtained for the inventory mean emission for SO_x , for the base year 1990 (top panel, yellow), the reporting year 2023 (top panel, blue) and the trend 1990-2023 (bottom panel, grey). All sim: all simulations (500'000 values for each distribution). Fit: fit of the distribution using a normal distribution. Mean: mean inventory emission obtained from the simulations.

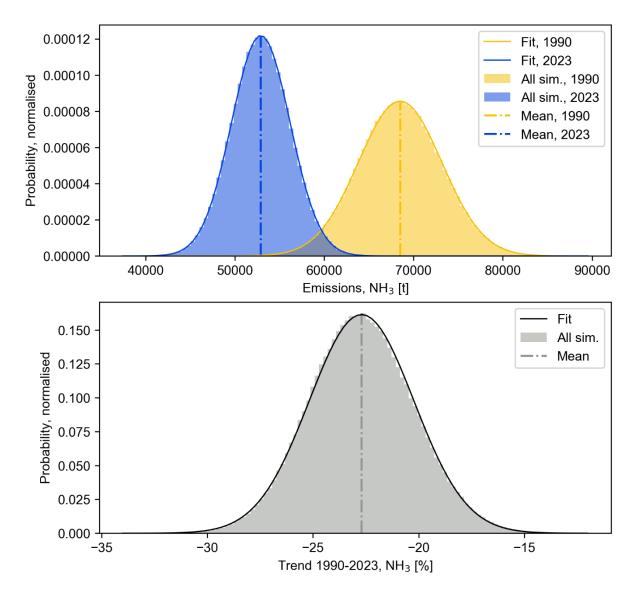


Figure A - 14 Monte Carlo simulations: Distributions obtained for the inventory mean emission for NH_3 , for the base year 1990 (top panel, yellow), the reporting year 2023 (top panel, blue) and the trend 1990-2023 (bottom panel, grey). All sim: all simulations (500'000 values for each distribution). Fit: fit of the distribution using a normal distribution. Mean: mean inventory emission obtained from the simulations.

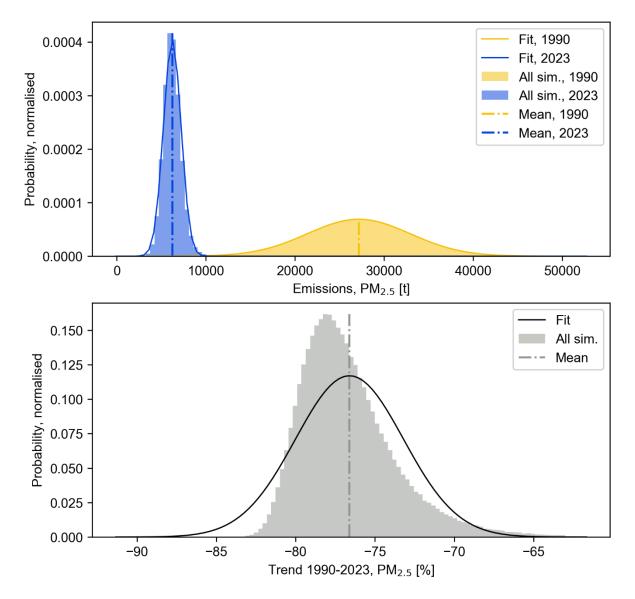


Figure A - 15 Monte Carlo simulations: Distributions obtained for the inventory mean emission for PM2.5, for the base year 1990 (top panel, yellow), the reporting year 2023 (top panel, blue) and the trend 1990-2023 (bottom panel, grey). All sim: all simulations (500'000 values for each distribution). Fit: fit of the distribution using a normal distribution. Mean: mean inventory emission obtained from the simulations.

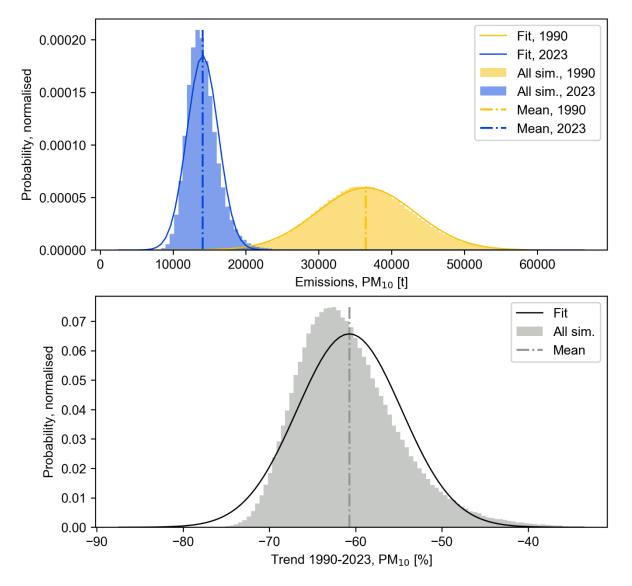


Figure A - 16 Monte Carlo simulations: Distributions obtained for the inventory mean emission for PM10, for the base year 1990 (top panel, yellow), the reporting year 2023 (top panel, blue) and the trend 1990-2023 (bottom panel, grey). All sim: all simulations (500'000 values for each distribution). Fit: fit of the distribution using a normal distribution. Mean: mean inventory emission obtained from the simulations.

Annex 6 Summary information on condensables in PM

Table A - 40 Inclusion/exclusion of the condensable component from PM10 and PM2.5 emission factors.

NFR codes	Source/sector name	PM emiss	sions: the	Emission factor reference and comments
		included	excluded	
1	Energy		х	With the exception of the source categories listed below, no condensables are included in the reported PM emissions.
1A1a, 1A2gviii, 1A4ai/bi/ci	Wood energy combustion	х		The emission factors of particulate matter from wood energy combustion comprise both the filterable and condensable fractions.
1A2gvii, 1A3b-d, 1A4aii/bii/cii, 1A5	Road transportation, Nonroad machinery and vehicles	х		Considering the measuring procedure and the maximum temperature of 52°C, it can be assumed that PM condesables are also included in the measurements. The installed technology also plays a role in this context (gasoline engines with/without catalytic converter, diesel engines with/without particulate filter, etc.).
1A4bi	Charcoal use, Bonfire	х		The emission factor of particulate matter of these two source categories are based on default Tier-2 emission factor of the EMEP/EEA Guidebook 2019 (chp. 1A4, Table 3-39). These emission factor values correspond to total particles which include both filterable and condensable PM.
2	IPPU		Х	
3	Agriculture	NA	NA	
5	Waste		Х	
6	Other		Х	

Annex 7 Emission time series of main air pollutants, PM2.5 and BC for 1990-2023 by pollutant and aggregated sectors

A7.1 NO_x emission time series

Table A - 41 NO_x emissions by sector ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

NOx		1990	1995	2000	2005	2010	
1(fu)	kt	135	112	99	89	79	
2	kt	0.52	0.34	0.36	0.34	0.40	
3	kt	5.0	4.6	4.0	3.8	4.0	
5	kt	0.29	0.21	0.18	0.16	0.15	
6	kt	0.092	0.085	0.098	0.097	0.100	
Sum	kt	141	117	104	94	83	
NOx		2014	2015	2016	2017	2018	
1(fu)	kt	72	70	69	64	60	
2	kt	0.38	0.35	0.31	0.33	0.30	
3	kt	3.9	3.7	3.8	3.8	3.7	
5	kt	0.15	0.15	0.14	0.14	0.12	
6	kt	0.11	0.11	0.11	0.11	0.098	
Sum	kt	77	75	73	69	65	
NOx		2019	2020	2021	2022	2023	2005-2023 (%)
1(fu)	kt	57	48	48	45	43	-52
2	kt	0.26	0.25	0.27	0.25	0.20	-41
3	kt	3.6	3.6	3.7	3.6	3.5	-9.2
5	kt	0.12	0.12	0.12	0.12	0.12	-22
6	kt	0.091	0.091	0.096	0.090	0.085	-12
Sum	kt	61	52	52	49	47	-50

A7.2 NMVOC emission time series

Table A - 42 NMVOC emissions by sector ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

NMVO	C	1990	1995	2000	2005	2010	
1(fu)	kt	130	85	63	44	31	
2	kt	149	105	74	51	47	
3	kt	14	14	14	16	17	
5	kt	1.1	1.0	1.0	1.0	1.2	
6	kt	0.20	0.19	0.21	0.20	0.18	
Sum	kt	295	206	153	112	97	
NMVO	C	2014	2015	2016	2017	2018	
1(fu)	kt	23	21	20	19	18	
2	kt	41	39	37	37	37	
3	kt	18	18	18	18	18	
5	kt	1.4	1.4	1.5	1.5	1.6	
6	kt	0.20	0.20	0.20	0.21	0.18	
Sum	kt	83	80	77	76	75	
NMVO	C	2019	2020	2021	2022	2023	2005-2023 (%)
1(fu)	kt	18	16	16	15	15	-65
2	kt	37	36	36	36	36	-29
3	kt	18	18	18	18	18	12
5	kt	1.7	1.7	1.8	1.7	1.8	73
6	kt	0.17	0.16	0.17	0.17	0.17	-18
Sum	kt	74	72	72	71	71	-36

A7.3 SO_x emission time series

Table A - 43 SO_x emissions by sector ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

SOx		1990	1995	2000	2005	2010	
1(fu)	kt	37	25	15	13	9.2	
2	kt	1.6	0.95	0.78	1.0	0.80	
3	kt	NA	NA	NA	NA	NA	
5	kt	0.16	0.080	0.062	0.063	0.063	
6	kt	0.0092	0.0092	0.0097	0.0094	0.0074	
Sum	kt	39	26	16	14	10	
SOx		2014	2015	2016	2017	2018	
1(fu)	kt	6.1	5.0	4.3	4.0	3.7	
2	kt	0.62	0.65	0.76	0.83	0.91	
3	kt	NA	NA	NA	NA	NA	
5	kt	0.066	0.070	0.058	0.045	0.031	
6	kt	0.0076	0.0073	0.0073	0.0078	0.0074	
Sum	kt	6.8	5.8	5.2	4.9	4.7	
SOx		2019	2020	2021	2022	2023	2005-2023 (%)
1(fu)	kt	3.5	3.1	3.1	2.8	2.5	-81
2	kt	0.81	0.52	0.47	0.35	0.26	-75
3	kt	NA	NA	NA	NA	NA	-
5	kt	0.031	0.030	0.029	0.029	0.030	-52
6	kt	0.0069	0.0068	0.0072	0.0072	0.0072	-23
Sum	kt	4.3	3.7	3.6	3.2	2.8	-80

A7.4 NH₃ emission time series

Table A - 44 NH₃ emissions by sector ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

NH3		1990	1995	2000	2005	2010	
1(fu)	kt	1.7	2.9	4.9	3.9	2.7	1
2	kt	0.37	0.32	0.40	0.35	0.21	
3	kt	65	61	54	54	53	
5	kt	0.91	0.85	0.91	0.93	0.89	
6	kt	0.85	0.79	0.92	0.88	0.92	
Sum	kt	68	65	62	60	58	
NH3		2014	2015	2016	2017	2018	
1(fu)	kt	1.7	1.5	1.4	1.4	1.3	
2	kt	0.20	0.17	0.16	0.18	0.17	
3	kt	52	52	51	51	51	
5	kt	0.87	0.85	0.88	0.86	0.85	
6	kt	1.0	1.1	1.0	1.0	0.97	
Sum	kt	56	55	55	55	54	
NH3		2019	2020	2021	2022	2023	2005-2023 (%)
1(fu)	kt	1.3	1.2	1.2	1.3	1.3	-68
2	kt	0.17	0.15	0.14	0.15	0.13	-63
3	kt	50	50	50	50	50	-7.5
5	kt	0.89	0.88	0.90	0.86	0.86	-6.9
6	kt	0.95	0.96	0.98	0.97	0.97	11
Sum	kt	54	53	54	53	53	-11

A7.5 PM2.5 emission time series

Table A - 45 PM2.5 emissions by sector ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

PM2.5		1990	1995	2000	2005	2010	
1(fu)	kt	24	20	15	12	9.3	
2	kt	2.5	2.0	1.4	1.3	1.4	
3	kt	0.12	0.12	0.12	0.13	0.13	
5	kt	0.57	0.46	0.43	0.38	0.36	
6	kt	0.0044	0.0040	0.0042	0.0043	0.0044	
Sum	kt	27	22	17	14	11	
PM2.5		2014	2015	2016	2017	2018	
1(fu)	kt	6.3	6.2	6.3	6.0	5.7	
2	kt	1.3	1.2	1.2	1.2	1.2	
3	kt	0.14	0.14	0.14	0.14	0.14	
5	kt	0.34	0.34	0.33	0.32	0.31	
6	kt	0.0050	0.0054	0.0053	0.0054	0.0049	
Sum	kt	8.1	7.9	7.9	7.7	7.3	
PM2.5		2019	2020	2021	2022	2023	2005-2023 (%)
1(fu)	kt	5.6	5.2	5.3	4.9	4.8	-60
2	kt	1.1	1.1	1.2	1.2	0.99	-26
3	kt	0.14	0.14	0.15	0.15	0.15	13
5	kt	0.30	0.29	0.29	0.27	0.27	-28
6	kt	0.0047	0.0047	0.0049	0.0048	0.0047	8.8
Sum	kt	7.1	6.7	6.9	6.5	6.2	-55

A7.6 BC emission time series

Table A - 46 BC emissions by sector ((fu) means fuel used approach). The last column in the third part of the table indicates the relative trend.

BC		1990	1995	2000	2005	2010	
1(fu)	kt	5.7	5.1	4.1	3.5	2.5	
2	kt	0.0063	0.0040	0.0027	0.0026	0.0016	
3	kt	NA	NA	NA	NA	NA	
5	kt	0.040	0.033	0.030	0.027	0.026	
6	kt	0.00016	0.00016	0.00016	0.00015	0.000099	
Sum	kt	5.7	5.1	4.1	3.5	2.6	
BC		2014	2015	2016	2017	2018	
1(fu)	kt	1.5	1.4	1.4	1.2	1.2	
2	kt	0.0014	0.0013	0.0014	0.0014	0.0013	
3	kt	NA	NA	NA	NA	NA	
5	kt	0.024	0.024	0.023	0.023	0.022	
6	kt	0.000098	0.000089	0.000088	0.000098	0.000089	
Sum	kt	1.5	1.4	1.4	1.3	1.2	
BC		2019	2020	2021	2022	2023	2005-2023 (%)
1(fu)	kt	1.1	0.98	1.0	0.86	0.81	-77
2	kt	0.0013	0.0014	0.0013	0.0013	0.0012	-54
3	kt	NA	NA	NA	NA	NA	-
5	kt	0.022	0.021	0.021	0.020	0.019	-27
6	kt	0.000075	0.000072	0.000081	0.000080	0.000078	-47
Sum	kt	1.1	1.0	1.0	0.88	0.83	-77