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Abstract 

The AI-driven data center growth raises concerns about its climate impacts, including embodied 

emissions in digital trade and the potential for carbon leakage. The latter occurs when 

businesses shift operations in the short term or investments in the long term to jurisdictions 

with less stringent climate policies to avoid higher production costs driven by carbon pricing. In 

principle, a large share of AI-driven data center operations and investments are geographically 

flexible and can thus contribute to carbon leakage in different temporal dimensions.  

Short-term, operational carbon leakage can result from shifting workloads to data centers in 

regions with cheaper and emission-intensive electricity, while long-term carbon leakage may 

emerge through strategic localization of new data center investments in response to anticipated 

electricity cost differences due to carbon pricing.  

This study offers a comprehensive first assessment of the global carbon leakage potential 

associated with AI-driven data center operation and investment. The focus is on carbon leakage 

from costs imposed by emission trading systems (ETS) on data center electricity consumption. 

The study estimates AI’s current and near-future electricity consumption and evaluates the 

technological feasibility of shifting compute loads. Additionally, it maps global compute capacity 

against carbon intensities and the presence of ETS. 

The findings reveal that current AI compute capacity and expected growth is predominantly 

concentrated in the United States and China, jurisdictions with less stringent climate policies 

than the EU. This disparity between compute capacity concentration and regional climate policy 

ambition prompts consideration of whether carbon pricing through ETS induces carbon leakage.  

Economic theory suggests that the extent of carbon leakage is moderate. This is primarily due to 

the current growth stage of the AI industry and the ability of AI data centers and companies to 

pass-through additional costs. Furthermore, compliance with the climate goals announced by AI 

companies, as well as regulatory requirements in the area of data protection, are likely to reduce 

carbon leakage. Despite the limited current likelihood of significant carbon leakage from ETS, 

potential conditions for increased carbon leakage in AI data centers can be identified, including 

slow renewable energy uptake, which may perpetuate or increase grid mix differences, and the 

potential for future overcapacity in data centers running on emission-intensive electricity, which 

would increase their ability to receive shifted workloads.  

Additionally, data center growth may strain decarbonization efforts in other sectors, such as 

transport and industry, by competing for renewable electricity. Further, an increase in cross-

border data flows may amplify the embodied emissions in data trade, even if such trade flows 

are not intentionally avoiding carbon pricing. 

This report provides a first assessment of the potential and extent of carbon leakage from AI-

driven data center operation and investment growth. Based on a mixed-methods approach, the 

report draws a research agenda for further analyses and offers policy recommendations to 

mitigate potential carbon leakage from ETS and embodied in digital trade. Addressing the 

broader challenge of energy and resource efficiency, meeting data center electricity demand 

growth with renewables, and tackling embodied emissions in global data flows, is critical for 

climate-aligned AI development.  
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Zusammenfassung 

Das KI-bedingte Wachstum von Rechenzentren wirft Bedenken hinsichtlich Klimafolgen auf, 

darunter graue Emissionen im digitalen Handel und die Gefahr von Carbon Leakage. Letzteres 

tritt auf, wenn Unternehmen aufgrund höherer Produktionskosten durch CO₂-Bepreisung ihre 

Tätigkeiten oder Investitionen in Länder mit weniger strikten Klimapolitiken verlagern. 

Grundsätzlich sind ein Großteil des Betriebs und der Investitionen in Rechenzentren 

geographisch flexibel, was zu Carbon Leakage beitragen kann. Kurzfristig kann operatives 

Carbon Leakage entstehen, wenn Rechenlasten in Regionen mit günstigerem, aber 

emissionsintensiven Strom verlagert werden. Langfristig kann Carbon Leakage durch 

strategische Standortwahl für Investitionen in Rechenzentren entstehen, basierend auf 

erwarteten Stromkostenunterschieden aufgrund der CO₂-Bepreisung. 

Diese Studie bietet eine erste Einschätzung globaler Anreize für Carbon Leakage von KI-

Rechenzentren. Der Fokus liegt auf erhöhten Stromkosten von Rechenzentren durch 

Emissionshandelssysteme (ETS). Die Studie schätzt den aktuellen und zukünftigen 

Stromverbrauch von KI, bewertet die technische Machbarkeit der Verlagerung von Rechenlasten 

und untersucht die Plausibilität der Verlagerung von Rechenlasten. Zusätzlich kartiert sie die 

globale Rechenkapazität im Verhältnis zur Kohlenstoffintensität von Strom und der Präsenz von 

ETS.  

Die Ergebnisse zeigen, dass aktuelle KI-Rechenkapazitäten und das erwartete Wachstum 

vorwiegend in den USA und China konzentriert sind – zwei Rechtsräume mit weniger strengen 

Klimapolitiken als die der EU. Diese Diskrepanz zwischen der Konzentration von 

Rechenkapazitäten und regionaler Klimapolitik wirft die Frage auf, ob eine CO₂-Bepreisung 

durch das ETS Carbon Leakage verursacht. 

Wirtschaftstheoretische Argumente legen jedoch nahe, dass das Ausmaß von Carbon Leakage 

moderat ist. Dies liegt hauptsächlich an der gegenwärtigen Wachstumsphase der KI-Branche 

und der Fähigkeit von KI-Rechenzentren und Unternehmen, zusätzliche Kosten weiterzugeben. 

Darüber hinaus dürften die Einhaltung der von KI-Unternehmen angekündigten Klimaziele 

sowie regulatorische Anforderungen im Bereich des Datenschutzes Carbon Leakage verringern. 

Trotz der aktuell begrenzten Wahrscheinlichkeit für Carbon Leakage werden potentielle 

Bedingungen für eine Zunahme von Carbon Leakage identifiziert, darunter eine langsame 

Verbreitung erneuerbarer Energien, welche die Unterschiede im Strommix aufrechterhalten 

oder verstärken könnte und die Möglichkeit künftiger Überkapazitäten in emissionsintensiven 

Rechenzentren, was ihre Fähigkeit erhöhen würde, verlagerte Rechenlasten zu empfangen.  

Darüber hinaus könnte das Wachstum von Rechenzentren die Dekarbonisierung anderer 

Sektoren wie Verkehr und Industrie verlangsamen, indem Rechenzentren um erneuerbaren 

Strom konkurrieren. Weiter könnten zunehmende grenzüberschreitende Datenflüsse 

importierte und exportierte graue Emissionen erhöhen, selbst wenn solche Datenflüsse nicht 

absichtlich CO₂-Bepreisung umgehen. 

Dieser Bericht bietet eine erste Bewertung des Potentials und des Ausmaßes von Carbon 

Leakage in Rechenzentren. Auf Basis eines Mixed-Methods-Ansatzes formuliert der Bericht eine 

Forschungsagenda für weitere Analysen und gibt politische Empfehlungen zur Minderung 

potentieller Carbon Leakage-Risiken und grauer Emissionen in grenzüberscheitenden 

Datenflüssen. Für eine klimafreundliche Entwicklung von KI ist es entscheidend, den 

wachsenden Strombedarf von Rechenzentren mit erneuerbaren Energien zu decken, sowie die 

grauen Emissionen in grenzüberschreitenden Datenflüssen zu adressieren. 



 
TEXTE Carbon leakage in AI-driven data center growth?  

7 

 

Table of content 

1 Introduction ................................................................................................................................... 10 

2 Problem definition and methodology ........................................................................................... 12 

3 Estimated AI energy consumption and feasibility of location-independent AI computing .......... 13 

3.1 AI model life cycle and relevance for carbon leakage .......................................................... 13 

3.2 The energy footprint of AI ..................................................................................................... 14 

3.3 Flexibility of AI computing loads ........................................................................................... 18 

3.4 Short-term shiftable AI power consumption ........................................................................ 20 

4 Geographic distribution of AI compute capacity........................................................................... 23 

4.1 Poor data availability and chosen assessment method ........................................................ 23 

4.2 An estimate for country-level data center energy consumption ......................................... 24 

4.3 Country-level AI energy consumption and GHG emissions .................................................. 26 

5 Comparing the data center landscape with the geographic scope of emission trading systems . 29 

6 Assessing the extent of carbon leakage from AI-driven data center operations and 

investments ................................................................................................................................... 34 

6.1 Impact of carbon pricing on operational and investment costs ........................................... 34 

6.2 Carbon leakage from data center operations and investments ........................................... 37 

6.3 Other factors driving data center operations and investments ........................................... 39 

7 Conclusion and outlook ................................................................................................................. 45 

7.1 Summary of the potential, drivers, and barriers to AI carbon leakage ................................ 45 

7.2 Research agenda on the direct climate effects of data center growth ................................ 46 

7.3 Policy recommendations....................................................................................................... 47 

8 List of references ........................................................................................................................... 49 

A Appendix: Expert interviews ......................................................................................................... 56 

B Appendix: Important AI data center developments announced in 2024 ..................................... 57 

C Appendix: Assessing the global distribution of general DC energy consumption ........................ 58 

C.1 Methodology ......................................................................................................................... 58 

C.2 Hyperscale and colocation operators used to assess the geographic distribution of 

general-purpose DC energy consumption ............................................................................ 59 

C.3 Corrections for Germany and France .................................................................................... 60 

D Appendix: Energy intensity of different economic sectors ........................................................... 62 

E Appendix: Policies affecting data center localization .................................................................... 63 

 



 
TEXTE Carbon leakage in AI-driven data center growth?

  

8 

 

List of figures 

Figure 1: AI model life cycle and its embedding into the environmental 

life cycle assessment. ............................................................... 14 

Figure 2: Recent developments and projections for yearly global AI 

energy consumption. ................................................................ 17 

Figure 3: Mapping of 22 large hyperscale and colocation operators in the 

world. ........................................................................................ 25 

Figure 4: Distribution of carbon pricing instruments over time and across 

countries. .................................................................................. 30 

Figure 5: Comparing data center electricity consumption with the 

geographic scope of carbon pricing instruments (A) and 

stringency level of instruments (B). .......................................... 31 

Figure 6: Digitally delivered services trade as a proxy for cross-border 

data flows. ................................................................................ 32 

Figure 7: The relation between carbon pricing instruments and carbon 

leakage. ..................................................................................... 33 

Figure 8: Back of the envelope calculation on the role of ETS prices on 

data center OPEX. ..................................................................... 36 

Figure 9: Diffusion of data localization policies over time. ..................... 42 

Figure 10: Drivers and barriers to carbon leakage for data center 

operation and investment. ....................................................... 45 

Figure 11: Energy cost shares in production costs of different economic 

sectors. ..................................................................................... 62 

List of tables 

Table 1: Numerical values (in TWh/year) for AI’s yearly global energy 

consumption. ............................................................................ 17 

Table 2: The top 12 countries in terms of DC energy consumption 

according to this analysis.......................................................... 25 

Table 3: Energy consumption and GHG emissions for the top 20 

emitting countries due to AI in data centers, for 2024 and 

2028. ......................................................................................... 26 

Table 4: Per-country total AI-related carbon emissions, GHG emissions 

of the loads that are flexible, and GHG emissions of the 

capacity that is free to absorb incoming shifted loads, for 2024 

and 2028, respectively. ............................................................. 27 

Table 5: Market structure in data center operation and use. ................ 38 

Table 6: Corporate climate commitments by four of the largest data 

center users. ............................................................................. 40 



 
TEXTE Carbon leakage in AI

-driven data center growth?  

9 

 

Table 7: Important policies affecting data center operation and 

investment. ............................................................................... 41 

Table 8: Expert interviews for this study. ............................................... 56 

Table 9: Hyperscale and colocation operators used in this study, 

together with the sources used to extract their 2023 overall 

energy consumption and the location of their data centers, 

respectively. .............................................................................. 59 

Table 10: Assessment of non-binding public initiatives and private sector 

initiatives. ................................................................................. 63 

Table 11: Assessment of EU policies/regulations and their implications 

for carbon leakage. ................................................................... 63 

 



 
TEXTE Carbon leakage in AI-driven data center growth?  

10 

 

1 Introduction 
The rapid growth of artificial intelligence (AI) applications and systems has spurred an 

unprecedented demand for computing capacity and expansion of data centers (DCs) globally. 

The International Energy Agency (IEA) predicts that the electricity consumption of data centers 

will rise sharply in all major regions of the world (IEA, 2024a). A significant share of this 

increase is attributed to the electricity consumption of AI-related computing: By 2026, it could 

be at least ten times higher than in 2022/2023. This rising electricity demand poses a challenge 

to achieving climate mitigation goals (Kaack et al., 2022; Bieser et al., 2023; ITU and World Bank, 

2024). One of these challenges is the potential of carbon leakage which occurs if, for reasons of 

costs related to carbon pricing policies, business operations or investments intentionally 

transfer to jurisdiction with less ambitious climate policies.  

Data center compute loads – AI training and inference loads included – are flexible and can in 

principle be shifted geographically. This means that data center operators and developers can 

react to costs imposed by climate policy such as carbon pricing, which contribute to price 

differences in electricity. Data center operators or developers may choose to evade regions with 

high electricity prices for those with lower prices. If the lower-priced electricity entails carbon 

emissions and is in a less stringent climate jurisdiction, carbon leakage takes place. The shifting 

of compute loads and possible consequent carbon leakage can be a short-term occurrence in 

which AI loads are sent over the Internet to another data center. In the long term, the 

localization of new AI data center capacity, i.e. investment decisions, may also be influenced by 

current and expected carbon prices and their effects on electricity, leading to long-term carbon 

leakage. Although the literature on climate impacts of AI is expanding fast, carbon leakage has so 

far received little attention. In this context, the current study presents a first assessment of the 

global potential for carbon leakage due to AI. The study specifically explores the possible impact 

of carbon pricing instruments, in particular emissions trading systems (ETS) and with a special 

focus on the European Union, on AI-triggered carbon leakage in data center operations and 

investments.  

To achieve these goals, the study estimates the current and near-future global electricity 

consumption of AI. To do so, Section 4, first establishes the global energy footprint of AI in data 

centers. Assessing in a second step the technological flexibility of compute loads, it sets an upper 

bound for the global electricity consumption of AI loads that can be shifted. Subsequently, it 

estimates the current distribution of AI compute capacity around the world. Combined with the 

carbon intensities of national grid mixes, and building on the energy of shiftable compute loads 

already assessed, it then determines short-term upper bounds of emissions that can be 

outsourced and absorbed due to AI in the context of carbon leakage. Forth, in Section 5, the 

study compares the geographic distribution of compute capacity to the distribution of ETS 

across jurisdictions. In Section 6, the study then explores arguments based on economic theory 

on the extent to which the shift of compute loads is dependent on electricity price variations 

from carbon pricing instruments such as ETS, and also highlights other influencing factors such 

as corporate climate strategies, data security and localization policy, and general locational 

factors, such as price differences (in particular with respect to the overall energy price). Through 

this analysis, the report determines both how plausible it is that the short-term carbon leakage 

upper bound might realistically take place, but also – and arguably more important – the 

possible long-term carbon leakage from shifts in investments into data centers resulting from 

expected electricity price increases due to ETS. Finally, Section 7 summarizes the key findings, 

provides a research agenda and policy recommendations. 
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Based on a mixed-methods, this report provides a first assessment of AI-related carbon leakage 
risks from carbon pricing instruments. The report highlights areas for future research to deepen 
our understanding of this evolving challenge. It provides policy recommendations to address 
potential carbon leakage and the more general challenge to address electricity demand increases 
from data center growth and embodied emissions in cross-border data flows. 
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2 Problem definition and methodology 
According to the definition by the European Commission, carbon leakage occurs because of 

differences in climate policies between jurisdictions, which make companies shift operation to 

regions with less stringent climate policies: 

Carbon leakage definition by the European Commission 

“Carbon leakage refers to the situation that may occur if, for reasons of costs related to climate 

policies, businesses were to transfer production to other countries with laxer emission constraints. 

This could lead to an increase in their total emissions. The risk of carbon leakage may be higher in 

certain energy-intensive industries.” (European Commission, 2021) 

Data centers, where the vast majority of AI computing takes place, require substantial amounts 

of electricity and could thus be at heightened risk of carbon leakage as carbon pricing may 

increase their operational costs from electricity. The aim of this study is thus to explore the 

indirect carbon leakage in AI-driven data center operation and growth that might occur due to 

carbon pricing instruments. The focus of this study is on costs imposed by emission trading 

schemes. Costs related to other climate policies are not covered due to the limited scope of this 

study. 

Such carbon leakage within AI-driven data center operation and growth can be at least of two 

fundamentally distinct types.1 We distinguish between: 

► Short-term or operational carbon leakage, which entails the temporary spatial shift of specific 

computing loads to a geography with lower electricity prices and higher emission intensities, 

and  

► Long-term or investment carbon leakage, which stems from changed localization decisions of 

investments in new data centers due to expected future electricity prices. 

To assess the potential and likelihood of carbon leakage from data center growth, the report is 

based on a mixed-methods approach and a variety of data sources. We combine the collection 

and analysis of quantitative data from data center operations and investments with a review of 

existing literature and selected expert interviews. A more detailed description of the 

methodology can be found in the Appendix C and in the individual chapters. 

Main data sources include company reports by data center operators and users, academic and 

grey literature on (AI-driven) data center growth, energy consumption, as well as role of ETS in 

electricity prices and carbon leakage. Table 8 in Appendix A lists the interviewees representing 

industry, research, and international organizations. The experts’ opinions are reflected in the 

report were relevant, but no personal attribution is made (unless explicitly allowed). They all 

provided valuable feedback in two main rounds of review as well as along the entire project. 

  

 

1 It is also possible that final consumers may shift their non-AI demand to AI services originating from regions without stringent 
climate policies, as these offerings might become comparatively more attractive due to the absence of carbon pricing. However, 
exploring this phenomenon is beyond the scope of this study. 
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3 Estimated AI energy consumption and feasibility of 
location-independent AI computing 

This section lies the foundation for AI’s environmental footprint, and its relevance in the context 

of carbon leakage, which will be discussed in later sections.  

3.1 AI model life cycle and relevance for carbon leakage 

The life cycle of an AI model, and how it relates to environmental life cycle assessment, is 

schematically represented in Fehler! Verweisquelle konnte nicht gefunden werden.. As in 

any economic activity, energy consumption and environmental impacts happen during the 

production of devices, their use, and end-of-life (EoL). While hardware production and EoL can 

of course also have varying environmental impacts depending on the deployed industrial 

processes, their displacement requires the shift of physical goods and even entire production 

processes. Such displacement has larger inertia and coarser granularity than that of computing 

loads, which can be easily shifted over the Internet to a different geography, and therefore entail 

a greater risk of carbon leakage from data center operations and investments. In this study, we 

thus focus on AIs use phase, i.e. the electricity consumption of devices employed for AI 

algorithms. For the use phase, the AI model lifecycle has been categorized in several ways. One 

known categorization distinguishes three main phases (Kaack et al., 2022): i) model 

development, ii) model training, and iii) model deployment and inference: 

a) Model development focuses on the conceptualization and design of the model. It includes 

problem definition and scoping, hyperparameter tuning and architecture search, model 

selection (i.e., choosing an appropriate algorithm and architecture, including trial-and-

error on different model options), and possibly feature engineering.  

b) Model training includes model training, fine-tuning, evaluation, and possible retraining 

(which can also happen later, during deployment). 

c) Model deployment and inference marks the usage of the model. Inference refers to using 

the model to make predictions on new, unseen data. In the deployment phase, the model 

may be integrated in a production environment, such as a web application or mobile app.  

In reality, the picture is more complex and cyclic, involving several sub-steps and auxiliary 

activities such as performance monitoring and maintenance, and retraining or updating the 

model if needed. Other sources include data acquisition for training as part of model 

development and data preparation (cleaning, transforming, and partitioning it into training, 

validation, and test sets) as part of training. These distinctions are not so relevant for our 

simplified model.  

The development phase consists of many training runs and can therefore be summarized as 

training, which has been done in other scholarly work that does not distinguish between 

development and training (Luccioni, Jernite and Strubell, 2024). Various industry sources also 

do not distinguish a development phase, seeing model selection as part of training, and only 

distinguishing a “data collection and/or preparation” phase ahead of the training.2 Hence, this 

study distinguishes two main phases in terms of energy consumption and flexibility: “model 

training” (which includes development) and “model inference” (which includes deployment), as 

shown in Figure 1.  

 

2 See, for example, Yurushkin, M. How do Machine Learning Pipelines Work? https://broutonlab.com/blog/how-machine-learning-
pipelines-work/ (Accessed: 2 December 2024) and Datatron Blog (HRSG). What is a Machine Learning Pipeline? 
https://datatron.com/what-is-a-machine-learning-pipeline/ (Accessed: 2 December 2024). 

https://datatron.com/what-is-a-machine-learning-pipeline/
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Figure 1: AI model life cycle and its embedding into the environmental life cycle assessment. 

The environmental life cycle assessment includes production of devices, their usage for AI, and finally their end-of-life (EoL). 

The AI model is fully included in the use phase of the devices, and consists of training and inference. 

 

 
Source: own illustration, Roegen Centre for Sustainability and INFRAS. 

3.2 The energy footprint of AI 

As a widely deployable technology, AI is possibly the most important general-purpose 

technology of our times, and perhaps even on par with technological revolutions such as the 

steam engine or electricity (Brynjolfsson and McAfee, 2017). As such, AI is impacting all walks of 

life. And while this development encompasses the potential to help addressing environmental 

(Kaack et al., 2022; Rolnick et al., 2022) or societal (De-Arteaga et al., 2018; Hager et al., 2019) 

issues, the potential environmental impact of such a ubiquitous technology has rightfully 

become a source of concern.  

These two types of AI impact are often referred to as direct impacts, which are directly 

computing-related, and indirect impacts, which relate to the application of the AI approach, and 

can be immediate or longer-term and systemic (Kaack et al., 2022). This distinction reflects the 

discussion on direct and indirect environmental impacts of information and communication 

technologies (ICT) more generally (Coroamă et al., 2020; Bremer et al., 2023; Axenbeck, Berner 

and Kneib, 2024).  

This study focuses on the direct energy and carbon impact of AI’s use-phase. Data on its electricity 

consumption and related carbon impact, however, are quite sparse and inconsistent. 

Additionally, existing assessments are fragmented across individual phases of a model’s lifecycle 

(as presented below) and various levels of abstraction and related functional units: Some 

assessments quantify the impact of one single model, others of individual model inferences, 

other the global yearly impact of AI. 

Training energy versus inference energy 

Early studies on the environmental footprint of AI focused on the energy and carbon impacts 

associated with training the AI models (Lacoste et al., 2019; Strubell, Ganesh and McCallum, 

2019, 2020; Schwartz et al., 2020). A recent review (Verdecchia, Sallou and Cruz, 2023) also 

shows that the training phase has been the focus of research on the energy and GHG impact of 

AI. And this focus stands to reason when large deep neural networks are intensively trained to 

then be deployed relatively seldomly, as is the case for a Go-playing ML model such as AlphaGo 

or an ML model deployed in medicine for the pre-screening of possible cancers. 

With the advent of generative AI, the deployment phase has come more in the focus of research. 

While large language models (LLMs), such as ChatGPT and Google’s Gemini, or image generators, 

such as Midjourney or DALL-E, require large amounts of energy to be trained, they are also 

widely used, so the inference phase additionally requires substantial amounts of energy; the 
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exact amount of energy and the ratio between training and inference for different application 

areas are still a matter of debate:  

► Early industry data from Meta and Google indicate that around 2021-2022, the training 

phase already accounted for 20-40% ML-related energy consumption in their DCs, while 

inference accounted for 60-80% (Patterson et al., 2022; Wu et al., 2022). These data stem 

from before ChatGPTs public release and widespread consumer use of such models.  

► In 2023, it has been estimated that the inference of ChatGPT requires as much as 564 MWh 

of energy per day (De Vries, 2023); this would mean that a little more than two days of 

inference already outweigh GPT’s estimated training costs of 1,287 MWh (Luccioni, Viguier 

and Ligozat, 2024).  

► The amount of inference instances required to outweigh the costs of training is the metric 

used by Luccioni et al. (2024). Unsurprisingly, their analysis shows that both training and 

inference energy grow with the size of the model. However, at least for the BLOOMz family of 

models analyzed, the training energy grew faster with the number of model parameters than 

the inference energy did. Hence, for the 1.7 billion (B) parameters BLOOMz-1B model, the 

threshold of energy parity was at 290 million inferences, while for the 7B parameters 

BLOOMz-7B model, it was almost double at 592 million inferences. Extrapolating these 

results to ChatGPT and its reported 10 million daily users at the time of paper writing, this 

would amount to a threshold of a couple of weeks / few months – albeit under the quite 

conservative assumption of just one query per user (Luccioni, Jernite and Strubell, 2024).  

► One of the interviewees for this study presented a (yet unpublished) very detailed systems 

dynamics model they have developed, which shows that in all its global scenarios, generative 

AI inference energy is closing the gap to training energy, but has not surpassed it yet. And 

even after it will have surpassed it, it will not become all-dominant, but training will still be a 

sizeable portion of the overall AI energy.  

While this last result is seemingly contradictory to the results above, it might in fact not be the 

case. In a different context, that of the energy consumption and energy intensity of the Internet 

(measured in TWh/year and in kWh/GB, respectively), both bottom-up and top-down 

assessments have been shown to yield systematic, and opposing errors (Coroamă, 2021): Since 

they draw system boundaries too narrow, not accounting for example for redundancy or legacy 

equipment, bottom-up assessments consistently yield underestimates. Similarly, top-down 

assessments often draw system boundaries too wide, yielding overstatements (Coroamă, 2021).  

Given the complex process of AI model training and that model development might entail 

various trial-and-error experimentation and validation steps – even as many as “thousands of 

training runs” (Kaack et al., 2022) – as well as possibly frequent retraining, bottom-up models 

such as those in Luccioni, Jernite and Strubell (2024) and Luccioni, Viguier and Ligozat (2024) 

might indeed draw too narrow system boundaries and consistently yield understatements of the 

energy consumption required for training.  

Given all these considerations and the ultimately unknown ratio between training and inference 

energy, this study deploys assumptions (rooted in the studies and considerations listed above) 

for the energy ratio of training, 𝑒𝑟𝑇(𝑦), as well as the complementary energy ratio of inference,  

𝑒𝑟𝐼(𝑦) = 1 − 𝑒𝑟𝑡(𝑦) (1) 

For the present, we assume that  

𝑒𝑟𝑇(2024) = 𝑒𝑟𝐼(2024) = 0.5 (2) 
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while for the future it is assumed that inference will indeed start dominating, with  

𝑒𝑟𝑇(2028) = 0.3, 𝑒𝑟𝐼(2028) = 0.7 (3) 

Current global and predicted future global energy footprint of AI 

In the context of exploring the (necessarily global) potential for carbon leakage, relevant is not 

the footprint of single models or inference instances, but the global yearly energy and carbon 

footprint of AI. Data on this level, however, are relatively sparse. Although numerous estimates 

of global data center energy usage exist, there are only few estimates that single out the 

footprint of AI within the entirety of DCs; all of them being quite recent and uncertain.  

Most of these studies conclude that until very recently (and despite all the hype surrounding AI 

and its energy consumption), the energy impact of AI was – and still is – extremely limited from 

a global perspective.3 At the same time, considering the impressive growth rates of AI 

deployment, GPU and TPU chip production to support the seemingly “endless hunger” for AI 

computation, they all predict a substantial growth over the next few years, albeit to different 

extents. Existing assessments of the global energy consumption of AI (both recent developments 

and projects until 2030) are the following: 

► A study by Schneider Electric (2023) sees AI average power consumption growing more 

moderately from 4.5 GW in 2023 to 14.0 – 18.6 GW in 2028; taking an average value of 16.3 

GW for 2028, these correspond to 39.4 and 142.8 TWh for 2023 and 2028, respectively.  

► Based on estimated Nvidia’s GPU sales, and assuming a 100% utilization rate (De Vries, 

2023) suggests that these GPUs could consume in 2023 “up to” 5.7 – 8.9 TWh/year of 

electricity, while – due to planned expansions – the consumption of newly produced devices 

is expected to grow to 85.4 – 134 TWh yearly by 2027. The 100% utilization rate is certainly 

unrealistic, but then this Nvidia assessment leaves aside further (less important) GPU 

producers as well as Google’s AI consumption based on its self-produced TPUs. We thus 

consider the average values of these ranges (i.e., 7.8 and 109.7 TWh, respectively) as 

reasonable approximations of the additive AI energy consumption for 2023 and 2027, 

respectively. Assuming a starting value of 8 TWh/year for 2022 from (Goldman Sachs, 2024) 

and linear interpolation between 2023 and 2027, yields the values from Table 1. 

► Also based on Nvidia sales, an IEA report (2024a) puts forward a similar 7.3 TWh for 2023, 

stating that by 2026, AI “is expected to have grown exponentially to consume at least ten 

times its demand in 2023” – i.e., 73 TWh. 

► Based on a proprietary analysis, Morgan Stanley (2024) expects AI energy to grow from 13 

TWh in 2023 and 46 TWh in 2024 to 224 TWh by 2027. 

► Goldman Sachs (2024), one of only two estimates to start earlier than 2022, devises 

negligible 5-8 TWh yearly for 2020 – 2022, still quite low 12 and 30 TWh for 2023 and 2024, 

respectively, followed by more substantially growing consumption, reaching 209 TWh by 

2030. 

► Finally, Semianalysis (2024) estimated the yearly average annual power used by AI in DCs 

between 2020 and 2028, from very modest 318 MW (corresponding to less than 3 TWh) in 

2020 to a massive 56.3 GW (corresponding to 493 TWh) in 2028.  

 

3 Locally, however, due to its high-power density, AI can already cause energy shortages. 
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The detailed numerical results (after transformation, where needed) are shown in Table 2 and 

then graphically represented in Figure 2. As both show, the sources agree that until 2022, AI’s 

energy consumption was negligible: A few TWh among the estimated 240 – 340 TWh global 

yearly DC energy consumption in 2022 (IEA, 2023), which itself corresponded to only about 1-

1.5% of global electricity consumption. By 2024, however, the consumption is estimated to have 

grown to already 30 – 74 TWh. Future projections vary, reaching from substantial but not so 

worrisome 73 TWh in 2026 (IEA, 2024a) or 209 TWh by 2030 (Goldman Sachs, 2024) to more 

alarming 400 – 500 TWh already by 2027-2028 (De Vries, 2023; Semianalysis, 2024). 

Table 1: Numerical values (in TWh/year) for AI’s yearly global energy consumption. 

The years 2020 – 2030 are analyzed. 

Study 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 

Schneider Electric (2023)    39     143   

De Vries (2023)    16 39 86 157 266 384   

IEA (2024a)    7   73     

Morgan Stanley (2024)    13 48 96 156 224 304   

Goldman Sachs (2024) 5 6 8 12 30 58 94 131 164 190 209 

Semianalysis (2024) 3 6 10 29 74 143 247 362 493   

Source: own analysis based on the sources cited, Roegen Centre for Sustainability and INFRAS. The two own extrapolations 

to 2028 marked blue. Data preparation performed where necessary, as described in the text. Valuable input was provided 

by George Kamiya. 

Figure 2: Recent developments and projections for yearly global AI energy consumption. 

Studies: Schneider Electric (2023), De Vries (2023), IEA (2024a); Morgan Stanley (2024); Goldman Sachs (2024), 
and Semianalysis (2024). 

 
Source: own illustration based on the data from Table 1, Roegen Centre for Sustainability and INFRAS. 
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The numbers for today are plausible. The energy consumption of Google and Microsoft, most 

probably the largest users of GPUs and TPUs for AI, grew jointly from 17.5 TWh in 2018 to 48 

TWh in 2023 (Google, 2024; Microsoft, 2024a). This growth is likely to a substantial extent (but 

not exclusively) attributable to AI; on the other hand, numerous other (albeit smaller) users 

exist. It thus stands to reason to use the median value of 43 TWh as likely number for AIs total 

energy consumption in 2024. For future projections, we extrapolate the tendencies in De Vries, 

(2023) and Morgan Stanley (2024) by one year to 2028 (yielding 384 and 304 TWh, 

respectively) – highlighted in blue in Table 1 – and work with the median value of 304 TWh for 

2028 (which is also very close to the average of 298 TWh), and which represents about 1% of 

the expected global electricity consumption in 2028. Overall, we thus have: 

𝐸𝐶𝐴𝐼(2024) =  43 𝑇𝑊ℎ; 𝐸𝐶𝐴𝐼(2028) =  304 𝑇𝑊ℎ (4) 

3.3 Flexibility of AI computing loads 

This section addresses the technical extent to which AI computing loads are geographically 

shiftable, possibly leading to operational carbon leakage as a consequence. This discussion only 

sets a theoretical upper bound for what might be shifted in practice. In reality, there are 

numerous further constraints (such as availability of computing power in other geographic 

locations, legal requirements, etc.) that influence the appetence for load shifting. They will be 

discussed in Section 6.  

For the flexibility analysis, ML training and inference need to be discussed separately.  

Flexibility of training 

In principle, training has a high geographic flexibility: It is usually not time-critical and is a batch 

process which can be performed offline. Additionally, due to the sheer size of the models and the 

time it takes to train them in one location, training on geographically distributed clusters also 

becomes more and more of a necessity.  

BLOOM, an open-access LLM which reveals such data, for example, has 176 billion parameters 

and its training took approximately 3.5 months on a supercomputer, corresponding to about 1 

million compute hours.4 Other models are even larger: Although the exact size is not disclosed 

by the popular GPT-4 and Gemini Advanced LLMs, the former has substantially more parameters 

than the known 175 billion parameters of its predecessor GPT-3,5 and both GPT-4 and Gemini 

have been estimated to more than 1 trillion parameters each, perhaps as many as 1.8 trillion.6 

Consequently, distributed training becomes a necessity for LLMs. While distributed training (or 

“learning”, as it is often called in the computing literature, as seen from the model’s perspective) 

is not new (Sergeev and Balso, 2018; Ben-Nun and Hoefler, 2019); it is, however, increasingly 

deployed for also across geographically distributed computing clusters (Duan et al., 2024). 

Distributed training can take advantage of various mechanisms such as  

► data parallelism, in which the training data is split across different GPU clusters, each cluster 

trains a copy of the model on its data, while the model parameters are periodically 

synchronized across clusters,7 

 

4 See Bekman, S. (14 July 2022). The Technology Behind BLOOM Training. https://huggingface.co/blog/bloom-megatron-deepspeed 
(Accessed: 2 December 2024).  
5 See Kudesia A. (5 March 2024). Gemini vs. GPT-4: Which one is better? https://fireflies.ai/blog/gemini-vs-gpt-4 (Accessed: 2 
December 2024). 
6 See Schreiner M. (11 July 2023). GPT-4 architecture, datasets, costs and more leaked. https://the-decoder.com/gpt-4-architecture-
datasets-costs-and-more-leaked/ (Accessed: 2 December 2024). 
7 See Huggingface (HRSG). Model Parallelism. https://huggingface.co/docs/transformers/v4.13.0/en/parallelism (Accessed: 2 
December 2024). 

https://huggingface.co/blog/bloom-megatron-deepspeed
https://fireflies.ai/blog/gemini-vs-gpt-4
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://huggingface.co/docs/transformers/v4.13.0/en/parallelism
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► model parallelism, in which the model itself is split across clusters and different parts of the 

model are trained on different clusters,8, and 

► pipeline parallelism, where the model is split into sequential stages, each stage being 

processed by a different cluster.9 

Various parallel developments of synchronization and communication techniques (such as 

asynchronous updates or gradient compression and Nvidia’s Collective Communications Library, 

respectively), additionally smoothen the distributed training process (Duan et al., 2024). Given 

the (coordinated) segmentation of the training process that underlies it, distributed training 

consequently also facilitates the shift of training loads across geographically distributed clusters.  

There are, however, also opposing tendencies, which make geographically distributed training 

more challenging: Network latency, for example, can be an issue; transferring the large datasets 

needed for training can become so time-consuming, energy-intensive and expensive, that it 

might be required to train the model where the data is located. The data might also not be 

transferrable due to legal or privacy-related reasons: If training data is sensitive or subject to 

strict regulations (e.g., medical data), training might need to occur close to the data source. 

Finally, too much training granularity might paradoxically hurt the potential for geographically 

distributed training. Federated learning is a type of machine learning which deploys an extreme 

type of data parallelism: The data typically does not leave its origin which might be the 

computers or even devices such as smartphones of numerous users. A first model is sent to each 

such device, which uses its own data to improve and/or personalize it. The devices send only the 

improvements they made to the model, but not their personal data used to achieve them, to a 

central server, which combines them to obtain a better model (Zhang et al., 2021).  

Federated learning can make ML model training not only more efficient and personalized, but 

also comply to higher privacy requirements, as also highlighted by the European Data Protection 

Supervisor,10 and is thus an expanding model. And while it has been traditionally reserved for 

smaller-scale models, it is now increasingly proposed in the training of LLMs as well, both by the 

academic community (Ye et al., 2024) and industry.11 As mentioned above, although federated 

learning advances distribution and granularity, it also ties this distribution to very precise 

locations (i.e., those where the training data is), reducing the flexibility of geographic 

distribution – and thus flexibility – to a minimum. 

Flexibility of inference 

As opposed to training, ML inference must often display low or very low latency (Gao et al., 

2018). For autonomous vehicles, for example, which continuously evaluate sensor data, the 

ability to make split-second decisions is crucial to road safety;12 even small delays potentially 

leading to the loss of human lives. As the model may also not be subject to any communication 

disturbances, it needs to be on the vehicle itself and not in a data center, placing this example 

outside the scope of this study. 

 

8 See AWS (HRSG). Introduction to Model Parallelism. https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-
intro.html (Accessed: 2 December 2024). 
9 See PyTorch (HRSG). Pipeline Parallelism. https://pytorch.org/docs/stable/distributed.pipelining.html (Accessed: 2 December 
2024). 
10 See Lareo X. Federated Learning. https://www.edps.europa.eu/press-publications/publications/techsonar/federated-learning_en 
(Accessed: 2 December 2024). 
11 See Roth H., Xu Z., and Renduchintala, A. (10 July 2023). Adapting LLMs to Downstream Tasks Using Federated Learning on 
Distributed Datasets. https://developer.nvidia.com/blog/adapting-llms-to-downstream-tasks-using-federated-learning-on-
distributed-datasets/ (Accessed: 2 December 2024). 
12 See ultralytics (HRSG). Inferenz in Echtzeit. https://www.ultralytics.com/glossary/real-time-inference (Accessed: 2 December 
2024). 

https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-intro.html
https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-intro.html
https://pytorch.org/docs/stable/distributed.pipelining.html
https://www.edps.europa.eu/press-publications/publications/techsonar/federated-learning_en
https://developer.nvidia.com/blog/adapting-llms-to-downstream-tasks-using-federated-learning-on-distributed-datasets/
https://developer.nvidia.com/blog/adapting-llms-to-downstream-tasks-using-federated-learning-on-distributed-datasets/
https://www.ultralytics.com/glossary/real-time-inference
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Another example is healthcare, where AI-supported monitoring of patients can also be 

extremely time-sensitive; this example was brought up during one of the interviews for this 

study. But applications need not be life-threatening to require low latency; it suffices that they 

should be (near) real-time. For all its drawbacks, generative AI can also be a productivity 

booster for skilled users.13 Users are thus likely to expect a (near) real-time experience and not 

tolerate large delays, which would probably induce a competitive disadvantage. AI-based 

answering services and virtual receptionists are also quickly expanding; this is another of the 

many fields requiring fast responses and little delay. 

Except for a few extremely time-sensitive applications such as self-driving cars and some 

healthcare applications, network delays should not be hindering the real-timeliness of a majority 

of AI applications. For a natural dialogue across the Internet, for example, a round-trip time of no 

more than 300 milliseconds is required; in an early example of videoconference-based 

distributed conference, even a 27,000 km connection (more than half of Earth’s circumference) 

passing over 20 Internet nodes on its way, could easily fit within this limit (Coroamă, Hilty and 

Birtel, 2012). Replicas of models are nevertheless often placed in cloud or edge data centers 

close to their users; not because the distance in itself were a problem, but the possible network 

congestion over long distances. It is the same reason why thought-after contents (such as the 

newest episode of a popular series or the most recent software update of a widely used 

software) are replicated numerous times across continents – either at DCs owned by the content 

provider or at externally contracted content distribution networks (CDNs).14  

Overall flexibility of ML compute loads 

The literature does not provide any quantitative hints towards the geographic flexibility of ML 

training or inference. Based on the considerations above, however, this study can deploy 

reasonable assumptions. Training generally has a higher geographic flexibility than inference. 

The trend, however, seems to be rather towards further restrictions on the geographic flexibility 

of both training and inference: training because of the infrastructure required for large data 

volumes, and inference due to the trends towards edge computing and real-time AI applications.  

With these considerations in mind, our assumptions for the shares of training and inference that 

could theoretically be shifted, are: 

𝑓𝑙𝑒𝑥𝑇(2024) =  0.6; 𝑓𝑙𝑒𝑥𝐼(2024) =  0.4 (5) 

𝑓𝑙𝑒𝑥𝑇(2028) =  0.5; 𝑓𝑙𝑒𝑥𝐼(2028) =  0.35 (6) 

3.4 Short-term shiftable AI power consumption 

In Section 6, we will conclude that most data centers are likely to be built independently of 

carbon pricing over the next years. Hence, short-term leakage, i.e., the geographic shift of 

computing activities rather than entire data centers, may be more relevant for carbon leakage. In 

the following, we therefore focus on the potential of such short-term leakage. Bringing all the 

insights from this section together, the yearly operational flexibility potential of AI can be 

computed as the flexible share of both training and inference taken together: 

𝐹𝑙𝑒𝑥𝐸𝑛𝐴𝐼(𝑦) = (𝑒𝑟𝑇(𝑦) ∗ 𝑓𝑙𝑒𝑥𝑇(𝑦) + 𝑒𝑟𝐼(𝑦) ∗ 𝑓𝑙𝑒𝑥𝐼(𝑦)) ∗ 𝐸𝐶𝐴𝐼(𝑦) (7) 

Using the results and assumptions from Equations 2 – 6 in Equation 7 yields 

 

13 See Roberts, S. Study Finds Applying Generative AI Correctly Can Improve Productivity by 40%. https://verbit.ai/enterprise/how-
smart-application-of-generative-ai-can-improve-productivity/ (Accessed: 2 December 2024). 
14 See Hempenius, K. Content Delivery Networks (CDNs). https://web.dev/articles/content-delivery-networks (Accessed: 2 
December 2024). 

https://verbit.ai/enterprise/how-smart-application-of-generative-ai-can-improve-productivity/
https://verbit.ai/enterprise/how-smart-application-of-generative-ai-can-improve-productivity/
https://web.dev/articles/content-delivery-networks
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𝐹𝑙𝑒𝑥𝐸𝑛𝐴𝐼(2024) = 21.5 𝑇𝑊ℎ; 𝐹𝑙𝑒𝑥𝐸𝑛𝐴𝐼(2028) = 138.3 𝑇𝑊ℎ (8) 

This estimate represents the energy upper bound of the loads that may be shifted; an energy 

upper bound at the source, as it were. The loads that can be shifted do not only depend on the 

flexibility at the source, however, but also on the absorption potential at the target. Concretely, it 

is limited by the available capacity of AI accelerators such as GPUs and TPUs. The available 

capacity is the inverse of the utilization rate: 

𝑎𝑣𝐶𝑎𝑝𝐴𝐼 = 1 − 𝑢𝑡𝐴𝐼 (9) 

In terms of energy, this sets the additional constraint of the energy of the maximum yearly 

absorption capacity: 

𝐴𝑏𝑠𝑜𝑟𝑏𝐸𝑛𝐴𝐼(𝑦) = (1 − 𝑢𝑡𝐴𝐼(𝑦)) ∗ 𝐸𝐶𝐴𝐼(𝑦) (10) 

Taking these two constraints together, the energy of AI shiftable loads can be computed as the 

minimum between flexibility and absorption: 

𝑆ℎ𝑖𝑓𝑡𝐸𝑛𝐴𝐼(𝑦) = 𝑀𝑖𝑛(𝐹𝑙𝑒𝑥𝐸𝑛𝐴𝐼(𝑦), 𝐴𝑏𝑠𝑜𝑟𝑏𝐸𝑛𝐴𝐼(𝑦)) (11) 

Using Equations 7 and 10, Equation 11 can be more precisely rewritten as: 

𝑆ℎ𝑖𝑓𝑡𝐸𝑛𝐴𝐼(𝑦) = 𝐸𝐶𝐴𝐼(𝑦) ∗ 𝑀𝑖𝑛 ((1 − 𝑢𝑡𝐴𝐼(𝑦)), (𝑒𝑟𝑇(𝑦) ∗ 𝑓𝑙𝑒𝑥𝑇(𝑦) + 𝑒𝑟𝐼(𝑦) ∗ 𝑓𝑙𝑒𝑥𝐼(𝑦))) (12) 

The value resulting from Equation 12 sets an upper bound for the energy that could be feasibly 

shifted within a year because it is both technically flexible and can be absorbed elsewhere. In 

practice, there will be numerous other constraints (e.g., economic, geopolitical, organizational, 

etc.) further limiting this value; Section 6 discusses them in detail. As for the utilization rate of AI 

accelerators, several of the experts interviewed for this study agreed that there is currently very 

little availability, all accelerators being intensely used, almost at full capacity. Everyone agreed 

that current utilization rates are 80% or above. This statement applies even for the Leibniz 

supercomputing center. Its director, Prof. Kranzlmüller, mentioned that the GPUs in the Leibniz 

supercomputer are differently optimized than those of commercial hyperscalers. As the 

supercomputer is often needed really large scientific simulations, the GPUs that are 

progressively freed from other tasks are not immediately occupied, but kept for the upcoming 

simulation. But although maximizing utilization rate is not the main criterion for the 

supercomputer, he still estimated a current GPU utilization rate of 80-85%. Given both the 

demand pressure for the exceptionally thought-after AI accelerators, and the prevailing opinion 

among interview partners, this study assumes a utilization rate of 80% for AI accelerators not 

only for today, but also for 2028. In the longer run, it is conceivable that an AI bubble might 

burst, freeing AI compute capacity around the world. Currently, however, it is a seller’s market, 

and that moment seems farther away than just a couple of years. With this assumption, Equation 

10 instantiates to 

𝐴𝑏𝑠𝑜𝑟𝑏𝐸𝑛𝐴𝐼(2024) = 0.2 ∗ 43 = 8.6 𝑇𝑊ℎ; 𝐴𝑏𝑠𝑜𝑟𝑏𝐸𝑛𝐴𝐼(2028) = 0.2 ∗ 304 = 60.8 𝑇𝑊ℎ (13) 

The absorption potential being lower than the flexibility, the shiftable energy coincides with the 

former: 

𝑆ℎ𝑖𝑓𝑡𝐸𝑛𝐴𝐼(2024) = 8.6 𝑇𝑊ℎ;  𝑆ℎ𝑖𝑓𝑡𝐸𝑛𝐴𝐼(2028) = 60.8 𝑇𝑊ℎ (14) 

 

Summary of chapter 3 

To sum up, AI is a transformative technology with profound societal and environmental impacts, 

and a growing energy and carbon footprint. By 2028, AI might consume about the same amount of 

energy as all data center loads combined just a few years ago. To assess its flexibility potential and 
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related maximum operational leakage, training and inference need to be analyzed individually. 

Training has more flexibility than inference, but both potentials might be slowly decreasing. 

Analyzing operational flexibility is not enough, however; available AI compute capacity at the 

receiving end is also required and represents the bottleneck today for shifting emissions in the 

short term. Today, according to our assumptions, less than 10 TWh of electricity might thus be 

shiftable; for 2028, the theoretical capacity-constrained upper limit of electricity that may be 

shifted in AI-related data center operations could reach around 60 TWh/year. The question is 

whether these potentials are leveraged and for which reason.  
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4 Geographic distribution of AI compute capacity 
The aim of this section is to estimate the current global geographical distribution of AI 

computing energy. This information is valuable in the assessment of both operational (i.e., short 

term) leakage as well as long-term carbon leakage from AI-driven data center investments, as 

follows: 

► For operational carbon leakage (short-term): Assuming similar utilization rates across 

geographies implies that the unused capacity available for shifting AI compute loads is 

distributed proportionally to the overall AI compute capacity. This allows conclusions on the 

maximum possible shifts to each geography and, combined with data on the individual 

carbon intensities of electricity, on the maximum amount of operational carbon leakage. 

► For investment carbon leakage (long-term): The current distribution of AI compute loads is a 

proxy for where future capacities would be built according to the same proportionality, in a 

business-as-usual (BAU) scenario (Appendix B motivates this assumption). This sets a 

helpful baseline/counterfactual when analyzing the effects of climate policy measures that 

might change DC placement decisions.  

4.1 Poor data availability and chosen assessment method  

For an accurate estimate of the geographic distribution of AI compute capacity, country-level 

aggregates based on metered AI electricity consumption would be the most precise data source. 

Even for total consumption in DCs, however, such data only exists for a couple of countries, most 

of them within Europe, i.e., Ireland, the Netherlands, and Finland (Kamiya and Bertoldi, 2024).15 

For AI-specific consumption, no country-level data is so far available. 

The second-best option would be company-wide estimates of large AI operators around the 

world, ideally in conjunction with information on their geographic distribution. Unfortunately, 

while such data exists for general-purpose DCs, none of the major DC operators devises the 

energy consumption of AI separately. 

With these two options not feasible, the following approach was chosen: Data on the geographic 

distribution of general DC energy consumption can be assessed (Appendix C.1 discusses how). 

And it is reasonable to assume that AI compute capacity (and thus its energy consumption) is 

distributed similarly to general DC compute capacity (and energy consumption); Appendix C.1 

motivates this as well. A two-step method was thus deployed in this study: 

► to first estimate the geographic distribution of DCs generally; i.e., to initially compute the 

overall yearly energy consumption of all large hyperscale and colocation DCs globally, 

𝐸𝐶𝐷𝐶𝑠(𝑦𝑒𝑎𝑟, 𝑔𝑙𝑜𝑏𝑎𝑙), and to subsequently allocate this consumption to individual countries, 

𝐸𝐶𝐷𝐶𝑠(𝑦𝑒𝑎𝑟, 𝐶), ∀𝐶 ∈ {𝑤𝑜𝑟𝑙𝑑𝑤𝑖𝑑𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠},  

► and then to distribute accordingly both the global energy consumption of AI, 

𝐸𝐶𝐴𝐼(𝑦𝑒𝑎𝑟, 𝑔𝑙𝑜𝑏𝑎𝑙), and the energy of the shiftable AI capacity, 𝑆ℎ𝑖𝑓𝑡𝐸𝑛(𝑦𝑒𝑎𝑟, 𝑔𝑙𝑜𝑏𝑎𝑙), as 

computed in Equations 4 and 14, respectively. The resulting values are denoted as 

𝐸𝐶𝐴𝐼(𝑦𝑒𝑎𝑟, 𝐶) and 𝑆ℎ𝑖𝑓𝑡𝐸𝑛𝐴𝐼(𝑦𝑒𝑎𝑟, 𝐶), ∀𝐶 ∈ {𝑤𝑜𝑟𝑙𝑑𝑤𝑖𝑑𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠}, respectively. 

 

15 This is about to change with the new, EU-wide data center reporting scheme, launched in 2024. In the near future, aggregated 
country-level data on yearly DC energy consumption will be available throughout the EU, see European Commission. Data centres in 
Europe – reporting scheme. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13818-Data-centres-in-
Europe-reporting-scheme_en (Accessed: 2 December 2024). However, this will not address country-wide data availability outside 
the EU, nor will it generate AI-specific data, not even in the EU. 

https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13818-Data-centres-in-Europe-reporting-scheme_en
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13818-Data-centres-in-Europe-reporting-scheme_en
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As motivated above and in more detail in Appendix C.1, country-level data is only available for a 

few countries. To compute the geographic distribution of total DC energy consumption, the 

energy consumption of large DC operators from around the world was used and distributed to 

individual countries. Appendix C.2 presents the 22 large global hyperscale and colocation 

operators used in this study to assess the geographic distribution of general DC energy 

consumption, as well as the data sources for their total energy consumption and geographic 

distribution of data centers. 

4.2 An estimate for country-level data center energy consumption 

To assess per-company power consumption, the sustainability or environmental reports of 

important worldwide hyperscale and colocation operators were analyzed. To extract data on 

their data center energy consumption, the electricity consumption was used (if indicated); 

otherwise, the Scope 2 energy consumption was used as a proxy, which for hyperscale or 

colocation operators is to an overwhelming amount electricity for their DCs.  

The geographic distribution of each company’s data centers was then also retrieved, typically 

from a different source. For lack of more information, an equal energy consumption for all of a 

company’s DCs was assumed, and thus the total consumption distributed evenly among them. 

Then, the individual consumptions across operators were aggregated per country. The sources 

for both total energy consumption and data center distribution are discussed in Appendix C.2. 

Finally, corrections were applied for the two European countries with the largest overall DC 

energy consumption: Germany and France. Appendix C.3 explains these corrections in detail and 

argues why their necessity does not hint towards a fundamental problem of the deployed 

methodology. 

The total energy consumption of the analyzed hyperscale and colocation DCs amounts to almost 

200 TWh/year for 2023 globally, more precisely 

𝐸𝐶𝐷𝐶𝑠(2023) = 196 𝑇𝑊ℎ (15) 

According to the literature, this represents roughly 50% of all data center energy consumption, 

when accounting for the smaller providers and enterprise DCs as well (Malmodin et al., 2024).  

Table 2 lists the top 12 countries in terms of DC energy consumption according to this analysis, 

while Figure 3 maps all results on a world map. As the table shows, the US has by far the highest 

DC energy consumption in large hyperscale and colocation DCs (82.4 TWh and 42.1% of the 

global consumption), followed by China with 39 TWh annually (corresponding to about 20% of 

the global consumption). The EU member states Germany and Ireland are third and fourth, 

followed by Singapore and Japan, all of them with consumptions far lower than the US and 

China. With a total of 31.2 TWh and 16% of the global consumption (not shown in the table), 

even the entire EU still comes behind the US and China. 

Taken together, the US, China, and the EU account for 78% of the worldwide consumption. Non-

EU European countries amount for another 1.6% (Russia), 1.5% (the UK), 0.6% (Switzerland), 

another 0.6% (Iceland), and 0.4% (Norway), etc. Together with EU’s 16%, this yields a total of 

just over 20% for all of Europe.  
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The data corroborates well with data computed with an entirely different, top-down method 

(i.e., based on market data and vendor revenues) by the Synergy Research Group, which yields 

51% for the US, 16% for China, and 17% for all of Europe.16 

Table 2: The top 12 countries in terms of DC energy consumption according to this analysis. 

Focus is exclusively on large hyperscale and colocation DCs. 

Country Estimated 2023 DC 
energy (hyperscale & 
colocation) [GWh] 

Percentage Country Estimated 2023 DC 
energy (hyperscale & 
colocation) [GWh] 

Percentage 

US 82,423 42.1% France 4,050 2.1% 

China 38,966 19.9% Australia 3,932 2.0% 

Germany 8,055 4.1% India 3,749 1.9% 

Ireland 6,394 3.3% Netherlands 3,278 1.7% 

Singapore 4,282 2.2% Russia 3,186 1.6% 

Japan 4,241 2.2% UK 2,878 1.5% 

Source: own calculations based on company reports and assumptions, Roegen Centre for Sustainability and INFRAS. 

Figure 3: Mapping of 22 large hyperscale and colocation operators in the world. 

The 22 considered hyperscale and colocation operators are together responsible for about 196 TWh of 
electricity consumption annually. With 82 TWh, the US is responsible for 42% of the total, and China for 
another 20% (39 TWh). 

 
Source: own visualization of the calculations presented in Table 2, Roegen Centre for Sustainability and INFRAS (values in 

GWh/year). 

 

16 See Synergy Research Group (17 April 2024). Hyperscale Data Centers Hit the Thousand Mark; Total Capacity is Doubling Every 
Four Years https://www.srgresearch.com/articles/hyperscale-data-centers-hit-the-thousand-mark-total-capacity-is-doubling-
every-four-years (Accessed: 2 December 2024). 

https://www.srgresearch.com/articles/hyperscale-data-centers-hit-the-thousand-mark-total-capacity-is-doubling-every-four-years
https://www.srgresearch.com/articles/hyperscale-data-centers-hit-the-thousand-mark-total-capacity-is-doubling-every-four-years
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4.3 Country-level AI energy consumption and GHG emissions 

As stated, this study uses the current distribution of hyperscale and large colocation data centers 

as proxy for the distribution of AI computing capacity, both currently and in near-future. This AI 

distribution, in turn, is used as baseline for the further analysis of possible carbon leakage. 

Appendix B motivates this assumption. Still, we acknowledge that our resulting estimates are 

based on limited data quality. The estimated global energy consumption of AI in data centers for 

2024 and 2028 was 𝐸𝐶𝐴𝐼(2024) = 43 𝑇𝑊ℎ and 𝐸𝐶𝐴𝐼(2028) = 304 𝑇𝑊ℎ, respectively, as derived 

in Equation 4. Allocating it to individual countries according to the relative distribution of DC 

energy consumption from Table 2, yields the results shown in columns 2 and 3 of Table 3. Using 

the average 2024 carbon intensity of the grid mix for these countries (column 4) yields the AI-

related carbon emissions per country for these years (columns 5 and 6, respectively).  

In absence of future forecasts for the grid carbon intensities, 2024 values are used for 2028 as 

well. Given the accelerated adoption of renewable electricity around the world, this is most 

certainly a pessimistic assumption for most countries. Additionally, hyperscalers are large 

investors in low-carbon sources such as renewable and nuclear power, as discussed in Section 6. 

Rows in Table 4 are ordered according to carbon footprint; not the energy footprint. 

Table 3: Energy consumption and GHG emissions for the top 20 emitting countries due to AI 
in data centers, for 2024 and 2028. 

For emissions, the energy is multiplied by the carbon intensity (CI) of the grid mix; today’s mix is used for 2028 
as well. 

Country 2024 AI  
energy [GWh] 

2028 AI  
energy [GWh] 

2024 grid mix  
[g CO2/kWh] 

2024 AI GHGs 
[kt CO2eq] 

2028 AI GHGs 
[kt CO2eq] 

US 18,083 127,842 369 6,673 47,174 

China 8,549 60,437 582 4,975 35,174 

Germany 1,767 12,494 381 673 4,760 

India 823 5,815 713 586 4,146 

Australia 863 6,098 549 474 3,348 

Japan 930 6,577 485 451 3,190 

Singapore 939 6,642 471 442 3,128 

Ireland 1,403 9,917 291 408 2,886 

Russia 699 4,942 441 308 2,180 

South Africa 335 2,369 708 237 1,677 

Malaysia 367 2,593 606 222 1,571 

UAE 348 2,460 561 195 1,380 

Netherlands 719 5,085 268 193 1,363 

Indonesia 263 1,863 676 178 1,259 

Mexico 346 2,447 507 175 1,241 

UK 631 4,464 238 150 1,063 

South Korea 265 1,872 431 114 807 
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Country 2024 AI  
energy [GWh] 

2028 AI  
energy [GWh] 

2024 grid mix  
[g CO2/kWh] 

2024 AI GHGs 
[kt CO2eq] 

2028 AI GHGs 
[kt CO2eq] 

Israel 179 1,267 583 105 739 

Bahrain 103 729 905 93 660 

Canada 548 3,872 170 93 658 

Source: own calculations, Roegen Centre for Sustainability and INFRAS. 

Finally, for the same top 20 countries, Table 4 sets in relation their entire AI-generated carbon 

emissions with the emissions of their operationally flexible loads (i.e., upper bound for 

emissions reductions if those loads were to be fully shifted – emissions that can be outsourced 

due to AI [FlexEn]) and their operational absorbing capacity (i.e., upper bound for emissions 

increase, if all available capacity was used [ShiftEn]). If, e.g., Germany was to introduce a very 

high carbon price in 2028, up to 2,166 kt CO2eq could be shifted abroad, while if it was to 

become competitively cheap, an increase of 952 kt CO2eq could happen. This corresponds to a 

volume of 0.32% (FlexEn) and 0.1% (ShiftEn) of Germany's total greenhouse gas emissions 

projected for 2028.17 Moreover, for 2028, e.g., FlexEn is equivalent to the amount of greenhouse 

gases emitted by about 200,000 people in Germany in one year.18  

Table 4: Per-country total AI-related carbon emissions, GHG emissions of the loads that are 
flexible, and GHG emissions of the capacity that is free to absorb incoming shifted 
loads, for 2024 and 2028, respectively. 

Only top 20 countries in terms of AI-generated GHG emissions listed. 2024 grid mix used for 2028 as well. 

Country 2024 all 
AI 

[kt CO2eq] 

2024 FlexEn 
GHGs  

[kt CO2eq]  

2024 ShiftEn 
GHGs 

[kt CO2eq] 

2028 all AI 
[kt CO2eq] 

2028 FlexEn 
GHGs  

[kt CO2eq]  

2028 ShiftEn 
GHGs 

[kt CO2eq] 

US 6,673 3,336 1,335 47,174 21,461 9,435 

China 4,975 2,488 995 35,174 16,002 7,035 

Germany 673 337 135 4,760 2,166 952 

India 586 293 117 4,146 1,886 829 

Australia 474 237 95 3,348 1,523 670 

Japan 451 226 90 3,190 1,451 638 

Singapore 442 221 88 3,128 1,423 626 

Ireland 408 204 82 2,886 1,313 577 

Russia 308 154 62 2,180 992 436 

South Africa 237 119 47 1,677 763 335 

 

17 German Environment Agency (27 March 2024). Indicator: Greenhouse gas emissions. 
https://www.umweltbundesamt.de/en/data/environmental-indicators/indicator-greenhouse-gas-emissions 
(Accessed: 2 December 2024). 
18 German Environment Agency (30 January 2025). Wie hoch sind die Treibhausgasemissionen pro Person in 
Deutschland und wie viel wäre klimaverträglich? https://www.umweltbundesamt.de/service/uba-fragen/wie-hoch-
sind-die-treibhausgasemissionen-pro-
person#:~:text=Der%20deutsche%20Aussto%C3%9F%20an%20Treibhausgasen,(CO2e)%20pro 
%20Jahr (Accessed: 2 December 2024). 

https://www.umweltbundesamt.de/en/data/environmental-indicators/indicator-greenhouse-gas-emissions
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Country 2024 all 
AI 

[kt CO2eq] 

2024 FlexEn 
GHGs  

[kt CO2eq]  

2024 ShiftEn 
GHGs 

[kt CO2eq] 

2028 all AI 
[kt CO2eq] 

2028 FlexEn 
GHGs  

[kt CO2eq]  

2028 ShiftEn 
GHGs 

[kt CO2eq] 

Malaysia 222 111 44 1,571 715 314 

UAE 195 98 39 1,380 628 276 

Netherlands 193 96 39 1,363 620 273 

Indonesia 178 89 36 1,259 573 252 

Mexico 175 88 35 1,241 564 248 

UK 150 75 30 1,063 483 213 

South Korea 114 57 23 807 367 161 

Israel 105 52 21 739 336 148 

Bahrain 93 47 19 660 300 132 

Canada 93 47 19 658 299 132 

Source: own calculations, Roegen Centre for Sustainability and INFRAS. 

Summary of chapter 4 

Starting from the distribution of data center energy consumption on general, this section 

estimates the global geographic distribution of AI-related electricity consumption and the 

theoretical upper limit for geographically shiftable AI data center operations. The capacity-

constrained upper limit describes the potential for short-term, operational carbon leakage. It 

considers unused compute capacity in different regions and their electricity grid carbon intensities. 

Key findings include that the US and China dominate data center electricity use, collectively 

accounting for over 60% of global consumption, with the EU trailing behind. The analysis highlights 

challenges in data availability but provides a foundational assessment of AI electricity use and 

emissions by country.  
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5 Comparing the data center landscape with the 
geographic scope of emission trading systems  

Section 4 has shown that the US and China dominate current data center operations and are 

likely to host most projected data center investments. Here, we compare this global “data center 

landscape” (see Figure 3 above) with the global scope of emissions trading systems (ETS). The 

emissions impact of AI-driven data center growth depends on the local electricity mix, which is 

influenced by whether data centers are located in countries with ambitious climate policies. 

Climate policies, including instruments like ETS, are designed to raise the cost of fossil-fuel-

based electricity relative to renewables and nuclear by pricing carbon emissions. Ideally, these 

policies should discourage data centers from using carbon-intensive electricity by increasing 

associated operational costs. However, the effectiveness of carbon pricing policies in curbing 

fossil-fueled data center expansion depends on two key factors. First, the stringency of carbon 

policies; only a high carbon price or a strict emissions cap can significantly impact fossil 

electricity prices, thus influencing the operational costs of data centers. Second, disparities in 

carbon pricing across jurisdictions create a risk of “carbon leakage“. To avoid costs, AI-driven 

data center operations and investments may intentionally shift from regions with substantial 

carbon pricing to areas with weaker or no such policies, undermining climate targets. 

Comparing the global distribution of data centers shown above (Figure 3) to the distribution of 

ETS across countries (Figure 1B) underscores this challenge. While carbon pricing instruments 

cover an increasing share of global emissions (Figure 2A), still a majority of existing and 

anticipated data center growth occurs in jurisdictions without national-level ETS, such as the US. 

The US has subnational ETS (RGGI in the Northeast, Californian ETS); however, a significant 

share of US data center growth happens outside of these regions. Anecdotal evidence points 

towards partial data center expansion based on fossil gas in these regions, as recently reported 

for xAI, Elon Musk’s AI company building a new data center in Tennessee. Furthermore, 

countries without any form of ETS such as India remain potential hotspots for future data center 

expansion. This uneven landscape of carbon pricing and data center localization highlights a 

tangible risk of carbon leakage and embodied emissions in digital trade, which could weaken the 

intended effects of stringent climate policies in specific regions such as the European Union with 

its ETS. 

Even among those regions with ETS, differences in policy design, i.e. the level of the carbon price 

and projected future carbon price increases, can lead to changing investments and thus potential 

carbon leakage. The stringency of these instruments varies considerably. Figure 3C depicts the 

effective carbon price on electricity, an indicator by the OECD representing the sum of fuel excise 

taxes, carbon taxes, and tradeable permits that effectively put a price on carbon emissions. The 

figure shows the share of emissions from electricity generation that are covered by a 120€/ton 

CO2e benchmark. In 2021, with a few exceptions, strict carbon pricing in the electricity sector 

was only present in the EU, UK, and Switzerland, with more than 30% of emissions effectively 

covered by a carbon price of 120€/ton CO2e benchmark. 

Figure 5A and B synthesize insights on the geographic distribution of data center electricity 

consumption and the scope and ambition of carbon pricing. Comparing the presence or absence 

of carbon pricing instruments with data center electricity consumption does not yield a clear 

pattern (Figure 5A). However, comparing data center electricity consumption to the effective 

carbon price on electricity (using an OECD indicator) shows that three sets of countries can be 

identified: countries with high carbon prices and moderate data center localization, countries 

with low carbon prices and moderate (to low) data center localization, and finally the US and 

China with low effective carbon prices but high data center localization.  
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Figure 4: Distribution of carbon pricing instruments over time and across countries. 

 

Source: own illustration, INFRAS and Roegen Centre for Sustainability. Based on A) and B) World Bank Carbon Pricing 

Dashboard, accessed on 11.11.24. C) OECD Effective Carbon Rates Dataset, accessed on 24.10.24.  
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Figure 5: Comparing data center electricity consumption with the geographic scope of 
carbon pricing instruments (A) and stringency level of instruments (B). 

 

 

Source: own illustration, INFRAS and Roegen Centre for Sustainability. Sources: see Figure 4.1. 
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 Excursion: Emissions embodied in cross-border data flows 

Next to carbon leakage, the unequal geographical distribution of data centers raises the question 

whether the AI-driven expansion of data center operations and investments increases embodied 

emissions in digital trade flows (trade in services not goods) – independent of whether this is 

driven by climate policy or not. Here, we shortly discuss this point; the remainder of the report 

focuses on carbon leakage caused by costs imposed by climate policy as defined by the European 

Commission (see Section 2). There is no statistical classification or official statistics on cross-

border data flows (OECD, 2022b). As a rough proxy for data flows, Figure 6A depicts the change 

over time of global imports and exports (in million US-Dollar) of digitally delivered services, as 

estimated by the World Trade Organization (WTO, 2023). The value of both, imports and 

exports of digital services, have roughly quadrupled between 2005 and 2023 (global imports 

and exports differ due to statistical asymmetries and discrepancies in how trade is recorded 

across countries). The share of the indicator “computer services” which includes data center 

services accounts for 21% of worldwide service exports. Using these trade flows jointly with the 

respective emission intensities of service sectors for the respective countries can provide a first 

insight into traded emissions from digital services. 

Figure 6: Digitally delivered services trade as a proxy for cross-border data flows. 

 

Source: own illustration, INFRAS and Roegen Centre for Sustainability. Based on WTO estimates.  

Figure 1Figure 6B provides a geographic overview on which countries are net importers 

(brown) and net exporters (green) of the indicator “computer services” measured in US Dollar 

for 2023. Most European countries are net importers of computer services. Major countries such 

as China, India, and the US are net exporters. 
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Figure 7: The relation between carbon pricing instruments and carbon leakage. 

 
Source: own illustration, INFRAS and Roegen Centre for Sustainability. 
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6 Assessing the extent of carbon leakage from AI-driven 
data center operations and investments 

As argued in Section 4, current and expected data center capacity is predominantly located in 

jurisdictions without carbon pricing such as much of the US. This raises the question whether 

the relatively ambitious carbon pricing schemes in Europe have led to carbon leakage, i.e. the 

intentional shift in operations and investments of data centers beyond Europe. Figure 7 shows 

desired and undesired effects of carbon pricing on the supply and demand side, as well as how 

these effects translate into research questions on the potential for operational and investment 

carbon leakage from AI-driven data center growth.  

6.1 Impact of carbon pricing on operational and investment costs 

How can carbon pricing affect data center operators and users? 

Carbon pricing instruments such as ETS can increase the operational costs for data center 

operators and users19. Operational cost can increase if the electricity consumed comes from 

power plants that are covered by carbon pricing.20 Since under ETS power plants need to 

purchase emissions allowances, any increase in carbon costs may be passed on to consumers in 

the form of higher electricity prices. This can lead to higher costs for training and running AI 

models (for the AI model lifecycle see Figure 1 in Section 3). Data center operators and users are 

thus indirectly affected by ETS through its effects on electricity prices. This indirect effect on 

electricity prices may lead to i) short-term geographical shifts in the operation of data centers 

and ii) long term shifts in data center investment decisions. While the short term or operational 

carbon leakage (see definition in Section 2) would result from current electricity price 

differences, long term or investment-related carbon leakage would occur from anticipated 

electricity price differences over the next years and decades.21 Finally, although it is likely a 

minor effect, carbon pricing instruments can potentially also increase the investment costs. 

Emission-intensive material needed by the data center operators can become more expensive 

because of carbon pricing of upstream industries such as steel or cement. 

What is the impact of carbon pricing instruments on electricity prices? 

The effect of carbon pricing on DC operators largely depends on its impact on electricity prices, 

as carbon costs from fossil fuel generation might be internalized. In an electricity market based 

on the merit order,22 the impact of carbon prices on the electricity price depends on the 

technology, efficiency, and the amount of carbon emissions of the price-setting plant. Studies on 

whether this internalization takes place show mixed results. Next to carbon prices, long-term 

prices on future markets are influenced primarily by natural gas and coal prices, while short-

term prices on spot markets depend on renewables and demand (Mosquera-López and 

Nursimulu, 2019). Under the EU ETS, Kosch et al. (2022) found a 1€/tCO2 rise led to a 0.5-

1€/MWh increase, depending on the power markets production portfolio. In Spain, a 1% carbon 

price change caused a 0.24% increase in electricity prices (Freitas and Silva, 2015). Most studies 

suggest only higher costs are passed to consumers, showing an asymmetric effect (Aatola, 

 

19 Data center operators include colocation operators, hyperscalers, or inhouse data centers at universities or companies. Data center 
users include AI developers and service providers as well as third parties using AI models through cloud services.  
20 Renewable power purchase agreements, which are predominantly used by hyperscalers, can also increase operational costs.  
21 The EU ETS II starting in 2027 will also put a price on fuel combustion in buildings and industrial activities which may affect fuel 
prices for back-up fossil turbines in data centers. However, given that backup capacity is rarely used, the effects on operational costs 
are likely to be low. From the expert interviews we gathered that in regions with reliable grids such as Germany or Switzerland, 
backup generators are fired up every 4-6 weeks for tests, lasting about 30-60 minutes.  
22 In short, the merit order is the ranking of electricity sources from cheapest to most expensive, ensuring the use of the most cost-
effective options first and only turn to pricier ones when demand is higher. 
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Ollikainen and Toppinen, 2013). Short-term effects are evident in highly competitive markets 

like the Nordic region, where emission allowances influence electricity prices on spot markets 

(Jabłońska et al., 2012). However, some studies show conflicting results. Jouvet and Solier 

(2013) found both positive and negative impacts of ETS on electricity prices across European 

markets (in some contexts, electricity prices decreased after an increase of the ETS price), 

especially in Italy. Wolff and Feuerriegel (2019) found a negative impact of emissions pricing on 

intraday market prices in phase III of the EU ETS. Outside the EU ETS, Palmer et al. (2018) found 

rising regional ETS prices in the US had little effect on prices. Woo et al. (2017) observed that a 

1$/t increase in California’s CO2 price raised electricity prices by 0.15-0.59 $/MWh. Cotton and 

Mello (2014) found minimal impact from Australia’s ETS, and Apergis (2018) identified a long-

term asymmetric effect in New Zealand, with carbon price increases fully passed through. 

What explains the impact of carbon pricing instruments on electricity prices? 

The instrument design is crucial to understanding impact on prices (Wolff and Feuerriegel, 

2019). Historically, carbon pricing instruments have had modest ambition and thus low prices. 

In the EU ETS, recent changes in design elements may lead to higher electricity prices. Most 

importantly, in 2023, the reduction rate of the allowance cap has been increased to 2.2% per 

year. As the cap tightens, the scarcity of emission allowances increases, raising their price. 

Design changes are expected to lead to increases of carbon prices and reach between 

approximately 120 and 160 €/t according to most ETS models (Refinitiv, BloombergNEF, ICIS, 

Enerdata, PIK, CAKE) reviewed by Pahle et al. (2022). However, if low-carbon electricity sources 

expand and increasingly substitute electricity sources covered by carbon pricing, the overall 

effect on electricity prices can be much lower (see below). Pietzcker et al. (2021) find that under 

the scenario of a strongly tightening EU ETS cap (−63% of allowances instead of −43% in 2030), 

total discounted power system costs in the EU would only increase by 5% (€3680 billion vs. 

€3500 billion) for the period 2018–2052. Such moderate impact of the ETS on electricity prices 

even under a tightening cap is largely explained by the dominance of supply factors like the 

diffusion of renewable energy technologies, general prices for fossil fuels, and demand factors 

such as overall economic activity in shaping electricity prices. In the EU, the share of clean 

electricity generation from renewables has continuingly increased (from almost 0% in 2000 to 

27% of electricity generation in 2023), decreasing demand for emission allowances from the 

electricity sector. In 2023, wind produced more electricity than gas for the first time (Ember, 

2024). This trend is also visible on the global scale with emission intensities of the electricity 

mix in all world regions expected to moderately fall from 2023 until 2030 as the share of 

renewables in final energy consumption is expected to increase from 13% to 20% (IEA, 2024a, 

2024b), although this trend is likely to be heterogenous across countries. For example, emission 

intensities in China are expected to fall from roughly 600 gCO2/kWh in 2022 to below 400 

gCO2/kWh until 2030 with currently implemented policies (IEA, 2024b). However, China is a 

key source of uncertainty in projecting future developments (IEA, 2024a). Finally, carbon pricing 

affects only part of the final electricity price for end consumers. Regulatory factors such as taxes 

and grid fees account for a significant share of the price (these can also be related to climate 

policy but are not covered due to the limited scope of this study). 

How relevant are potential electricity price increases from carbon pricing? 

Even if carbon pricing affects electricity prices to a significant degree, the question remains 

whether such price differential matters for data center operators and users. Based on a set of 

simple assumptions, a back of the envelope calculation for the example of data centers in 

Germany in 2022 (Figure 8) shows that electricity price increases from carbon pricing can 

account for a significant increase of electricity costs (an estimated cumulative 11% from ETS 
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price increases 2018-2021) for data centers.23 This particular case represents an upper bound 

for the effects of ETS on electricity prices, due to the strong increase of ETS prices in the 

examined period and the selection of a country with significant share of coal and gas in the 

electricity generation. For the few countries such as France with substantially lower shares of 

fossil electricity generation the calculation would yield a remarkable lower estimate. In total, 

such electricity price increase may have led to an increase of operational expenditure (OPEX) for 

data centers of around cumulative 220 m € considering the carbon price increase 2018-2021. 

Figure 8: Back of the envelope calculation on the role of ETS prices on data center OPEX. 

It shows the estimated impact of ETS price increases 2018-2021 for electricity costs by German data centers in 
2022. Given strong ETS price increase and fossil shares in the German electricity mix in this period it constitutes 
an upper bound. 

 

Source: own illustration, INFRAS and Roegen Centre for Sustainability. Based on Statistisches Bundesamt, World Bank 

Carbon Pricing Dashboard, European Commission (2024), Kosch et al. (2022) and Table 2 above. Approximate distribution of 

total cost ownership (C) based on expert interviews for an average data center in Europe.  

This rough approximation needs to be compared to the estimated 2 bn € that data centers spent 

overall on electricity in 2022 and the other cost components of electricity such as levies and 

charges (Figure 8B). It also needs to be compared to the cost differential that results from 

hypothetically running these data centers in the US with its much lower electricity costs (here: 

average industrial electricity price that disregards local price differences within the US), 

resulting in hypothetical electricity expenditure of roughly 0.75 bn €. Finally, electricity costs 

are not the only cost factor of data centers and account only for maximally a third of the total 

cost of ownership (based on expert interviews), see Figure 8C. More importantly, capital 

expenditure (CAPEX) for IT equipment (GPUs, CPUs) and infrastructure (racks, cooling systems, 

servers) make up a larger part of total cost of ownership. 

Data on the cost structure of AI model development suggests that energy costs (assuming US 

energy costs; $85/MWh) account for a moderate part of the overall costs, e.g., 6% for GPT-4 or 

4% for Gemini 1.0 Ultra (Cottier et al., 2024). Energy costs for interference may be higher 

compared to these numbers given that, e.g., spending on R&D will be smaller. Moreover, 

assuming that electricity demand stays constant the impact of carbon pricing on electricity 

prices is likely to be mitigated to some extent in most countries over the next years even under a 

tightening of carbon pricing instruments (as targeted by the EU Commission, the share of 

renewables is supposed to increase from 24 % to 42% within the EU). 

 

23 Assuming that the strong ETS price increase between 2018 and 2021 has led to an electricity price increase of 33 €/MWh in 
Germany (Kosch, Blech and Abrell, 2022).  
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Summary of chapter 6.1 

Short term, operational carbon leakage may occur if ETS increases current electricity prices. Long 

term carbon leakage may occur if data centers investments are shifted geographically due to 

anticipated electricity price differences due to carbon pricing. To assess the role of ETS for 

electricity prices, this chapter has qualitatively reviewed existing literature. In sum, we deduce that 

carbon pricing is likely to have had a moderate effect on electricity prices until 2021 (in the EU but 

also in other jurisdictions), however, more current insights are missing. Moreover, the effect of 

carbon pricing on electricity prices is contingent on the electricity mix of each country. Itis likely to 

be more significant in countries with higher shares of fossil fuels in electricity generation and to 

become weaker when the reliance on fossil fuels decreases. Still, even if carbon pricing leads to 

significantly higher electricity prices in an economic meaningful way, it is an open question to what 

extent this electricity price increase relates to carbon leakage, i.e. intentional shifts in data center 

investments due to the EU ETS. We discuss this question in the next section. 

6.2 Carbon leakage from data center operations and investments  

What do we know about carbon leakage from data center operations and investments?  

The discussion above shows that there is potential for carbon leakage if climate policy costs 

increased substantially, and companies decide to act on it. To our knowledge, there are no 

studies that explicitly address carbon leakage in data center operations or investments or the 

wider ICT sector yet. Empirical studies from other sectors generally find evidence of moderate 

carbon leakage. For instance, an analysis by the OECD (2024) suggests that carbon leakage 

through international trade offsets around 13% of domestic emission reductions. Wang and 

Kuusi (2024) confirm that EU ETS has caused the carbon content of the EU’s imports to increase 

to a moderate extent. Saussay and Sato (2024) find that energy price differences are related to 

investment location decisions. Nonetheless the impact is heterogeneous. Saussay and Sato 

measure, no effect in most cases, especially between industrialized countries, but stronger 

effects in energy-intensive industries. In a literature review, Verde (2020) finds no clear 

evidence of carbon leakage in earlier EU ETS phases. Grubb et al. (2022) confirm these findings 

and explain the absence of leakage in early phases mainly with the grandfathering of allowances 

which shields key sectors and maintains competitiveness of European firms (Joltreau and 

Sommerfeld, 2019).  

Also, most studies use data from periods of low CO2 prices (Saussay and Sato, 2024). More 

recently announced protective measures such as the EU carbon border adjustment mechanism 

(CBAM) which may affect forward-looking investment decisions are also not yet examined 

empirically. Furthermore, carbon leakage effects on long-term investment decisions are difficult 

to model and only rarely examined specifically. 

How likely is carbon leakage in AI-related data center operations and investments? 

Carbon leakage is of particular concern in energy-intensive sectors of an open economy with 

trade competition, in which companies may struggle to pass on these carbon costs along the 

value chain and thus decide to offshore their production (Saussay and Sato, 2024). Most affected 

are companies in the cement, lime and plaster, fertilizer, or steel industries (Sato et al., 2015; 

Grubb et al., 2022). These industries are affected both directly through the ETS as onsite 

emitters as well as indirectly through higher energy costs. As indicated in Figure 8 above, the 

energy costs account for a majority of data center OPEX, which, in turn, account for roughly a 

third of total cost of ownership for data centers. Data centers can thus be considered an energy-

intensive sector (comparable to air transport and higher than cement or iron and steel 

production, see Figure 10 in Appendix D). 
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Besides the energy cost share in overall production cost of an industry, a key determinant for 

carbon leakage is the ability of companies to pass on costs from climate policy along the value 

chain (i.e., the lower this ability, the higher the chance for leakage). Companies’ ability to do so 

depends on a set of factors commonly referred to as Porter’s five forces which basically describe 

the structure and nature of a given market section: market competition, new entrants, supplier 

and buyer power, as well as substitutes. In a perfect market with fierce competition and 

constant marginal costs, companies would have no other choice than a 100% pass-through of 

additional costs. However, from a theoretical perspective, if marginal costs are not constant but 

increase, monopolistic markets will show greater cost pass-through rates (Ritz, 2024). 

Moreover, it is possible that data centers have increasing marginal costs due their large 

investment and idle-state costs. 

We describe the market in data center operation and use, as it relates to AI in Table 5 below. The 

table is based on our expert judgements.24 To the best of our knowledge, there are no studies 

describing the market structure of the data center and AI market so far and how it affects 

location decisions. Future research is required for robust assessments of the AI market 

structure. 

Table 5: Market structure in data center operation and use. 

Actor Type Market 
Competition 

New Entrants Supplier 
Power25 

Buyer Power Substitutes 

Colocation 
data center 
operators 

Medium, with 
several 
competitors, 
but fairly high 
switching costs 
due to inertia 
and lock-in. 

Low - Medium- 
High entry 
barriers due to 
necessary 
capital 
expenditure, 
specialized 
knowledge.  

Medium, with 
traditionally 
monopolistic 
energy 
markets, but 
reforms and 
growing shares 
of renewables 
increase 
competition.  

Low to 
moderate 
depending, 
e.g., on size of 
buyer and size 
of colocation 
operator. 

Low to medium 
- end user 
devices are the 
closest 
substitute and 
not able to 
process fast 
amounts of 
data. 

Hyperscalers 
and cloud 
services 

Medium - 
Established 
market and 
oligopoly with 
large players 
including 
Amazon AWS, 
Google Cloud. 

Low -Very high 
entry barriers 
due to high 
capital 
expenditure, 
technology 
know-how. 

Medium, with 
traditionally 
monopolistic 
energy 
markets, but 
reforms and 
growing shares 
of renewables 
increase 
competition. 

Low, as 
consumers 
have little 
negotiating 
power over 
compute costs. 

Low to median 
- end user 
devices are the 
closest 
substitute and 
not able to 
process fast 
amounts of 
data. 

Source: own table, INFRAS and Roegen Centre for Sustainability. 

Considering investment carbon leakage, based on these characteristics the data center market 

faces a low level of competition and it is likely that they will pass-through costs if market 

characteristics do not change (cf., OECD, 2022c). 

 

24 Calculating the Herfindahl-Hirschman Index (HHI) is beyond the scope of this study. Another common indication for market 
power is the profit margin, as low competition and monopolistic markets are often associated with very high margins. However, only 
a limited number of sources report profit margins for DCs, which vary widely between 5% and 50%, providing no clear indication 
regarding the intensity of competition. 
25 This is only discussed from an energy perspective, e.g., AI hardware suppliers (such as Nvidia) are not discussed. 
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With respect to short-term carbon leakage, we provide the following arguments:  

► In a typical pricing model, colocation data center operators can pass-through higher 

electricity costs from carbon pricing to customers. While customers have the option to 

switch colocation operators, it is unlikely to happen below a certain electricity cost 

threshold. For instance, insights from an expert interview suggest that the energy crisis in 

2022/2023 with strongly increasing electricity prices in Europe has not led to major 

geographical shifts to colocation data centers outside of Europe.  

► Hyperscalers offering cloud services may set different prices according to different end uses. 

It is not clear to what extent prices differ according to the location of data centers used, i.e. 

along different electricity price levels.  

► From the perspective of data center customers, cost pass-through may differ also according 

to AI application and thus different electricity needs and customer base (due to different 

price elasticities). For example, ultra-high frequency applications like AI-assisted financial 

trading may be more or less prone to cost pass-through than occasional training runs at 

supercomputers for research purposes. 

These are current market conditions and competition intensity may increase over time which 

can affect cost past-through rates and cost structures.  

There are, to our knowledge, no studies on the cost pass-through in the data center and AI 

sector. Data from other sectors can be informative: A study on behalf of the European 

Commission has examined cost pass-through rates in European manufacturing sectors ( 

Directorate-General for Climate Action, 2015). Cost pass-through seems to be present in many 

sectors and countries, but heterogenous. Indicative cost pass-through rates – if present – range 

between 35% to more than 100% depending on the sector and country, see also (UBA, 2020).  

6.3 Other factors driving data center operations and investments  

The decision to (re)locate investment and shift operations in data centers can only be partially 

driven by carbon prices and their effects on current or – relevant for investment decisions –

anticipated operational expenditure. Data center localization also depends on other factors 

namely corporate strategy, non-climate related policy, and general locational factors. These may 

moderate the potential effect of carbon pricing on short-term operational shifts in compute 

loads and long-term investment decisions. 

Corporate strategy by data center operators and users 

Even if able to pass on costs imposed by climate policy, data center operators and users may not 

wish to do so due to corporate strategy. This can have several aspects:  

► Stage of the industry life cycle: The AI industry is currently in the growth stage of the 

industry life cycle (McKinsey, 2024)., Rather than maximizing efficiency and profitability, in 

this phase companies typically focus on market shares and scaling. In platform-based 

business models such as used in many AI applications, the first mover advantage can be 

significant as benefits may arise from capturing a large market share and using resulting 

network effects. Thus, there is a strong emphasis on quickly developing new AI technologies 

and applications and differentiate AI products and services. Efforts are directed towards 

scaling operations and infrastructure to handle increased demand. This affects AI 

developers, and their operational decision-making, as well as data center siting and 
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investment decisions by large corporations who provide both computing infrastructure and 

AI solutions. 

► Climate commitments: At the same time, major data center operators and users are 

focusing on reducing the climate footprint in their value chain. Non-binding initiatives like 

the European Code of Conduct on Data Centre Energy Efficiency and private sector 

commitments, such as the Climate Neutral Data Centre Pact and RE100, showcase voluntary 

efforts towards energy efficiency and renewable energy use. These initiatives suggest that 

many data center operators are already pursuing environmental goals, reducing the 

likelihood of significant regulatory-driven carbon leakage. Table 10 in Appendix E provides 

an overview on voluntary cross-company initiatives. Table 6 shows the extent to which these 

players source their electricity from renewable power purchase agreements (PPAs) and 

sums up key aspects of their climate commitments. One key question will be how these 

players will meet their climate targets in time (and with conflicting timelines of renewables 

or nuclear built out vs. data center built out). Green washing claims (mainly due to the 

purchase of renewable energy certificates and different methods of calculating Scope 2 & 3 

emissions) also exists, however, these are heterogeneously distributed across companies.26 

Table 6: Corporate climate commitments by four of the largest data center users. 

Company Cumulative renewable 
PPA offtake in GW (and 
share of global volume of 
PPA) 

Summary of climate commitments 

Amazon 27.8 GW (16.3%) - Co-founded The Climate Pledge (net-zero by 2040). 
- Invests in technologies to accelerate its path to net-zero. 

Meta 12.1 GW (7.1%) - Aims to reduce Scope 1 and 2 emissions by 42% by 2031. 
- Achieved net-zero for global operations in 2020. 

Microsoft 10.8 GW (6.3%) - Pledged to be carbon negative by 2030. 
- Created a $1B Climate Innovation Fund for sustainable tech. 

Google 9.9 GW (5.8%) - Targets 50% Scope 1 and 2 emissions reduction by 2030. 
- Plans to operate on 24/7 carbon-free energy globally by 
2030. 

Source: own table, INFRAS and Roegen Centre for Sustainability. Based on Bloomberg NEF PPA Data, corporate 
sustainability reports. 

Further EU policy instruments and regulation 

Public policy beyond carbon pricing instruments can impact localization decisions of data center 

operators and users (Ebert et al., 2024)27 or the integration of emissions into ETS systems. 

Fehler! Verweisquelle konnte nicht gefunden werden.7 summarizes the impact of major p

olicies within the EU related to the location on data centers (Table 10 in Appendix E provides 

more detail).  

Potentially relevant regulations include the EU Carbon Border Adjustment Mechanism (CBAM), 

which imposes costs on imported carbon-intensive goods and aims to level the playing field 

between operations inside the EU and those located in regions with less stringent climate 
 

26 O'Brien I. (15 September 2025). Data center emissions probably 662% higher than big tech claims. Can it keep up the ruse? 
https://www.theguardian.com/technology/2024/sep/15/data-center-gas-emissions-tech (Accessed: 2 December 2024). 
27 Two datasets map relevant digital/AI policies: Marcus, J. S., Sekut, K., Zenner, K. (06 June 2024). A dataset on EU legislation for the 
digital world. https://www.bruegel.org/dataset/dataset-eu-legislation-digital-world ; OECD.AI (2021), powered by EC/OECD 
(2021), database of national AI policies. https://oecd.ai/en/dashboards/overview/policy (Accessed: 2 December 2024). 

https://www.theguardian.com/technology/2024/sep/15/data-center-gas-emissions-tech
https://www.bruegel.org/dataset/dataset-eu-legislation-digital-world
https://oecd.ai/en/dashboards/overview/policy
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policies. However, the supposed “leakage prevention”-effect on data centers is minimal/zero 

since it does not include services in general. Another potentially relevant instrument are 

electricity price compensation mechanisms under the ETS (implemented by member states such 

as Germany) which aim to prevent carbon leakage by offsetting high electricity costs for 

manufacturing. However, AI-related data center compute is not covered under these measures.  

Further, the EU Energy Efficiency Directive (EED) has indirect effects on data centers, 

encouraging countries to meet energy-saving targets. The German “Energieeffizienzgesetz” 

(EnEfG) from 2023, however, might have some influence, since (unlike the EU regulation which 

focuses on reporting and only encourages efficiency measures for DCs) it imposes strict energy 

efficiency and renewable energy targets for data centers. While many large IT companies 

already meet these efficiency standards, meeting (on balance) the 100% renewable electricity 

sourcing target from 2027 onwards as well as waste heat recovery may be a challenge to some, 

especially the latter.  

Table 7: Important policies affecting data center operation and investment. 

Policy Short description Influence on carbon leakage from data centers 

EU Carbon 
Border 
Adjustment 
Mechanism 
(CBAM) 

A mechanism to price carbon emissions 
of imports like steel, cement, and 
electricity to prevent carbon leakage 
and promote cleaner production 
globally. 

Limited impact on data centers as they 
consume EU-produced electricity, regulated 
under the EU ETS. CBAM focuses on imported 
products with high emissions, not services. IT, 
data center, and AI services are excluded. 

EU Energy 
Efficiency 
Directive 
(EED) 

Sets energy savings targets for countries, 
including measures for data centers like 
energy audits, efficiency reporting, and 
management systems.  

Obligations like reporting and audits marginally 
increase operational costs. However, leading IT 
firms already meet/exceed efficiency standards, 
reducing carbon leakage risk. IT associations are 
concerned about the potential relocation of 
businesses within the European market when it 
comes to the use of waste heat.28 

EU AI Act
  

Regulates AI systems based on risk 
levels, requiring compliance for high-risk 
applications through special approvals 
and oversight.  

Regulates development and deployment of 
high-risk AI within the EU. Provides 
transparency on energy consumption used for 
AI training abroad. 

General Data 
Protection 
Regulation 
(GDPR) 

Protects personal data privacy, including 
restrictions on cross-border data 
transfers outside the EU.  

Partially prevents offshoring of data processing 
involving EU citizens, limiting carbon leakage 
risks. International privacy laws similarly restrict 
data use. However, data can be shifted across 
borders if countries have comparable data 
policy protection policies. 

Source: own table, INFRAS and Roegen Centre for Sustainability. 

Moreover, data sovereignty and localization policies such as the General Data Protection 

Regulation (GDPR) that aim at restricting the use of data to geographical boundaries put limits 

on how fungible data can be used across jurisdictions (Selby, 2017; Cory and Dascoli, 2021; CIPL, 

2023). A good example for this is restrictions on the use of medical data outside of national 

borders. AI is also covered by international trade agreements like the WTO’s GATS and regional 

agreements under regulation for trade in services (OECD, 2022a). As highlighted by the OECD’s 

Services Trade Restrictiveness Index (STRI), domestic regulations present significant barriers in 
 

28 Bitkom (HRSG). Presseinformation: Bitkom zur Verabschiedung des Energieeffizienzgesetzes. 
https://www.bitkom.org/Presse/Presseinformation/Bitkom-Verabschiedung-Energieeffizienzgesetz (Accessed: 2 December 2024).  

https://www.bitkom.org/Presse/Presseinformation/Bitkom-Verabschiedung-Energieeffizienzgesetz
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areas like communication infrastructure and data connectivity. Over recent years, the regulatory 

environment for digitally enabled services trade has become increasingly restrictive. Figure 

9Figure 8 below shows this trend based on data from the OECD on data localization policies29. 

The EU AI Act puts constraints and regulatory costs on AI development and deployment of high-

risk and general-purpose AI applications used in the EU. A report for the European Commission 

estimates the total global compliance cost for the AI industry in 2025 to range from € 1.6 billion 

to € 3.3 billion, assuming 10% of AI units are classified as “high risk” (Renda et al., 2021). Given 

that all AI systems put into service in the EU are regulated, independent of who is developing 

them and where the compute is located, we do not anticipate geographic shifts from this 

regulation. In addition, the AI Act will provide transparency for the energy used to train AI 

models, but may not for the inference stage or embodied carbon emissions (this will depend on 

the specific guidelines of the AI Act that are currently defined). This may help to shed more 

precise light on the environmental impacts of AI.  

Figure 9: Diffusion of data localization policies over time. 

 

Source: own illustration, INFRAS and Roegen Centre for Sustainability. Based on OECD data on “Cross-border data flows” 

available under https://www.oecd.org/en/topics/cross-border-data-flows.html, accessed on 11 November 2024. 

As of early 2023, nearly 100 data localization measures were implemented across 40 countries, 

over half introduced within the last decade. These measures have become more restrictive, with 

more than two-thirds requiring data storage within national borders and restrictions on data 

flows. These considerations are partially integrated in the estimations from Sections 3 & 4.  

Other locational factors  

Additional relevant location factors for data centers operators and users beyond specific policies 

or corporate strategies can affect siting decisions and may further diminish the effect of carbon 

prices on localization of data centers. They include30: 

► Focus on securing energy supply: As data center growth is expected to significantly 

increase energy demand, a key struggle for AI companies is to secure reliable electricity 

supply in time. Due to interconnection queues, general long-time horizons of energy projects 

(compared to data center construction time), and network bottlenecks, securing enough 

electricity is likely to be more important than electricity price differences. According to 

Morgan Stanley, data center developers may even be willing to pay a large premium to come 

online fast (Morgan Stanley, 2024). In addition, data centers have a demanding load profile 
 

29 It remains open to what extent these policies are implemented, and how stringent they are. 
 30 Kamiya, G. & Kvarnström, O. Data centres and energy – from global headlines to local headaches? 
https://www.iea.org/commentaries/data-centres-and-energy-from-global-headlines-to-local-headaches (Accessed: 2 December 
2024).  

https://www.oecd.org/en/topics/cross-border-data-flows.html


 
TEXTE Carbon leakage in AI-driven data center growth?  

43 

 

as they need 24/7 uninterrupted power (momentary lapses in power can cause major 

economic damages) with multiple layers of backup power generation. However, a stable 

energy supply is more difficult to achieve with a large share of renewables.31 

► Connectivity and infrastructure: A location with robust, reliable access to high-speed data 

networks is crucial for data center operations. Data centers require fast, secure internet 

connectivity to ensure minimal downtime. High-quality IT infrastructure with high 

bandwidth and low-latency connections is essential for smooth data processing and 

communication between facilities and end-users (i.e., clients). These aspects are typically 

prioritized in locations near major telecom hubs and energy grids (e.g., major cities). 

► Availability of water: Access to water can be essential for non-closed cooling systems in 

data centers, particularly in energy-intensive AI data centers and in areas where air cooling 

is not sufficient. Data centers often require large amounts of water to prevent overheating, 

especially in warmer regions. 

► Regional industry networks and collaboration: Proximity to other technology companies 

or universities can be key for driving innovation or finding appropriately skilled workforce. 

Skilled professionals are necessary to operate and manage data centers, as they are needed 

for tasks such as IT support and network management. Data centers benefit from being in 

areas with a concentration of digital businesses and research institutions. 

► Climate conditions: A cooler climate can significantly reduce energy costs associated with 

cooling, which accounts for a large proportion of a data center's total energy consumption. 

Natural methods are more effective in regions with cooler temperatures, reducing the need 

for air conditioning systems. Nordic regions are particularly attractive to data center 

operators for their favorable cooling climate, and some even use free air cooling year-round. 

► Natural hazards and security: The risk of natural disasters, such as floods or earthquakes, , 

can disrupt operations or damage infrastructure. Reducing exposure to such risks is 

important for operational reasons but also for mitigating insurance and recovery costs. 

► Additional cost incentives: Different types of costs vary immensely between locations. For 

instance, within the US data centers are frequently build in rural areas where land is more 

affordable.32 Also, profit taxes are often a significant factor in the decision-making process 

for firms’ locations (Devereux & Griffith 1998). Ireland has one of the lowest corporate tax 

rates in Europe, at around 12.5%, and hosts most data centers, after Germany. Also, many US 

states explicitly offer tax incentives to encourage data centers to establish themselves within 

their borders.33 Moreover, also energy price differences in general (independent of carbon 

pricing) may play a part (Figure 8).  

► Moratoriums: Regional data center moratoriums are temporary bans or restrictions 

enacted by local governments to halt the construction of new data centers. These measures 

are driven by concerns over the environmental impact, high energy consumption, and strain 

on infrastructure resulting from the rapid expansion of data centers and have been already 

 

31 Hirschhorn, P. and Brijs, T. (December 17, 2021). Rising to the Challenges of Integrating Solar and Wind at Scale. 
https://www.bcg.com/publications/2021/addressing-variable-renewable-energy-challenges (Accessed: 2 December 2024).  
32 By Rayome, A. D. Why data centers fail to bring new jobs to small towns. https://www.techrepublic.com/article/why-data-
centers-fail-to-bring-new-jobs-to-small-towns/ (Accessed: 2 December 2024).  
33 SDIA (HRSG). US tax incentives for data centers by state. https://knowledge.sdialliance.org/policies/us-tax-incentives-for-data-
centers-by-state (Accessed: 2 December 2024). 

https://www.bcg.com/publications/2021/addressing-variable-renewable-energy-challenges
https://www.techrepublic.com/article/why-data-centers-fail-to-bring-new-jobs-to-small-towns/
https://www.techrepublic.com/article/why-data-centers-fail-to-bring-new-jobs-to-small-towns/
https://knowledge.sdialliance.org/policies/us-tax-incentives-for-data-centers-by-state
https://knowledge.sdialliance.org/policies/us-tax-incentives-for-data-centers-by-state
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implemented in Singapore, Netherlands, Ireland, Germany, USA, and the UK (Soares et al. 

2024). These measures may spark the relocation of data centers in less regulated areas.  

Summary of chapter 6 

In sum, even if carbon pricing led to significant electricity price increases and thus higher 

operational expenditure for data centers, the effects on carbon leakage are likely rather limited. 

Intentional carbon leakage by data center operators and users such as AI developers to lower 

operating costs seems rather unlikely due to the current market phase. The AI market is, at the 

moment, in its infancy, with companies focusing on market share expansion and product 

development rather than on cost efficiency. Also, the market structure that is far from being a 

perfect market (e.g. with a few dominant players in AI model development) should enable both 

data center operators and users to pass-through costs along the value chain. Moreover, energy 

costs only account for a part of overall production costs of final AI products. However, more 

research is needed to provide a more robust assessment of cost pass-through, market structure, 

and energy cost shares in the AI-driven data center growth. Also, market structure and cost pass-

through may change as the AI market evolves over the coming years. Finally, to fully assess the 

likelihood of carbon leakage, a wider set of factors beyond climate policy needs to be considered 

including corporate strategies or data localization policies.  
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7 Conclusion and outlook 

7.1 Summary of the potential, drivers, and barriers to AI carbon leakage 

AI-driven data center growth is predominantly projected in regions with already high compute 

capacity such as the US or China. Most growth is thus happening in regions with none or not 

sufficiently stringent carbon pricing mechanisms. Europe has implemented an ambitious 

emissions trading system (ETS), but its installed compute capacity and projected growth remain 

modest. This uneven climate policy and data center landscape raises concerns about a 

potentially large amount of emissions in digital trade and carbon leakage, where data center 

investments and AI compute loads might be geographically shifted to avoid costs imposed by 

carbon pricing. With respect to shifted emissions, we estimate the theoretical upper limit at 

hundreds of kilotons CO2 today and thousands of kilotons CO2 in a few years (see Table 4). 

However, the report argues that the likelihood for significant carbon leakage from carbon 

pricing, specifically from ETS, to be moderate, as summarized in Figure 10 below. The actual 

carbon leakage induced by ETS from AI data center operations should thus be far below this 

theoretical upper bound. In the short term, the global strain on compute capacity makes 

intentional geographic shifts due to carbon pricing unlikely, as the top priority for data center 

users is to secure sufficient compute capacity.  

Figure 10: Drivers and barriers to carbon leakage for data center operation and investment. 

 

Source: own illustration, INFRAS and Roegen Centre for Sustainability. 
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Over the long term, shifts in investments in new data centers to avoid costs from carbon pricing 

instruments appear more plausible. In particular, they will become more likely if competition 

intensity across data centers increases. In contrast, a rapid uptake of renewable energy in 

countries hosting data centers can prevent carbon leakage (and embodied emissions from digital 

trade). Also, carbon leakage is likely to remain small if electricity costs become increasingly 

decoupled from carbon pricing with higher shares of renewables. 

Further, factors such as more general energy price differences, data localization and security 

policies, and broader corporate strategies are likely to currently exert greater influence on data 

center siting decisions than carbon pricing alone. Many data center operators and users have 

adopted ambitious climate commitments, prioritizing clean energy for new investments.  

Still, major pushbacks against clean energy deployment, such as to be expected under the second 

Trump administration, and a potential reversal of climate commitments by corporates may 

provide ground for expecting carbon leakage in the medium to long term. While it is unlikely 

that this investment decision is primarily driven by cost avoidance from carbon pricing, it may 

still lead to carbon leakage in the medium term: in case of compute overcapacity, data center 

users may choose to run their models in data centers with lower operating costs. 

While carbon leakage examined in this study—intentional relocation to evade carbon pricing 

from ETS—is estimated to be unlikely for AI-driven data center growth, the broader climate 

implications of data center growth warrant attention. Data center growth in regions without 

robust climate and energy policies may exacerbate emissions, either directly through reliance on 

fossil fuels or indirectly by displacing other uses of clean electricity to decarbonize transport or 

industry. Such negative second-order effects on overall decarbonization efforts may be 

particularly critical in key markets with a slowdown in renewable energy deployment. Beyond 

carbon pricing, other climate policy instruments such as renewable energy policy and its 

implications for electricity prices (e.g., potential price increases via network charges or other 

levies on the electricity price) may also cause carbon leakage. Finally, from a European 

perspective, the question is how to address the potential of increasing imported emissions from 

compute load abroad. 

7.2 Research agenda on the direct climate effects of data center growth 

From our report, several questions emerge that deserve future research and require more 

granular data and sophisticated methods for a detailed analysis of AI-related carbon leakage.  

► Geographic distribution of AI-related compute growth: While the proxy used in this 

study yields a reasonable estimate, more precise data on the actual distribution of AI 

compute capacity, and related energy consumption, is needed. As soon as such data becomes 

available, it should substitute the estimates employed here. More granular data should be 

used for the US as well: With very different data center development, grid carbon intensities, 

and partly existing ETS, the US is a very heterogeneous landscape. As it also harbors almost 

half of the worldwide AI compute capacity, a more granular analysis of the US is required.  

► Flexibility and shiftability of AI loads: The analysis on shiftability and flexibility of AI 

compute loads in Section 3.3 relies entirely on assumptions. More research is needed on this 

topic that has only barely been touched upon so far. Research questions may include: How 

does flexibility of AI loads differ between AI applications? What are technical and other 

conditions that need to be met for flexible AI loads? How does shiftability of AI loads differ 

along different temporal resolutions, i.e. how flexible and shiftable are AI loads on a second, 

minutes, vs. hourly or daily basis? 
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► Comparing the evolving climate policy and data center landscape: Next to assessing the 

distribution of carbon pricing policies and their overlap with data center growth, other 

climate policy instruments such as clean energy policy subsidies and regulation or efficiency 

requirements would be relevant. Novel data allow the systematic mapping of climate policy 

instrument mixes, e.g. by the OECD or IEA, can help (Steinebach et al., 2024). 

► Influence of carbon prices on electricity prices: There is only little research on the effect 

of carbon pricing on electricity prices, and this literature does not provide a clear picture. 

The following questions deserve further analysis: What is the effect of carbon prices on 

electricity prices (in specific regions)? How does it compare to other components of 

electricity prices such as fuel costs, network tariffs, or other taxes?  

► Relevance of electricity prices for AI compute and overall AI production costs: Building 

on a more robust insight into the effect of carbon prices on electricity prices, the question 

remains to what extent electricity prices are important for data center operators and their 

clients. Here, the concept of cost pass-through is key. While literature has established cost 

pass-through rates, uncertainties about the extent of carbon leakage remain. The following 

questions deserve attention: What is the share of electricity costs from data centers in the 

overall cost structure of a given AI product? How can electricity costs be passed through the 

AI value chain, i.e. from data center operator to AI company, to end consumer? To answer 

the latter question, a better understanding of the AI value chain and industry structure is 

needed: How high are entry barriers and levels of competition in the AI industry? To what 

extent do cloud service providers and hyperscalers offer locational pricing based on 

geographic position of costumer, allowing them to pass-through costs of electricity prices? 

What drives costumers in choosing differently located colocation or cloud services? 

► Relevance of carbon pricing as compared to other climate policy instruments in 

driving carbon leakage: This study has focused on carbon pricing instruments, i.e. ETS, as 

driver of carbon leakage. However, other climate policies such as renewable energy policy or 

efficiency mandates may also impose costs on data center operators and users, leading to 

intentional shifts in compute loads or investments. More research is needed on the role these 

other climate policies have in driving carbon leakage in comparison to carbon pricing. 

► Other factors driving AI-related data center operations and investments: Even if carbon 

pricing led to higher electricity prices that could not be passed through the value chain, the 

question remains how high electricity prices rank as compared to other factors such as 

corporate strategy, other regulatory requirements or geopolitical concerns: What is the role 

of carbon pricing – or even climate policy more generally – in driving data center localization 

as compared to other factors? 

7.3 Policy recommendations 

AI-driven data center growth presents significant challenges for global climate mitigation (ITU 

and World Bank, 2024). Next to mitigating the risks of potential carbon leakage and emissions 

from imported AI-driven data services, two general key areas need to be addressed: ensuring 

data center growth is powered by clean electricity and addressing the secondary effects of data 

center expansion on the availability of clean electricity for the decarbonization in other sectors.  

► Enhancing transparency on environmental impacts of AI: There are currently only rough 

estimates regarding the environmental impacts of AI, and more precise data is needed to 

accurately assess these impacts as well as their geographic distribution. While the AI Act is 
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expected to provide more detailed information about energy consumption during AI 

training, comprehensive information other environmental impacts (e.g., water consumption) 

remains lacking. 

► Mitigating potential carbon leakage and imported emissions from AI-driven data 

center operation and investments: The risk of carbon leakage arises from disparities in 

carbon pricing across jurisdictions, which could incentivize shifting data center operations 

and investments to regions with weaker climate policies. To address this potential risk, a 

more widespread adoption of carbon pricing mechanisms, such as emissions trading 

systems or carbon taxes, should be encouraged. International agreements or climate clubs 

such as initiated by the G7 should harmonize carbon pricing levels to reduce discrepancies 

that undermine climate goals. Additionally, establishing international standards for clean 

data center operations can enhance transparency and accountability for emissions.  

► Carbon Border Adjustment Mechanisms (CBAM) such as introduced by the EU could 

serve as a valuable tool to address emissions associated with imported compute loads by 

extending its scope to (AI) services. This approach would effectively subject imported AI-

driven compute loads to carbon pricing, ensuring their costs align with those of domestically 

produced services governed by the EU’s stringent climate policies. Such measures could help 

level the playing field and incentivize service providers outside the EU to adopt renewable 

electricity to remain competitive. However, implementing and enforcing this policy would 

present significant challenges, particularly in monitoring and verifying emissions from 

imported services. The fungible and immaterial character of AI products would make 

monitoring difficult. For example, trained AI models can be copied, which poses questions of 

how to account for embodied emissions in the copied versions (an AI-adjusted polluter-pays 

principle may solve the problem). Furthermore, the impact of such a carbon tax is unlikely to 

offset the persistent electricity price gap with major data trade partners like the US, where 

electricity costs are 2–3 times lower, meaning data processing is likely to remain cheaper in 

the US despite any potential CBAM adjustments. 

► Ensuring data center growth is based on clean electricity: To align data center growth 

with climate goals, governments must implement policies that prioritize the use of 

renewable electricity. This could include providing regulatory requirements, such as 

mandatory use of (additional) renewable electricity in data centers. Mandatory regulations 

requiring data center operators to procure a significant share of electricity from renewable 

sources, supported by guarantees of origin, are another critical step. Efforts such as the data 

center efficiency regulation by the EU could be more ambitious, as the industry is often 

already surpassing regulatory requirements. Finally, infrastructure investments, including 

grid upgrades and energy storage, are essential to ensure sufficient clean energy capacity to 

meet the growing demand from data centers.  

► Addressing second-order effects of data center growth: Data center expansion can 

inadvertently slow the decarbonization of other sectors, such as transport and industry, by 

competing for available clean electricity. To mitigate these second order effects, integrated 

energy planning is necessary. Policymakers should coordinate renewable energy expansion 

with the expected demand growth from data centers, transport, and industry. This approach 

ensures that electrification efforts in sectors with significant emissions reduction potential 

are not delayed or compromised by competition for (temporarily) limited clean energy 

resources. 
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A Appendix: Expert interviews 

Table 8: Expert interviews for this study. 

Expert Organization Role or qualification 

Jan Abrell University of Basel Environmental economist 

Carlos Alves Digital Realty DC capacity & energy manager 

Johannes Leon Kirnberger OECD AI & sustainability expert 

Dieter Kranzlmüller Leibniz-Rechenzentrum (LRZ) Director 

Source: own overview, INFRAS and Roegen Centre for Sustainability. 
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B Appendix: Important AI data center developments announced in 2024 

While we cannot provide strong evidence in support of this assumption, this year’s 

announcements on the development of new AI data centers do correlate with the general DC 

focus on the US, China, Europe, and some countries in the Middle East and Asia.  

Data on the Chinese development plans are hard to come by, but it can be safely assumed that 

accelerated AI development will also take place in China. Google- and Gemini-supported 

searches on AI data center development announced in 2024 by the 22 companies analyzed here 

include: 

► US: Large US hyperscalers, which are so power-hungry for their new AI-oriented DCs that 

within a few months, they all announced backing up the refurbishment or new development 

of nuclear reactors, Microsoft supporting the restart of Three Mile Island,34 while Google and 

Amazon support the development of new small modular reactors.35 Oracle has announced a 

US-based AI data center with a capacity of 800 MW.36 And the already sprawling DC 

ecosystem in Virginia might soon double in size.37 

► Europe: Microsoft alone plans to invest more than 3 billion € in two new AI data centers in 

Germany, 38 each of which will be in the 100-200 MW range (which is very large for 

European standards), while the same North Rhine-Westphalia region expects by 2026 

further colocation DCs in the hundreds of MWs.39 Around Frankfurt and Berlin, further 

hundreds of MWs of DC capacity are already being built, with further yet in planning.40 

Meanwhile, QTS plans the development of 300 MW in Spain and 1.1 GW in the UK.41 

► Middle East: Both the UAE and Saudi Arabia invest billions, perhaps even dozens of billions, 

in the development of data center capacity, mainly aimed at AI.42 

 

34 Martucci, B. (20 September 2024). Constellation plans 2028 restart of Three Mile Island unit 1, spurred by Microsoft PPA. See 
https://www.utilitydive.com/news/constellation-three-mile-island-nuclear-power-plant-microsoft-data-center-ppa/727652/ 
(Accessed: 2 December 2024). 
35 See Terrell, M. (14 October 2024). New nuclear clean energy agreement with Kairos Power. https://blog.google/outreach-
initiatives/sustainability/google-kairos-power-nuclear-energy-agreement/ and Amazon (16, October 2024). Amazon signs 
agreements for innovative nuclear energy projects to address growing energy demands 
https://www.aboutamazon.com/news/sustainability/amazon-nuclear-small-modular-reactor-net-carbon-zero, respectively 
(Accessed: 2 December 2024). 
36 See Butler, G. (10 September 2024). Oracle to build nuclear SMR-powered gigawatt data center. 
https://www.datacenterdynamics.com/en/news/oracle-to-build-nuclear-smr-powered-gigawatt-data-center/ (Accessed: 2 
December 2024). 
37 See Schlotterback V., Pasqualichio J., and Bond, J. (18 September 2024). The Data Center Balancing Act: Powering Sustainable AI 
Growth. https://www.brownadvisory.com/us/insights/data-center-balancing-act-powering-sustainable-ai-growth (Accessed: 2 
December 2024). 
38 See Butler, G. (16 February 2024). Microsoft to invest €3.2bn in doubling AI infrastructure and cloud capacity in Germany. 
https://www.datacenterdynamics.com/en/news/microsoft-to-invest-32bn-in-doubling-ai-infrastructure-and-cloud-capacity-in-
germany/ (Accessed: 2 December 2024). 
39 See Thomeczek, H. (19. Februar 2024) Microsoft baut Rechenzentren in NRW und sucht Mietflächen in Frankfurt. 
https://www.iz.de/projekte/news/-microsoft-baut-rechenzentren-in-nrw-und-sucht-mietflaechen-in-frankfurt-2000023361 
(Accessed: 2 December 2024). 
40 See Williams, M. (23 September 2024). German Data Center Market. https://www.jll.de/en/trends-and-insights/investor/german-
data-center-market-addressing-rising-demand (Accessed: 2 December 2024). 
41 See Swinhoe, D. (15 October 2024). Blackstone to develop 300MW data center campus in Aragon, Spain. 
https://www.datacenterdynamics.com/en/news/blackstone-to-develop-300mw-data-center-campus-in-aragon-spain/ and 
Swinhoe, D. (3 September 2024). QTS files to build 1.1GW data center campus in Northumberland, UK. 
https://www.datacenterdynamics.com/en/news/qts-files-to-build-11gw-data-center-campus-in-northumberland-uk/ (Accessed: 2 
December 2024), respectively. 
42 See Martini, E. P. (30 July 2024). Saudi Arabia and UAE's race for AI, data center dominance 
https://www.diplomaticourier.com/posts/saudi-arabia-and-uaes-race-for-ai-data-center-dominance (Accessed: 2 December 2024). 

https://www.utilitydive.com/news/constellation-three-mile-island-nuclear-power-plant-microsoft-data-center-ppa/727652/
https://www.datacenterdynamics.com/en/news/oracle-to-build-nuclear-smr-powered-gigawatt-data-center/
https://www.brownadvisory.com/us/insights/data-center-balancing-act-powering-sustainable-ai-growth
https://www.datacenterdynamics.com/en/news/microsoft-to-invest-32bn-in-doubling-ai-infrastructure-and-cloud-capacity-in-germany/
https://www.datacenterdynamics.com/en/news/microsoft-to-invest-32bn-in-doubling-ai-infrastructure-and-cloud-capacity-in-germany/
https://www.iz.de/projekte/news/-microsoft-baut-rechenzentren-in-nrw-und-sucht-mietflaechen-in-frankfurt-2000023361
https://www.jll.de/en/trends-and-insights/investor/german-data-center-market-addressing-rising-demand
https://www.jll.de/en/trends-and-insights/investor/german-data-center-market-addressing-rising-demand
https://www.datacenterdynamics.com/en/news/qts-files-to-build-11gw-data-center-campus-in-northumberland-uk/
https://www.diplomaticourier.com/posts/saudi-arabia-and-uaes-race-for-ai-data-center-dominance
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C Appendix: Assessing the global distribution of general DC energy 
consumption 

C.1 Methodology 

Data on the exact number, placement, and energy consumption of general-purpose DCs is itself 

patchy (Bremer et al., 2023). There is, however, plenty of information that can be leveraged to 

achieve country-wide DC energy consumption estimates. Two main possibilities exist: i) using 

national statistics on DC energy consumption, and ii) company reports of hyperscale and 

colocation operators in conjunction with the global distribution of their DCs: 

► More straightforward are country-wide estimates. Unfortunately, there are few estimates 

available at the country level. The most credible are based on reported electricity 

consumption and metered data – e.g. for Ireland (Central Statistics Office, Ireland, 2023) or 

the Netherlands (Statistics Netherlands, 2022). Estimates based on available reports, expert 

interviews and other statistical data are also quite confident, as in Sweden (Swedish Energy 

Agency, 2023) or on bottom-up estimates with robust models developed over many years, as 

is the case in Germany (Hintemann, Hinterholzer and Seibel, 2023). For other countries, such 

data is more difficult to find and of lower quality – this is particularly true for China (Fan, 

2021; Ni et al., 2024) but also for the USA when it comes to very recent data. 

► For a company-based assessment, data from the US “big four” (Google, Microsoft, Amazon, 

Meta) but also from important Chinese operators (such as Chinese telecom operators, 

Alibaba, and Baidu), further important players from all continents as well as content 

distribution networks (CDN) are required. In particular the “big four”, but also Chinese and 

some of the other AI actors, have an international presence. It does thus not suffice to 

assume that all company-owned DCs are located in (and thus the entire energy consumption 

takes place in) their country of residence; complementary data on the geographic 

distribution of their DCs and subsequent geographic aggregation are also required. 

The analysis needs to focus on hyperscale and colocation DCs, as traditional in-house enterprise 

DCs are less relevant for AI, even though the inference of smaller ML models can also take place 

here. Hyperscalers such as the US “big four” (Amazon, Google, Microsoft, and Meta), however, 

together with a few further Chinese and international players and (to a lesser extent) colocation 

DCs are those who either develop in-house (in the case of Google) or buy the vast majority of AI 

accelerators on the market to train and run ML models.  

Unlike the geographic distribution of cryptocurrency mining equipment, assuming that the large 

worldwide DC operators are also the large AI operators is thus a reasonable assumption, and 

one that has been validated in several interviewees as well as by members of the scientific 

accompanying team. Prof. Kranzlmüller, director of the Leibniz supercomputing centre, said in 

his interview that for various reasons such as more available power, faster approval processes, 

and more favorable societal views of large data centers and supercomputing, he expects the 

trend to intensify and compute capacities of DCs in general and AI specifically to grow mainly in 

the US as well as Asia (specifically China and Japan). 

The large hyperscale and colocation operators used in this study to assess the geographic 

distribution of general data center energy consumption are presented in the section below. 
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C.2 Hyperscale and colocation operators used to assess the geographic distribution of 
general-purpose DC energy consumption 

Table 9: Hyperscale and colocation operators used in this study, together with the sources 
used to extract their 2023 overall energy consumption and the location of their 
data centers, respectively. 

Company Energy source DC distribution source 

Google Google (2024) https://www.google.com/about/datacenters/locations/ 
(Accessed: 2 December 2024). 

Microsoft Microsoft (2024a) (Microsoft, 2024b) 

Amazon Reverse engineered from 
Amazon’s location-based 
Scope 2 emissions of 15.67 Mt 
CO2eq./year (Ernst & Young, 
2024), using the US average 
mix of 0.369 kg CO2/kWh 

https://www.datacentermap.com/c/amazon-aws/ 
(Accessed: 2 December 2024). 

Meta Meta (2024) https://datacenters.atmeta.com/all-locations/ (Accessed: 2 
December 2024). 

Apple Apple (2024) (Apple, 2024), https://dgtlinfra.com/apple-data-center-
locations/ (Accessed: 2 December 2024). 

Equinix Equinix (2024) https://www.equinix.com/data-centers (Accessed: 2 
December 2024). 

DigitalRealty Digital Realty (2024) https://www.digitalrealty.com/data-centers (Accessed: 2 
December 2024). 

Chindata Chindata (2023) https://www.chindatagroup.com/global.html (Accessed: 2 
December 2024). 

GDS GDS (2023) https://c.gds-
services.com/esg2023/docs/2023_ESG_Report_EN.pdf 
(Accessed: 2 December 2024). 

Alibaba Alibaba (2024) https://www.alibabacloud.com/en/global-
locations?_p_lc=1 (Accessed: 2 December 2024). 

CyrusOne CyrusOne(2024) https://www.cyrusone.com/data-centers/ (Accessed: 2 
December 2024). 

NTT Data NTT DATA (2023) https://services.global.ntt/en-us/services-and-
products/global-data-centers/global-locations (Accessed: 2 
December 2024). 

QTS QTS (2023) https://qtsdatacenters.com/data-centers (Accessed: 2 
December 2024). 

KDDI KDDI (2024) https://www.eu.kddi.com/en/services/datacenter/global-
datacenter/ (Accessed: 2 December 2024) 

VNET VNET (2023) https://www.vnet.com/en/resource.html (Accessed: 2 
December 2024) 

Chinamobile China Mobile (2023) https://www.chinamobileltd.com/en/ir/reports/ar2023/sd2
023.pdf (Accessed: 2 December 2024) 

https://www.google.com/about/datacenters/locations/
https://www.datacentermap.com/c/amazon-aws/
https://datacenters.atmeta.com/all-locations/
https://dgtlinfra.com/apple-data-center-locations/
https://dgtlinfra.com/apple-data-center-locations/
https://www.equinix.com/data-centers
https://www.digitalrealty.com/data-centers
https://www.chindatagroup.com/global.html
https://c.gds-services.com/esg2023/docs/2023_ESG_Report_EN.pdf
https://c.gds-services.com/esg2023/docs/2023_ESG_Report_EN.pdf
https://www.alibabacloud.com/en/global-locations?_p_lc=1
https://www.alibabacloud.com/en/global-locations?_p_lc=1
https://www.cyrusone.com/data-centers/
https://services.global.ntt/en-us/services-and-products/global-data-centers/global-locations
https://services.global.ntt/en-us/services-and-products/global-data-centers/global-locations
https://qtsdatacenters.com/data-centers
https://www.eu.kddi.com/en/services/datacenter/global-datacenter/
https://www.eu.kddi.com/en/services/datacenter/global-datacenter/
https://www.vnet.com/en/resource.html
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Company Energy source DC distribution source 

Baidu Baidu (2023) https://intl.cloud.baidu.com/doc/Reference/s/2jwvz23xx-
en (Accessed: 2 December 2024) 

Huawei Huawei (2023) https://www.huaweicloud.com/intl/en-us/about/global-
infrastructure.html (Accessed: 2 December 2024) 

Tencent Tencent (2023) https://www.tencentcloud.com/global-infrastructure 
(Accessed: 2 December 2024) 

Akamai https://www.akamaisustainab
ility.com/indicators/ 

https://techdocs.akamai.com/cloud-computing/docs/how-
to-choose-a-data-center (Accessed: 2 December 2024) 

Vantage Vantage (2023) https://vantage-dc.com/wp-
content/uploads/2024/07/2023-ESG-Report_Vantage-Data-
Centers.pdf (Accessed: 2 December 2024) 

Rostelecom Rostelecom (2022) https://baxtel.com/data-centers/rostelecom (Accessed: 2 
December 2024) 

C.3 Corrections for Germany and France 

The results of the analysis yielded 4.6 TWh/year for Germany and 1.6 TWh/year for France. 

These numbers, however, are most likely underestimates, in particular for France: While 

variability in their assessment exists, the most likely estimates for the energy consumption of all 

DCs in these countries are 17.9 TWh/year for Germany (Hintemann, Hinterholzer and Seibel, 

2023) and 9 TWh/year for France (Kamiya and Bertoldi, 2024).  

These values from the literature refer to all DCs and not just hyperscalers and large colocation 

providers. These sub-categories, which are the ones relevant to this study as they are indicative 

of AI energy, currently represent about 50% of all DC energy consumption around the world 

(Malmodin et al., 2024); in Europe perhaps slightly less (Hintemann, Hinterholzer and Seibel, 

2023). Using 45% of the values above yields 8.1 TWh/year for Germany and 4.1 TWh/year for 

France. Fortunately, the large discrepancy between the initial and corrected values (factor of 

1.76 for Germany and 2.56 for France) are not characteristic for the results as a whole. 

According to both the literature and interviewees, the data center landscape in most of Europe is 

not characterized by the presence of a few major global DC operators. Instead, it has a greater 

emphasis on colocation data centers, serving a diverse range of customers, with many more mid-

sized operators. This is for a variety of reasons, among which the comparative difficulty to 

source the quantities of power required by large DCs (one of the interviewees said “I envy the 

power ratings of hundreds of megawatts they achieve in Texas; at our DC [in Europe], I am afraid 

we will not be able to grow from 15 to 40 MW), stricter environmental and privacy regulations 

than elsewhere, and the comparative unavailability and high cost of land.43  

By contrast, the US market is dominated by hyperscale data centers built by the “big four” 

(Amazon, Google, Microsoft, and Meta) and other large operators. China's DC landscape is also 

heavily influenced by domestic hyperscalers such as Alibaba, Tencent, and Baidu, reflecting the 

country's focus on developing its own digital ecosystem.44 These are easily caught by the method 

 

43 See KMPG (2024) Data centres in Europe: A strategic approach. https://kpmg.com/ie/en/home/insights/2024/09/data-centres-
in-europe-strategy.html (Accessed: 2 December 2024). 
44 See Triolo P. and Schaefer K. (27 June 2024). China’s Generative AI Ecosystem in 2024: Rising Investment and Expectations. 
https://www.nbr.org/publication/chinas-generative-ai-ecosystem-in-2024-rising-investment-and-expectations/ (Accessed: 2 
December 2024). 

https://intl.cloud.baidu.com/doc/Reference/s/2jwvz23xx-en
https://intl.cloud.baidu.com/doc/Reference/s/2jwvz23xx-en
https://www.tencentcloud.com/global-infrastructure
https://techdocs.akamai.com/cloud-computing/docs/how-to-choose-a-data-center
https://techdocs.akamai.com/cloud-computing/docs/how-to-choose-a-data-center
https://vantage-dc.com/wp-content/uploads/2024/07/2023-ESG-Report_Vantage-Data-Centers.pdf
https://vantage-dc.com/wp-content/uploads/2024/07/2023-ESG-Report_Vantage-Data-Centers.pdf
https://vantage-dc.com/wp-content/uploads/2024/07/2023-ESG-Report_Vantage-Data-Centers.pdf
https://baxtel.com/data-centers/rostelecom
https://kpmg.com/ie/en/home/insights/2024/09/data-centres-in-europe-strategy.html
https://kpmg.com/ie/en/home/insights/2024/09/data-centres-in-europe-strategy.html
https://www.nbr.org/publication/chinas-generative-ai-ecosystem-in-2024-rising-investment-and-expectations/
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deployed in this study, while the more numerous but smaller DC operators in Europe are more 

likely to evade it.  

As further proof that the method is overall sound stand the results for Ireland. The country, 

whose DC landscape more closely resembles that of the US, has attracted significant investment 

from hyperscalers due to factors like favorable tax policies, reliable power infrastructure, and a 

supportive government. This has made Ireland a major hub for data centers serving not just the 

Irish market but also the broader European region. The result according to the methodology 

deployed here (6.39 TWh in 2023 for Ireland) is very close to the 6.3 TWh reported by the Irish 

Central Statistics Office.45 

 

45 See Irish Central Statistics Office (23 July 2024). Data Centres Metered Electricity Consumption 2023. 
https://www.cso.ie/en/releasesandpublications/ep/p-dcmec/datacentresmeteredelectricityconsumption2023/keyfindings/ 
(Accessed: 2 December 2024).  

https://www.cso.ie/en/releasesandpublications/ep/p-dcmec/datacentresmeteredelectricityconsumption2023/keyfindings/
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D Appendix: Energy intensity of different economic sectors 

Figure 11 shows the energy cost shares as a % of production costs in manufacturing and non-

manufacturing sectors. 

Figure 11: Energy cost shares in production costs of different economic sectors. 

 

 

Source: own illustration, INFRAS and Roegen Centre for Sustainability. Based on data from (European Commission, 

2024). 
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E Appendix: Policies affecting data center localization 

Table 10: Assessment of non-binding public initiatives and private sector initiatives. 

Name Short description Potential impact on carbon leakage 

AI Code of 
Conduct 

The International Code of Conduct for 
Organizations Developing Advanced AI Systems 
aims to promote safe, secure, and trustworthy AI 
worldwide and will provide voluntary guidance for 
actions by organizations developing the most 
advanced AI systems, including the most advanced 
foundation models and generative AI systems. 

Non-binding, harmonizes certain principles for I usage 
between G7 / OECD countries 

European Code of 
Conduct on Data 
Centre Energy 
Efficiency 

The European Code of Conduct for Data Centres 
(EU DC CoC) is a voluntary initiative set up by the 
Joint Research Centre (JRC) in response to the 
increasing energy consumption in data centers […]. 
It encourages and guides data center operators 
and owners in cost-effectively reducing energy 
consumption without compromising the mission-
critical function of these facilities. 
Since its launch in 2008, more than 500 data 
centers have joined the EU DC CoC to improve 
their energy efficiency. 

It offers extensive guidelines on all kinds of technical best 
practices, but makes no reference to specific reduction 
targets for energy (or GHG emissions). Non-binding. May 
mitigate incentives for carbon leakage due to lower 
energy costs. 

German AI 
Strategy and 
German AI Action 
Plan 

German AI Strategy has the goals of making 
Germany a leading center for AI, responsible usage 
of AI and the integration of AI into society in 
ethical, legal, cultural, and institutional terms. 
Based on this, the AI Action Plan names concrete 
measures to achieve the goals in the strategy.  

The AI strategy has the main goal of increasing Germany's 
competitiveness and attractiveness for AI. It shows that 
Germany (and likely other EU countries) recognize the 
importance of AI and data centers and want to build an 
attractive environment for it. Thus, in principle, it should 
have a preventive impact on carbon leakage. However, it 
remains open how effective the measures taken will be. 

Climate Neutral 
Data Centre Pact 

The focus and span of control of the Pact is on 
achieving sustainable data center facilities, more 
specifically to meet commonly accepted goals for 
energy efficiency, carbon-free or renewable 
energy, water conservation, circular economy, and 
heat recovery and reuse.  

Similar ambition level as regulation, but already older. It 
shows that (many) data center operators follow 
environmental targets with similar or higher ambition 
than current DC regulations. May mitigate incentives for 
carbon leakage.  

RE100 RE100 is the global corporate renewable energy 
initiative bringing together hundreds of large and 
ambitious businesses committed to 100% 
renewable electricity 

Only focus on renewable energy (including certificates and 
power purchase agreements).. Shows that at least large 
corporations like Google, Microsoft, Meta or Adobe have 
taken measures for their data centers since a long time.. 

Source: own illustration, INFRAS and Roegen Centre for Sustainability.  

 

Table 11: Assessment of EU policies/regulations and their implications for carbon leakage. 

Name Short description Potential impact on carbon leakage 

EU Carbon Border 
Adjustment 
Mechanism 
(CBAM)  

CBAM is EU's tool to put a fair price on the carbon 
emitted during the production of carbon intensive 
goods that are entering the EU, and to encourage 
cleaner industrial production in non-EU countries. 
It complements the EU ETS. 

CBAM leads to higher prices to a number of imported 
goods, including electricity, which could potentially affect 
the profitability of data centers. However, since consumed 
electricity is mainly produced in the EU itself, the EU ETS 
seems much more relevant and the impact of CBAM on 
data centres seems very low.  

Electricity price 
compensation 
mechanisms in the 
EU 

The purpose of communication 2020/C 317/04 is 
to ensure that electricity intensive activities are 
compensated for high electricity prices to maintain 
competitiveness and prevent carbon leakage. 

In principle, the goal of these EU guidelines is exactly to 
prevent carbon leakage and to compensate for higher 
electricity prices through EU ETS (and CBAM). For this 
purpose, the EU has also defined some (sub-)sectors that 
are particularly prone to the risk of carbon leakage. 
However, data centres (or any AI activity) are not part of 
this and thus are currently not impacted by this measure. 
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Name Short description Potential impact on carbon leakage 

EU Energy 
Efficiency 
Directive 
(EED) and country-
wise 
implementations. 

The main focus of the EED are the energy savings 
targets of countries and the EU overall. Countries 
need to implement concrete targets themselves 
(incl. Specific measures on data centers) 

The impact of this regulation on data centers is manifold:  
1. it could disincentivise countries to host data centers, as 
this might impede their own energy saving targets. 
However, however, this seems very indirect and 
speculative. 
2. Countries should take measures specifically on data 
centers, e.g. through energy efficiency targets (as done 
e.g. by Germany). However, many large IT companies (e.g. 
Google and Microsoft) are already below the (German) 
thresholds for the year 2030 as of now. 3. Further 
regulatory obligations for data centers such as 
environmental management systems and disclosure 
obligations including auditing of key performance 
indicators, leading to additional costs. 
Overall, impact on carbon leakage seems presumably 
small. 

EU AI Act These rules establish obligations for providers and 
users of AI depending on the level of risk. While 
many AI systems pose minimal risk, they need to 
be assessed. The AI act differentiates between 3 
levels of risks: unacceptable risks, high risks and 
others. 

Most affected by this regulation are AI applications 
categorized under unacceptable (completely forbidden) or 
high risk (special approval processes). As such, this 
regulation has considerable impact on AI companies. 
However, it affects all parts of the value chain of AI, i.e. 
the AI services would neither be offered nor processed in 
the EU. Therefore, carbon leakage is strongly limited to 
companies developing potentially high-risk applications of 
AI that could at the same time completely process and 
offer the final product/service in non-EU countries. 

EU General Data 
Protection 
Regulation (GDPR) 

The GDPR is a regulation on information privacy. It 
is an important component of EU privacy law and 
human rights law, in particular Article 8(1) of the 
Charter of Fundamental Rights of the European 
Union. It also governs the transfer of personal data 
outside the EU and EEA. 

Affects AI data centers mainly through a number of 
restrictions regarding data usage. However, similar 
regulations already in place in other countries and similar 
problems as with AI act (whole value chain). Furthermore, 
usage of personal data of EU citizens would even restrict 
them from processing it outside the EU, which could 
rather have a preventive effect on carbon leakage, 
particularly with AI applications using personal and private 
data. 

EU Corporate 
Sustainability Due 
Diligence Directive 
(CSDDD) 

The CSDDD lays down rules on: (a) obligations for 
companies regarding actual and potential human 
rights adverse impacts […] with respect to their 
own operations, the operations of their 
subsidiaries, and the operations carried out by 
their business partners in the chains of activities of 
those companies; (b) liability for violations of the 
obligations as referred to in point (a). 

There is no apparent direct link to AI and data centers (at 
least not more direct than for any other business). 

Source: own illustration, INFRAS and Roegen Centre for Sustainability.  
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